

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

This question paper consists of 8 pages and 2 DIAGRAM SHEETS.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. This question paper consists of 6 questions.
2. Answer ALL the questions.
3. Number the answers correctly according to the numbering system used in this question paper.
4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
5. Answers only will NOT necessarily be awarded full marks.
6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
8. Diagrams are NOT necessarily drawn to scale.
9. TWO DIAGRAM SHEETS for QUESTION 2.2, QUESTION 5.1, QUESTION 5.2, QUESTION 6.1 AND QUESTION 6.2 are attached at the end of this question paper. Detach the DIAGRAM SHEETS and hand in together with your ANSWER BOOK.
10. Write neatly and legibly.

QUESTION 1

1.1 Consider the point $\mathrm{K}(-8 ; 3)$ in the Cartesian plane.
1.1.1 Write down the equation of the horizontal line passing through K .
1.1.2 Write down the equation of the vertical line passing through K.
1.2 In the diagram, $\mathrm{A}(p ; 1), \mathrm{B}$ and $\mathrm{C}(6 ;-3)$ are the vertices of $\Delta \mathrm{ABC}$.
$\mathrm{D}(5 ; 2)$ is the midpoint of BC . A lies in the second quadrant. DC forms an angle θ with the x-axis.

Determine the:
1.2.1 Gradient of BC.
1.2.2 Size of θ, rounded off to ONE decimal place.
1.2.3 Coordinates of B.
1.2.4 Value of p, if it is given that the length of $A C=4 \sqrt{5}$.

QUESTION 2

2.1 Calculate the value of q if $\mathrm{K}(-6 ; 9), \mathrm{L}(-3 ; q)$ and $\mathrm{M}(-2 ;-1)$ are collinear.
2.2 $\mathrm{G}(-3 ;-5), \mathrm{D}(6 ; 1), \mathrm{H}$ and C are the vertices of quadrilateral GDHC.
$\mathrm{CG} \perp \mathrm{GD}$. The equation of CH is $y=3 x+13$.

2.2.1 Determine the equation of CG.
2.2.2 Calculate the coordinates of C .
2.2.3 Calculate the size of GĈH.

QUESTION 3

3.1 In the diagram below $\mathrm{P}(-16 ; y)$ is a point such that $\mathrm{OP}=20$ units and reflex $\mathrm{RO} \mathrm{P}=\theta$.

3.1.1 Calculate the value of y.
3.1.2 Determine the value of each of the following without using a calculator:
(a) $\sin \left(180^{\circ}-\theta\right)$
(b) $\cos \left(180^{\circ}+\theta\right)$
3.1.3 $\quad S$ is a point on OP such that $\mathrm{OS}=15$.

Determine the coordinates of S, WITHOUT using a calculator.
3.2 Simplify, WITHOUT the use of a calculator: $\frac{\cos \left(-33^{\circ}\right) \cdot \tan 147^{\circ}}{2 \cos 303^{\circ} \cdot \sin 240^{\circ}}$

QUESTION 4

4.1 Use trigonometric identities to prove that $\frac{\sin ^{3} x+\sin x \cdot \cos ^{2} x}{\cos x}=\tan x$
4.2 Solve for x if $\sin x=0,412$ and $x \in\left[0^{\circ} ; 360^{\circ}\right]$.
4.3 Consider the equation: $\tan 3 x+2,64=0$.
4.3.1 Determine the general solution of $\tan 3 x+2,64=0$
4.3.2 Hence, or otherwise, solve for x if $-90^{\circ} \leq x \leq 90^{\circ}$
4.4 Solve for x if $4 \sin ^{2} x+7 \cos x-4=0$ and $x \in\left[0^{\circ} ; 360^{\circ}\right]$.

GIVE REASONS FOR YOUR STATEMENTS AND CALCULATIONS IN QUESTIONS 5 and 6.

QUESTION 5

5.1 MHN is a tangent to circle GHK at $\mathrm{H} . \mathrm{L}$ is a point on GK and J a point on HK such that LJ is parallel to $\mathrm{GH} . \hat{\mathrm{H}}_{1}=43^{\circ}$ and $\hat{\mathrm{L}}_{1}=130^{\circ}$.

Calculate, with reasons, the size of:
5.1.1 \hat{K}
5.1.2 $\quad \hat{H}_{3}$
5.2 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are points on the circle having centre $\mathrm{O} . \mathrm{DC}$ is produced to G . Diameter AOD bisects chord CE in F , and intersects chord BE in S .
$\hat{\mathrm{A}}=32^{\circ}$ and $\mathrm{GC} \mathrm{B}=70^{\circ}$.

Calculate, with reasons, the sizes of the following angles:

5.2.1 BÊD

5.2.2 $\quad \hat{\mathrm{C}}_{2}$
5.2.3 $\hat{\mathrm{D}}_{1}$
5.2.4 $\quad \hat{\mathrm{E}}_{3}$

QUESTION 6

6.1 In the diagram, O is the centre of the circle. VP and WP are chords, and VO and WO have been drawn.

Use the diagram on the DIAGRAM SHEET to prove the theorem which states that an angle that an arc subtends at the centre of a circle is twice the size of the angle subtended by the same arc at the circle i.e. VOWW $=2 \hat{\mathrm{P}}$.
6.2 In the diagram, O is the centre of the circle. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and F are points on the circumference. AC and BF intersect in E and $\mathrm{EF}=\mathrm{FC} . ~ Q$

Prove that:
6.2.1 $\quad \mathrm{AB} \| \mathrm{FC}$.
6.2.2 $\quad \mathrm{OBCE}$ is a cyclic quadrilateral.

NAME \& SURNAME: \square

DIAGRAM SHEET 1

QUESTION 2.2

QUESTION 5.1
TEAR OFF

QUESTION 5.2

NAME \& SURNAME:

DIAGRAM SHEET 2

QUESTION 6.1

QUESTION 6.2

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS: 100

This marking guideline consists of $\mathbf{1 0}$ pages.

GEOMETRY • MEETKUNDE	
S	A mark for a correct statement (A statement mark is independent of a reason)
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)
	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)
	'n Punt vir ' n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)
Award a mark if statement AND reason are both correct	

QUESTION 1

1.1.1	$y=3$	\checkmark answer
		(1)
1.1.2	$x=-8$	\checkmark answer
		(1)
1.2.1	$\begin{aligned} m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & =\frac{-3-2}{6-5} \quad \text { OR }=\frac{2-(-3)}{5-6} \\ & =-5 \end{aligned}$	\checkmark correct substitution \checkmark answer
		(2)
1.2.2	$\begin{aligned} & \tan \theta=m \\ & \tan \theta=-5 \end{aligned}$ reference angle: $78,7^{\circ}$ $\begin{aligned} \theta & =180^{\circ}-78,7^{\circ} \\ & =101,3^{\circ} \end{aligned}$	$\begin{aligned} & \checkmark \tan \theta=-5 \\ & \checkmark \text { reference angle: } 78,7^{\circ} \\ & \checkmark 101,3^{\circ} \end{aligned}$
1.2.3	$\begin{array}{lcc} \quad \frac{x+6}{2}=5 & \text { and } & \frac{y+(-3)}{2}=2 \\ x=4 & y=7 \\ \mathrm{~B}(4 ; 7) & \end{array}$	\checkmark method $\checkmark x=4 \checkmark \quad y=7$
1.2.4	$\begin{align*} & \mathrm{AC}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\ & 4 \sqrt{5}=\sqrt{(6-p)^{2}+(-3-1)^{2}} \\ & 4 \sqrt{5}=\sqrt{36-12 p+p^{2}+16} \\ & 4 \sqrt{5}=\sqrt{p^{2}-12 p+52} \\ & 80=p^{2}-12 p+52 \\ & p^{2}-12 p-28=0 \\ &(p-14)(p+2)=0 \\ & p=-2 \text { or } p=14 \\ & p=-2 \tag{5} \end{align*}$ OR $\begin{gathered} \mathrm{AC}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\ (p-6)^{2}+(1-(-3))^{2}=(4 \sqrt{5})^{2} \\ (p-6)^{2}+16=80 \\ (p-6)^{2}=64 \\ p-6= \pm 8 \\ p=-2 \text { or } p=14 \\ p=-2 \end{gathered}$	\checkmark substitution into distance formula \checkmark equating to $4 \sqrt{5}$ \checkmark squaring both sides \checkmark factors \checkmark answer \checkmark substitution into distance formula \checkmark equating to $4 \sqrt{5}$ \checkmark squaring both sides \checkmark square rooting both sides \checkmark answer
		[15]

GRADE 11
Marking Guideline

QUESTION 2

2.1
$=$
$m_{K M}$
---:

\checkmark substitution to determine $m_{\text {КМ }}$
\checkmark expression for $m_{K L}$

Because the points are collinear: $m_{K M}=m_{K L}$

$$
\begin{align*}
-\frac{5}{2} & =\frac{q-9}{3} \\
2(q-9) & =-15 \\
q & =\frac{3}{2} \tag{4}
\end{align*}
$$

OR

$$
\begin{aligned}
m_{K M} & =\frac{-1-9}{-2-(-6)} \\
& =-\frac{5}{2} \\
m_{L M} & =\frac{-1-q}{-2-(-3)} \\
& =-1-q
\end{aligned}
$$

Because the points are collinear: $m_{K M}=m_{L M}$

$$
\begin{align*}
-\frac{5}{2} & =-1-q \\
q & =\frac{3}{2} \tag{4}
\end{align*}
$$

OR

$$
\begin{aligned}
m_{K L} & =\frac{q-9}{-3-(-6)} \\
& =\frac{q-9}{3} \\
m_{L M} & =\frac{-1-q}{-2-(-3)} \\
& =-1-q
\end{aligned}
$$

Because the points are collinear: $m_{K L}=m_{L M}$

$$
\begin{align*}
\frac{q-9}{3} & =-1-q \\
q-9 & =-3-3 q \\
q & =\frac{3}{2} \tag{4}
\end{align*}
$$

\checkmark equating gradients

\checkmark answer
OR
\checkmark substitution to determine $m_{\text {км }}$
\checkmark expression for $m_{L M}$
\checkmark equating gradients
\checkmark answer
OR
\checkmark expression for $m_{K L}$
\checkmark expression for $m_{L M}$
\checkmark equating gradients

2.2.1	$\begin{aligned} m_{D G} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & =\frac{-5-1}{-3-6} \\ & =\frac{2}{3} \\ m_{C G} & =-\frac{3}{2} \end{aligned}$ Equation of CG: $y=-\frac{3}{2} x+c$ OR $y-y_{1}=-\frac{3}{2}\left(x-x_{1}\right)$ $\begin{array}{ccc} -5=-\frac{3}{2}(-3)+c & \text { OR } & y-(-5)=-\frac{3}{2}(x-(-3)) \\ c=-\frac{19}{2} & \text { OR } \quad y+5=-\frac{3}{2} x-\frac{9}{2} \\ & y=-\frac{3}{2} x-\frac{19}{2} & \end{array}$	\checkmark gradient of DG \checkmark gradient of CG \checkmark substitution of $(-3 ;-5)$ \checkmark equation of CG (4)
2.2.2		\checkmark equating equations of CG and CH $\checkmark x$-value $\checkmark y$-value

GRADE 11
Marking Guideline

QUESTION 3

3.1.1	$\begin{aligned} y^{2} & =r^{2}-x^{2} \\ & =20^{2}-(-16)^{2} \\ & =144 \\ y & =-12 \end{aligned}$ [Theorem of Pythagoras]	\checkmark substitution \checkmark answer	(2)
3.1.2(a)	$\begin{aligned} \sin \left(180^{\circ}-\theta\right) & =\sin \theta \\ & =\frac{-12}{20} \\ & =-\frac{3}{5} \end{aligned}$	$\checkmark \sin \theta$ \checkmark answer	(2)
3.1.2(b)	$\begin{aligned} \cos \left(180^{\circ}+\theta\right) & =-\cos \theta \\ & =-\left(\frac{-16}{20}\right) \\ & =\frac{4}{5} \end{aligned}$	$\checkmark-\cos \theta$ \checkmark answer	(2)
3.1.3	$\begin{aligned} & \sin \theta=\frac{-3}{5}=\frac{y}{15} \\ & y=-9 \\ & \cos \theta=\frac{-4}{5}=\frac{x}{15} \\ & x=-12 \\ & \mathrm{~S}(-12 ;-9) \end{aligned}$	$\checkmark \frac{-3}{5}=\frac{y}{15}$ $\checkmark y$-coordinate $\checkmark \frac{-4}{5}=\frac{x}{15}$ $\checkmark x$-coordinate	(4)
3.2	$\begin{aligned} & \frac{\cos \left(-33^{\circ}\right) \cdot \tan 147^{\circ}}{2 \cos 303^{\circ} \cdot \sin 240^{\circ}} \\ = & \frac{\cos 33^{\circ} \cdot-\tan 33^{\circ}}{2 \cos 57^{\circ} \cdot-\sin 60^{\circ}} \\ = & \frac{\cos 33^{\circ} \cdot-\frac{\sin 33^{\circ}}{\cos 33^{\circ}}}{2 \sin 33^{\circ} \cdot-\frac{\sqrt{3}}{2}} \\ = & \frac{1}{\sqrt{3}} \text { or } \frac{\sqrt{3}}{3} \end{aligned}$	$\begin{aligned} & \checkmark \cos 33^{\circ} \checkmark-\tan 33^{\circ} \\ & \checkmark \cos 57^{\circ} \checkmark-\sin 60^{\circ} \\ & \checkmark \tan 33^{\circ}=\frac{\sin 33^{\circ}}{\cos 33^{\circ}} \\ & \checkmark \cos 57^{\circ}=\sin 33^{\circ} \end{aligned}$	(7)
			[17]

GRADE 11
Marking Guideline

QUESTION 4

4.1	$\begin{aligned} & \frac{\sin ^{3} x+\sin x \cos ^{2} x}{\cos x} \\ = & \frac{\sin x\left(\sin ^{2} x+\cos ^{2} x\right)}{\cos x} \\ = & \frac{\sin x(1)}{\cos x} 1 \\ = & \tan x \end{aligned}$	\checkmark factors $\begin{aligned} & \checkmark \sin ^{2} x+\cos ^{2} x=1 \\ & \checkmark \frac{\sin x}{\cos x}=\tan x \end{aligned}$
4.2	$\begin{align*} & \sin x=0,412 \tag{3}\\ & x=24,33^{\circ} \quad \text { or } \quad x=155,67^{\circ} \end{align*}$	$\checkmark \checkmark$ answers
4.3.1	$\begin{gathered} \tan 3 x+2,64=0 \\ \tan 3 x=-2,64 \end{gathered}$ Reference angle: $69,25^{\circ}$ $\begin{aligned} & 3 x=110,75^{\circ}+k .180^{\circ} \\ & x=36,92^{\circ}+k \cdot 60^{\circ} ; k \in Z \end{aligned}$ $\begin{array}{\|l} \text { OR } \tag{4}\\ \tan 3 x+2,64=0 \\ \tan 3 x=-2,64 \end{array}$ Reference angle: $69,25^{\circ}$ $\begin{align*} & 3 x=110,75^{\circ}+k \cdot 360^{\circ} \text { or } 3 x=290,75^{\circ}+k \cdot 360^{\circ} \\ & x=36,92^{\circ}+k \cdot 120^{\circ} \text { or } x=96,92^{\circ}+k \cdot 120^{\circ} ; k \in Z \tag{4} \end{align*}$	$\begin{aligned} & \checkmark \tan 3 x=-2,64 \\ & \checkmark 69,25^{\circ} \\ & \checkmark 3 x=180^{\circ}-69,25^{\circ} \end{aligned}$ \checkmark General solution $\begin{aligned} & \checkmark \tan 3 x=-2,64 \\ & \checkmark 69,25^{\circ} \\ & \checkmark 3 x=180^{\circ}-69,25^{\circ} \text { or } 3 x=360^{\circ}-69,25^{\circ} \end{aligned}$ \checkmark General solution
4.3.2	SS: $x \in\left\{-83,08^{\circ} ;-23,08^{\circ} ; 36,92^{\circ}\right\}$	$\checkmark \checkmark \checkmark$ answers NOTE: 1 mark for each correct answer
4.4	$\begin{array}{r} 4 \sin ^{2} x+7 \cos x-4=0 \\ 4\left(1-\cos ^{2} x\right)+7 \cos x-4=0 \\ -4 \cos ^{2} x+7 \cos x=0 \\ 4 \cos ^{2} x-7 \cos x=0 \\ \cos x(4 \cos x-7)=0 \\ \cos x=0 \quad \text { or } \quad \cos x=\frac{7}{4} \\ \text { no solution } \end{array}$	$\checkmark \sin ^{2} x=1-\cos ^{2} x$ \checkmark standard form \checkmark factors \checkmark no solution $\checkmark 90^{\circ} \checkmark 270^{\circ}$

QUESTION 5

GRADE 11
Marking Guideline

QUESTION 6

6.1	Construction: Join PO and produce to B. Proof: Let $\hat{\mathrm{V}}=x$ $\begin{aligned} \hat{\mathrm{P}}_{1} & =\hat{\mathrm{V}}=x \quad[\mathrm{VO}=\mathrm{PO}=\text { radii; } \quad \angle \text { 's opp. }=\text { sides }] \\ \hat{\mathrm{O}}_{1} & =\hat{\mathrm{V}}+\hat{\mathrm{P}}_{1} \quad[\text { ext. } \angle \text { of } \Delta] \\ & =2 x \end{aligned}$ Let $\hat{\mathrm{W}}=y$ $\begin{aligned} & \hat{\mathrm{P}}_{2}=\hat{\mathrm{W}}=y \quad[\mathrm{WO}=\mathrm{PO}=\text { radii; } \angle \text { 's opp. }=\text { sides }] \\ & \hat{\mathrm{O}}_{2}=\hat{\mathrm{W}}+\hat{\mathrm{P}}_{2} \quad[\text { ext. } \angle \text { of } \Delta] \\ & \quad=2 y \end{aligned} \begin{aligned} & \hat{\mathrm{O}}_{1}+\hat{\mathrm{O}}_{2}=2 x+2 y \\ & \mathrm{VOW}=2(x+y) \\ & \quad=2 \hat{\mathrm{P}} \end{aligned}$	\checkmark construction \checkmark S/R \checkmark S/R $\checkmark S$ $\checkmark S$ \checkmark S	(6)	
6.2.1	$\begin{array}{cl} \hline \text { Let } \hat{\mathrm{A}}=x & \\ \hat{\mathrm{~F}}=\hat{\mathrm{A}}=x & {[\angle ' \mathrm{~s} \text { in same segment }]} \\ \hat{\mathrm{C}}_{2}=\hat{\mathrm{F}}=x & {[\angle ' \mathrm{~s} \text { opp. }=\text { sides }]} \\ \hat{\mathrm{A}}=\hat{\mathrm{C}}_{2} & {[\text { both }=x]} \\ \mathrm{AB} \\| \mathrm{FC} & {[\text { alt. } \angle \text { 's are }=]} \\ \hline \end{array}$	$\begin{aligned} & \checkmark \mathrm{S} \checkmark \mathrm{R} \\ & \checkmark \mathrm{~S} \checkmark \mathrm{R} \\ & \checkmark \mathrm{R} \end{aligned}$	(5)	
6.2.2	$\begin{aligned} \hat{\mathrm{O}} & =2 \hat{\mathrm{~A}} & & {[\angle \text { at centre }=2 \times \angle \text { at circum. }] } \\ & =2 x & & \\ \hat{\mathrm{E}}_{2} & =\hat{\mathrm{F}}+\hat{\mathrm{C}}_{2} & & {[\text { ext. } \angle \text { of } \Delta] } \\ & =2 x & & \\ \hat{\mathrm{O}} & =\hat{\mathrm{E}}_{2} & & {[\text { both }=2 x] } \end{aligned}$ OBCE is a cyclic quad. [converse: \angle 's in same segment]	$\begin{aligned} & \checkmark \mathrm{S} \checkmark \mathrm{R} \\ & \checkmark \mathrm{~S} \\ & \checkmark \mathrm{~S} \\ & \checkmark \mathrm{R} \end{aligned}$		
			[16]	

GRADE 11
Marking Guideline

