

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P3

FEBRUARY/MARCH 2011

MEMORANDUM

MARKS: 100

This memorandum consists of 11 pages.

1.1	Mean		
	3,2+3,2+3,2+4,2+4,5+4,9+8,3+9,5+11,7+12,2+12,5		
	11		
	$=\frac{77,4}{}$		
	11	✓ Mean	
	= 7,03	✓ Median	
	Median = 4,9	✓ Mode	
	Mode = 2,3		(3)
1.2	Mode	✓ mode	` ,
	This is the lowest value and will indicate that the increases are	✓ reason	
	very poor.		(2)
1.3	Mean.	✓ Mean	
	This is the highest value and can be used to indicate that	✓ Reason	
	increases are good.		(2)
			[7]

QUESTION 2

2.1	$\sigma = \frac{90 - 65}{}$	✓ method
	$\sigma = \frac{12,5}{2}$	✓ answer (2)
2.2	University A:	
	78 - 65 = 13	
	Her result lies just over 1 standard deviation from the mean.	✓ 1 sd from the mean
	University B:	
	$\bar{x} + \sigma = 54$	
	$\overline{x} + 2\sigma = 59$	(2.10.1
	Her result lies just over 2 standard deviations from the mean.	✓ 2 sd from the mean
	Her result for University B is better.	✓ University B. (3)
		[5]

3.1		
3.1	36% Fall (Rain & Fall)	✓✓ structure of the tree diagram
	63%	✓ 63% Rain ✓ 36% Fall
	Rain (Rain & Not Fall) Not Fall (No Rain & Fall) No Rain	✓ 64% Not fall
	88% (No Rain & Not Fall) Not Fall	✓ 88% Not Fall (6)
3.2	P(Not Fall) $ = \left(\frac{37}{100} \times \frac{88}{100}\right) + \left(\frac{63}{100} \times \frac{64}{100}\right) $ $ = \frac{407}{1250} + \frac{252}{625} $ $ = \frac{911}{1250} $ $ = 0,7288 $	$\checkmark \frac{37}{100} \times \frac{88}{100}$ $\checkmark \frac{63}{100} \times \frac{64}{100}$ $\checkmark \text{ answer}$ (3)
3.3	P(Dry & Fall) = $\frac{37}{100} \times \frac{12}{100}$ = $\frac{111}{2500}$ = 0,0444	$ √ \frac{37}{100} × \frac{12}{100} $ ✓ answer (2) [11]

Mathematics/P3

Average of trial examination	80	68	94	72	74	83	56	68	65	75	88
Final examination mark	72	71	96	77	82	72	58	83	78	80	92

4.4	r = 0.74 (0, 7391817008)	✓✓ answer (2)
4.5	$\hat{y} = 25,38 + 0,71x$	✓
	$\hat{y} = 25,38 + 0,71x$ $\hat{y} = 25,38 + 0,71(75)$	substitution
	= 78,63 %	✓ answer
	= /8,03 %	(2)
	If the original values of a and b then $\hat{y} = 78,401$	[13]

	Broken a limb	Not broken a limb	TOTAL
Male	463	b	782
Female	а	С	d
TOTAL	913	617	1 530

5.1	a = 450	\checkmark answer for a
	b = 319	\checkmark answer for b
	c = 298	\checkmark answer for c
	d = 748	\checkmark answer for d
		(4)
5.2	P(Female who has not broken a limb)	
	298	✓ 298
	$=\frac{1530}{1530}$	
	149	
	= 	✓ answer
	765	(2)
5.3	P(Female & broken a limb)	
	_ 450	✓ <u>463</u>
	$-\frac{1}{1530}$	$\frac{1530}{1}$
	$=\frac{5}{}$	
	$=\frac{1}{17}$	
	= 0,2941176471	√ √
		782 913
	=0,29	$\frac{782}{1530} \times \frac{913}{1530}$
	$P(Female) \times P(Broken a limb)$	
	$=\frac{748}{1530} \times \frac{913}{1530}$	✓ independent
	$-\frac{1530}{1530}$	(4)
	=0.29	[10]
	The events of being female and having broken a limb are independent.	
	If a candidate answers not independent due to the fact that the answers are	
	not accurate to more than 2 decimal places, award full marks.	

6.1	Number of different ways the shirts and trousers can be arranged = (7 + 4)! = 11! = 39 916 800	✓ 11 ✓ 11!	(2)
6.2	Number of ways so that the shirts are together and trousers are together = 7!.4!.2 = 241 920	✓ 7! ✓ 4! ✓ × 2	(3)
6.3	P(Shirt at beginning and trouser at the end) $= \frac{9! \times 4 \times 7}{11!}$ $= \frac{14}{55}$	\checkmark × 4 × 7 \checkmark 9! \checkmark 11! \checkmark answer	(4) [9]

QUESTION 7

7.1	$7 \times -3 \times 4 \times -9 \times -5 \times -27 \times -81 \times -113 \times -243 \times -356$	✓✓ answers (2)
	- 113; - 356	
7.2	$T_{k+1} = T_k - (3)^k$ $T_1 = 7$	✓
		$T_{k+1} = T_k - (3)^k$ $\checkmark T_1 = 7$
	$k \ge 1$	$\checkmark T_1 = 7$ $\checkmark k \ge 1$
	OR $T_{k+1} = T_k - 3(3)^{k-1}; T_1 = 7; k \ge 1$	V k≥1
	OR $T_{k} = T_{k-1} - (3)^{k-1}; T_{1} = 7; k \ge 2$	(3) [5]

8.	AO = OB	(radii)	✓ S	
	AO = BC	(given)		
	OB = BC		✓ S	
	$\hat{O}_1 = 22^{\circ}$	$(\angle s \text{ opp} = \text{radii})$	✓ S/R	
	$\hat{B}_2 = 44^{\circ}$	$(\operatorname{ext} \angle \Delta = \operatorname{sum int opp})$	✓ S	
	= 44°	$(\angle s \text{ opp} = \text{radii})$	✓ S	
	$\hat{AOD} = 66^{\circ}$	$(\operatorname{ext} \angle \Delta = \operatorname{sum\ int\ opp})$	✓ answer	
				[5]

QUESTION 9

9.1	Join PO and OS		✓ construct	ion
	Let $\hat{O}_1 = 2x$			
	$\hat{\mathbf{T}} = \mathbf{x}$	$(\angle$ at circ centre = 2 \angle at circumference)	✓ S/R	
	<u>~</u>	(∠s round a point)	✓ S	
	$\hat{R} = 180^{\circ} - x$	$(\angle$ at circ centre = 2 \angle at circumference)	✓ S/R	
	$\hat{\mathbf{T}} + \hat{\mathbf{R}} = x + 180^{\circ} - x$		✓ S	
	=180°			(5)
				•

9.2.1(a)	$\hat{D}_4 = \hat{C}$	(∠s opp = sides)	✓ S/R
	$\hat{\mathbf{C}} = \mathbf{x}$	$(\angle \operatorname{sum} \Delta)$	✓ S ✓ S/R
	$\hat{DEB} = 180^{\circ} - x$	(opp ∠ cyclic quad supp)	(3)
9.2.1(b)	$\hat{\mathbf{A}} = 180^{\circ} - 2x$	$(\text{ext} \angle \text{cyclic quad} = \text{int opp} \angle)$	✓ S
			✓ R (2)
9.2.2	$\hat{\mathbf{D}}_1 + \hat{\mathbf{A}} = \hat{\mathbf{E}}_1$	$(\operatorname{ext} \angle \Delta = \operatorname{sum\ int\ opp})$	✓ S/R
	$\hat{\mathbf{D}}_1 = x$		
	$\hat{\mathbf{C}} = \mathbf{x}$	(\angle sum \triangle) OR proved above	✓ statement
	$\hat{\mathbf{D}}_1 = \hat{\mathbf{C}} = x$		✓ Reason
	DE CB	(corres \angle s =)	(3)
			[13]

10.1	$\frac{EG}{48} = \frac{24}{36} \qquad (DE \parallel$	FG)	✓ S/R
	$EG = \frac{48 \times 24}{36}$		✓ answer
	EG = 32 cm		(2)
10.2			✓ statement
	$\frac{BC}{DE} = \frac{AC}{AE}$		
	120×40		✓ ✓
	$BC = \frac{120 \times 40}{48}$		substitution ✓ answer
	= 100 cm		(4)
			(.)
	OR AB		
	$\frac{AB}{AD} = \frac{AC}{AE}$		
	$AB = \frac{120 \times 36}{48}$		✓ S
	AB = 90		
	ΔABC ΔADE	$(\angle\angle\angle)$	✓ S
	$\frac{BC}{DE} = \frac{AB}{AD}$	(sides in proportion)	√ 90
		(sides in proportion)	✓ answer
	$BC = \frac{90 \times 40}{36}$		(4)
	BC = 100 cm		
	OR		
	$\Delta ABC \parallel \Delta ADE$	$(\angle\angle\angle)$	✓ S
	$\frac{BC}{DE} = \frac{AC}{AE}$	(sides in proportion)	
		(oraco in proportion)	✓ S
	$BC = \frac{120 \times 40}{36}$		✓ substitution
			✓ answer
	BC = 100 cm		(4)
			[6]

	$\frac{1}{2}$ $\frac{3}{4}$ $\frac{2}{2}$		
11.1	Let $\hat{A}_1 = x$ In $\triangle ABC$ and $\triangle ADT$ 1. $\hat{A}_1 = \hat{B}_2 = x$ (tan ch th) $\hat{B}_2 = \hat{A}_3 = x$ (AC BD alt \angle s) $\hat{A}_1 = \hat{A}_3$ 2. $\hat{T}_3 = B\hat{C}A$ (ext \angle cyclic quad) 3. $\hat{B}_1 = \hat{D}_1$ (3 rd \angle on triangle)	✓ statement ✓ reason ✓ statement ✓ statement ✓ reason ✓ statement	
11.2	$\Delta ABC \parallel \Delta ADT \qquad (\angle \angle \angle)$ $\hat{A}_1 = \hat{C}_2 = x (tan ch th)$ $\hat{T}_1 = \hat{C}_2 = x (AC \parallel BD; alt \angle s)$	✓ S/R ✓ S/R	(6)
	$ \hat{T}_1 = \hat{A}_1 = x $ $ \hat{T}_4 = x $	✓ Reason	(3)
	OR $\hat{A}_1 = \hat{B}_2 = \hat{A}_3 = x \qquad (AC \parallel BT)$ $\hat{A}_3 = \hat{T}_1 = \hat{T}_4 = x \qquad (\angle s \text{ in same segment})$ $\hat{A}_1 = \hat{T}_4 = x$	✓ S/R ✓ S/R	
	PT is a tangent (conv tan ch th)	✓ Reason	(3)
	OR $ \hat{B}_1 = \hat{T}_2 \qquad (\angle s \text{ in same seg}) $ $ \hat{B}_1 = \hat{D}_1 \qquad (\Delta s) $ $ \hat{D}_1 = \hat{T}_2 $	✓ S/R ✓ S/R	
	$D_1 = I_2$ PT is a tangent (conv tan ch th)	✓ Reason	(3)
11.3	In $\triangle APT$ and $\triangle TPD$ 1. \hat{P} is common. 2. $\hat{T}_4 = \hat{A}_1$ (proven)	✓ S/R ✓ S/R	
	3. $A\hat{T}P = \hat{D}_2$ (3 rd \angle on triangle) $\triangle APT \parallel \triangle TPD (\angle \angle \angle)$	✓ S	(3)

Copyright reserved

11.4	$\frac{AP}{PT} = \frac{PT}{PD} \qquad (\Delta APT \parallel\mid \Delta TPD)$	✓ statement ✓ reason
	AP.PD = PT.PT	
	$AP.\frac{1}{3}AP = PT^2$	$\checkmark DP = \frac{1}{3}AP$
	$AP^2 = 3PT^2$	✓ substitution
		(4)
		[16]

TOTAL: 150