GR 12 MATHS
 ANALYTICAL GEOMETRY
 QUESTIONS and ANSWERS

Work through the Grade 11 Analytical downloads first to ensure your foundation is solid before attempting
Grade 12 Analytical Geometry which includes circles.
We wish you the best of luck for your exams.

From
The Answer Series team

$$
\text { Gr } 12 \text { Maths - Analytical Geometry: Questions }
$$

ANALYTICAL GEOMETRY

QUESTIONS

GRADE 12

See why $A \hat{B} C=90^{\circ}$ in these 2 cases ...

- A diameter of a circle makes an angle of 90° at the circumference \therefore The hypotenuse of a right-angled $\triangle \mathrm{ABC}$ is the diameter of $\odot \mathrm{ABC}$!

- A tangent to a circle is perpendicular to the radius (or diameter) drawn to the point of contact, i.e. $B C \perp A B$.

CIRCLES - CENTRE AT THE ORIGIN

$$
\text { Equation: } \mathbf{x}^{2}+\mathbf{y}^{2}=\mathbf{r}^{2}
$$

14. The origin O is the centre of the circle in the figure.
$P(x ; y)$ and $Q(3 ;-4)$ are two points on the circle and $P O Q$ is a straight line.
R is the point $(k ; 1)$ and $R Q$ is

a tangent to the circle.
Determine (leave answers in surd form if necessary):
14.1 the equation of circle O .
14.2 the length of QT.
14.3 the length of PQ .
14.4 the equation of $O Q$.
14.5 the coordinates of P.
14.6 the gradient of $Q R$.
14.7 the equation of $Q R$ in the form $y=m x+c$.
14.8 the value of k.
14.9 whether the point $S(3 ; 2)$ lies inside, outside or on the circle. Give a reason for your answer.
15. $P R Q$ is a tangent to the circle with centre O at the point $R(6 ;-2)$.
15.1 Calculate the equation of 15.1.1 the circle. 15.1.2 the tangent.
15.2 Calculate the size of $O \hat{Q}$, rounded off to one decimal digit.
(3)
15.3 Calculate a if $(2 ; a)$ is a point on the circle $x^{2}+y^{2}=40$.
15.4 Determine the coordinates of Q .

16. The straight line $\mathrm{y}=x-1$ cuts the circle $x^{2}+y^{2}=25$ at A and B. AB cuts the x-axis at S . The circle intersects the x-axis at T .

Calculate
16.1 the coordinates of A and B.
(6)

16.2 the equation of the circle with centre O and radius OS.
16.3 the equation of the tangent to the circle at T .
17. In the figure the circle, with centre at the origin O , passes through the point $\mathrm{K}(-3 ; 1)$.
ST is a tangent to the circle at $S(1 ; a)$.

17.1 Determine the radius of the circle
17.2 Write down the equation of the circle.
17.3 Show clearly that the value of $a=3$.
17.4 Write down the coordinates of a point Q which is symmetrical to the point S with respect to the x-axis. (2)
17.5 Write down the gradient of OS.
17.6 Hence, show that the equation of the tangent $S T$ is given by $x+3 y=10$.
17.7 Write down the coordinates of point T
17.8 Hence, prove that $T Q$ is a tangent to the circle.
17.9 Write down the equation of another tangent to the circle (not shown in the figure above) which is also parallel to ST
18. In the accompanying figure, the circle with the centre at the origin passes through the point $\mathrm{T}(-2 \sqrt{3} ;-2)$ and cuts the x-axis and y-axis at P and S respectively.
18.1 Show that the equation of

$$
\begin{equation*}
\text { the circle is } x^{2}+y^{2}=16 \text { is. } \tag{2}
\end{equation*}
$$

18.2 Determine the coordinates of P and S.
18.3 Determine the equation of the line PS .
18.4 If the straight line QN which is perpendicular to PS passes through the origin, write down its equation.
18.5 Calculate the coordinates of N if $Q N$ meets $P S$ at N. (4)
18.6 Find the coordinates of a point E, which is the reflection of point T with respect to the line $y=-x$.
19. A circle with its centre O at the origin passes through the point $P(2 \sqrt{3} ; 2)$.
19.1 Determine the equation of the circle
19.2 Determine the gradient of line OP.
19.3 Hence, without using a calculator, determine the size of the angle between OP and the positive x-axis.
19.4 Determine the equation of the tangent to the circle at the point $P(2 \sqrt{3} ; 2)$ in the form $y=a x+q$.
20. In the figure, a circle is defined by the equation $x^{2}+y^{2}=9$, two secants $A B$ and $B C$ meet at a common point $B(k ; 0)$, a second line DE passes through the origin and is perpendicular to $A B$ with E a point on the circle.

20.1 Write down the value of k.
20.2 Determine the length of $A B$.
20.3 Calculate BÂC, giving reasons.
20.4 Calculate the area of $\triangle \mathrm{ABC}$.
20.5 Determine the equation of line DE.
20.6 Hence, without using a calculator, determine the coordinates of D.

CIRCLES - ANY CENTRE

Equation: $(\mathbf{x}-\mathbf{a})^{\mathbf{2}}+(\mathbf{y}-\mathbf{b})^{\mathbf{2}}=\mathbf{r}^{\mathbf{2}}$

21. Determine the equation of the circle with
21.1 centre $(2 ; 3)$ and radius 7 units
21.2 centre $(-1 ; 4)$ and radius $\sqrt{5}$ units.
22.1 Convert the following general form of the equation of a circle to the standard form: $x^{2}-6 x+y^{2}+8 y-11=0$
22.2 Write down the centre and the radius of the circle.
22. Determine the equation of the tangent that touches the circle defined by:
$23.1(x-1)^{2}+(y+2)^{2}=25$ at the point $(4 ; 2)$
$23.2 x^{2}-2 x+y^{2}+4 y=5$ at the point $(-2 ;-1)$
23. A diameter AB of a circle with points $\mathrm{A}(-3 ;-2)$ and $B(1 ; 4)$ is given.
24.1 Determine the equation of the circle.
24.2 Determine the equation of the tangent to the circle at A.
25.1 Prove that $y=x+7$ is a tangent to the circle $x^{2}+y^{2}+8 x+2 y+9=0$.
25.2 Determine the point of contact of the tangent and the circle in 25.1.
24. Find the equation of the circle centre $(-2 ; 5)$ equal in radius to the circle $x^{2}+y^{2}+8 x-2 y-47=0$.
25. The equation of a circle in the Cartesian plane is
$x^{2}+y^{2}+6 x-2 y-15=0$

27.1 Rewrite the equation

$$
\text { in the form }(x-p)^{2}+(y-q)^{2}=t .
$$

27.2 Calculate the length of the tangent drawn to the circle from point $P(8 ;-1)$ outside the circle
27.3 Determine the y-intercepts of the circle.
28. The point $M(2 ; 1)$ is the midpoint of chord $P Q$ of the circle

$$
x^{2}+y^{2}-x-2 y-5=0
$$

28.1 Determine the coordinates of the centre, A , of the circle.
28.2 Determine the radius of the circle
28.3 If chord $\mathrm{PQ} \perp \mathrm{AM}$, determine the equation of chord PQ.
28.4 Calculate the coordinates of P and Q.
28.5 Determine the equation of the tangent to the circle at the point $(2 ; 3)$.
29. $A(3 ;-5)$ and $B(1 ; 3)$ are two points in a Cartesian plane.

NB: DRAW A PICTURE!

29.1 Calculate the length of $A B$ and leave the answer in simplified surd from if necessary.
29.2 Determine the equation of the circle with AB as diameter in the form: $(x-a)^{2}+(y-b)^{2}=r^{2}$
29.3 Determine the equation of the tangent to the circle at A in the form: $y=m x+c$.
30. The equation of a circle with radius $3 \sqrt{2}$ units is $x^{2}+y^{2}-6 x+2 y-m=0$
30.1 Determine the coordinates of the centre of the circle.
30.2 Determine the value of m.
31. A circle with centre $M(-4 ; 2)$ has the points $O(0 ; 0)$ and $N(-2 ; y)$ on the circumference. The tangents at O and N meet at P .
Determine:
31.1 the equation of the circle.

31.2 the value of y
31.3 the equation of OP.
(3)
31.4 the coordinates of P.
31.5 the specific type of figure represented by POMN.
32. The vertices A and B of $\triangle A B C$ lie on the x-axis.
The centre of the inscribed circle of $\triangle A B C$ is $Q(4 ; 5)$
The circle touches $A C$ at the point $D(0 ; 8)$ and $B C$ at the
 point $E(8 ; 8)$.
Determine:
32.1 the equation of the circle.
32.2 the equation of $B C$.
32.3 the gradient of $A C$.
32.4 Hence, or otherwise, prove that $A C=B C$.

Give reasons for your answer.
33. A triangle with vertices $A(-1 ; 7), B(8 ; 4)$ and $C(7 ; 1)$ is given.
33.1 Show that $A \hat{B C}=90^{\circ}$.
33.2 Determine the area of the triangle.
33.3 Determine the equation of the circle through A, B and C.

Remember?

A tangent to a circle is perpendicular to the radius (or diameter) drawn to the point of contact,
i.e. tangent \perp radius.

34. In the diagram alongside, centre C of the circle lies on the straight line $3 x+4 y+7=0$.
The straight line cuts the circle at D and $E(-1 ;-1)$.
The circle touches the y-axis at $P(0 ; 2)$.

34.1 Determine the equation of of the circle in the form $(x-n)^{2}+(y-q)^{2}=r^{2}$.
34.2 Determine the length of diameter DE.
35. A diameter MN of a circle with points $\mathrm{M}(-1 ; 0)$ and $N(3 ;-2)$ is given.
35.1 Determine the equation of the circle.
35.2 Determine the x-intercepts of the circle.
35.3 Show that the circle above touches the circle with equation $(x-3)^{2}+(y-3)^{2}=5$

ANALYTICAL GEOMETRY

ANSWERS

CIRCLES - CENTRE AT THE ORIGIN

14.1 Equation of \odot centre O

True of any point on the circle is: $x^{2}+y^{2}=r^{2}$
$r^{2}=x^{2}+y^{2}=3^{2}+(-4)^{2}=9+16=25$
Equation: $x^{2}+y^{2}=25<$

14.2 Length of OT is 5 units $\Rightarrow T(5 ; 0) 1$
$Q T^{2}=(5-3)^{2}+(0+4)^{2}=4+16=20$
QT $=\sqrt{20}=\sqrt{4 \times 5}=\sqrt{4} \sqrt{5}=2 \sqrt{5}$ units $<$
14.3 Diameter, $P Q=10$ units
radius $=5$
14.4 Gradient, mOQ $=\frac{y}{x}=\frac{-4}{3}$

Equation of $O Q: \quad y=-\frac{4}{3} x<\ldots y$-intercept, $c=0$
14.5 By symmetry/or by rotation 180° about the origin:

Point P is $(-3 ; 4)<$
14.6 Note: Radius $O Q \perp$ tangent $Q R$

$$
m_{Q R}=\frac{3}{4}<\quad \ldots m_{O Q}=-\frac{4}{3}
$$

$14.7 \mathrm{~m}=\frac{3}{4}$ \& point $Q(3 ;-4)$ in:

$$
\begin{aligned}
& \mathbf{y}=\mathbf{m x}+\mathbf{c} \quad O R \quad y-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right) \\
& -4=\left(\frac{3}{4}\right)(3)+c \quad \therefore y+4=\frac{3}{4}(x-3) \\
& \therefore-4=2 \frac{1}{4}+c \quad \therefore y+4=\frac{3}{4} x-\frac{9}{4} \\
& -6 \frac{1}{4}=c \quad \therefore y=\frac{3}{4} x-6 \frac{1}{4}
\end{aligned}
$$

Equation: $y=\frac{3}{4} x-6 \frac{1}{4}<$

14.8 $R(k ; 1)$ on line $Q R \quad \Rightarrow \quad 1=\frac{3}{4} k-6 \frac{1}{4}$

$$
\begin{gathered}
\therefore 7 \frac{1}{4}=\frac{3}{4} k \\
\left(\times \frac{4}{3}\right) \quad \therefore \frac{29}{3}=k, \text { i.e. } k=9 \frac{2}{3}<
\end{gathered}
$$

14.9 Inside the circle < For S(3; 2): $x^{2}+y^{2}=9+4=13<25$

OS < radius $5<$
OR: Point $(3 ; 4)$ lies on the circle
by symmetry if Q is reflected in the x-axis.
$(3 ; 2)$ lies inside the circle.

$$
\left.\begin{array}{l}
\text { 15.1.1 } \begin{array}{rl}
r^{2}=x^{2}+y^{2}=6^{2}+(-2)^{2} & =36+4=40 \\
\therefore \text { Equation of } \odot: x^{2}+y^{2} & =40<
\end{array} \\
\text { 15.1.2 moR }=\frac{-2}{6}=-\frac{1}{3} \\
\therefore \text { Gradient of tangent }=3 \\
\text { Subst. } m=3 \& R(6 ;-2) \text { in } \mathbf{y}=\mathbf{m x}+\mathbf{c} \\
\therefore-2=(3)(6)+c \\
\therefore-2=18+c \\
\therefore-20
\end{array}\right)
$$

At $A \& B, y=x-1$

\& $x^{2}+y^{2}=25$

. 2

(1) in (2)

$$
\begin{aligned}
\therefore x^{2}+(x-1)^{2} & =25 \\
\therefore x^{2}+x^{2}-2 x+1 & =25 \\
\therefore 2 x^{2}-2 x-24 & =0 \\
\therefore x^{2}-x-12 & =0 \\
\therefore(x-4)(x+3) & =0
\end{aligned}
$$

$$
x=4 \text { or }-3
$$

(1): $\quad \therefore y=3$ or -4

$$
A(-3 ;-4) \& B(4 ; 3)<
$$

16.2 At S, $x-1=0 \quad(y=0)$
$r=O S=1$
Equation of $\odot: x^{2}+y^{2}=1<$
$16.3 x=-5<$
17.1 $r=O K=\sqrt{(-3)^{2}+1^{2}}=\sqrt{9+1}=\sqrt{10}$
$r=\sqrt{10}$ units $<$
$17.2 \therefore$ Equation of $\odot: x^{2}+y^{2}=10<$
17.3 OS $=\sqrt{10}$ too $\Rightarrow 1^{2}+a^{2}=10 \ldots x^{2}+y^{2}=r^{2}$
or, S on \odot

$$
a^{2}=9
$$

$$
a=3<\quad(a>0)
$$

17.4 $Q(1 ;-3)<$
17.5 mos $=3<$

$$
\text { Gradient }=+\frac{3}{1}
$$

17.6 Gradient of tangent $S T=-\frac{1}{3}$
tangent \perp radius
Substitute $m=-\frac{1}{3}$ \& $S(1 ; 3)$ in

$$
\begin{aligned}
\mathbf{y} & =\mathbf{m x}+\mathbf{c} \\
\therefore 3 & =\left(-\frac{1}{3}\right)(1)+c \\
\therefore 3 & =-\frac{1}{3}+c \\
\therefore 3 \frac{1}{3} & =c \\
\therefore \quad \text { Eqn. is } y & =-\frac{1}{3} x+3 \frac{1}{3} \\
(\times 3) \quad \therefore 3 y & =-x+10
\end{aligned} \left\lvert\, \begin{aligned}
\text { OR: } \begin{aligned}
& \text { in } \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right) \\
& \therefore y-3=-\frac{1}{3}(x-1) \\
& \therefore y-3=-\frac{1}{3} x+\frac{1}{3} \\
& \therefore y=-\frac{1}{3} x+3 \frac{1}{3} \\
& \hline
\end{aligned} \\
\begin{array}{c}
\text { Try and get used } \\
\text { to this one! }
\end{array}
\end{aligned}\right.
$$

Gr 12 Maths - Analytical Geometry: Answers

17.8 $m_{\text {radius } O Q}=\frac{-3}{1}=-3$
\& $m_{T Q}=\frac{-3}{1-10}=\frac{-3}{-9}=\frac{1}{3} \quad \ldots Q(1 ;-3)$
$\therefore T Q \perp$ radius $O Q$ at $Q!$
$\ldots\left(m_{r} \times m_{T Q}=-1\right)$
$T Q$ is a tangent to the circle $<$
17.9 Equation of the tangent TS: $y=-\frac{1}{3} x+3 \frac{1}{3}$

Equation of the tangent TQ: $y=\frac{1}{3} x-3 \frac{1}{3}$
Equation of the tangent PR: $y=-\frac{1}{3} x-3 \frac{1}{3}<$

$18.1 r^{2}=x^{2}+y^{2}=(-2 \sqrt{3})^{2}+(-2)^{2}=12+4=16$
Equation of \odot is: $x^{2}+y^{2}=16<$
$18.2 r=4$
$P(-4 ; 0) \& S(0 ;-4)<$
18.3 Gradient of $P S=-1 \& y$-intercept is -4

Equation of PS: $\boldsymbol{y}=-\boldsymbol{x}-4<$
18.4 Gradient of $Q N=1$ (QN $\perp P S$) \& y-intercept is 0

Equation of $\mathrm{QN}: ~ y=x<$
18.5 At $\mathrm{N}: \mathrm{y}=-x-4$ \& $\mathrm{y}=x \ldots$ Npt. of intersection of $P S \& Q N$

$$
\begin{aligned}
& \therefore-x-4=x \\
& \therefore-2 x=4 \\
& \therefore x=-2 \\
& N(-2 ;-2)
\end{aligned} \& y=-2 \quad\left(\begin{array}{l}
\text { OR: Gr. } 12 \text { Geometry } \\
\text { Line } O Q \text { from centre } \perp \text { chord } P S \\
\text { bisects } P S, \text { i.e. } N \text { midpoint } P S
\end{array}\right)
$$

18.6 $\mathrm{E}(2 ; 2 \sqrt{3})$ <

The 'rule':
$(\mathbf{x} ; \mathbf{y}) \rightarrow \mathbf{(- y ; - x)}$
It makes sense
on the sketch!

19.1 Equation: $r^{2}=x^{2}+y^{2}$

$$
\begin{aligned}
& =(2 \sqrt{3})^{2}+2^{2} \\
& =12+4 \\
& =16
\end{aligned}
$$

19.2 mop $=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}} \quad(\simeq 0,58)$
$19.3 \therefore$ PÔX $=30^{\circ}<$

19.4 Gradient of the tangent, $m=-\sqrt{3}$
tang. \perp radius $O P$ \& point $(2 \sqrt{3} ; 2)$
Substitute in $\mathbf{y = m \times}+\mathbf{c}: \quad 2=(-\sqrt{3})(2 \sqrt{3})+c$

$$
2=-6+c
$$

$$
8=c
$$

Equation is: $y=-\sqrt{3} x+8<$
20.1 k = $3<$
$O B=$ radius $=3$ units
20.2 Point A is $(0 ; 3)$ \& Point B is $(3 ; 0)$

$$
\begin{aligned}
A B^{2} & =(3)^{2}+(3)^{2} \ldots \text { Pyth } \\
& =9+9 \\
& =18 \\
A B & =\sqrt{18} \simeq 4,24 \text { units }<
\end{aligned}
$$

20.3 $B \hat{A} C=45^{\circ}<\ldots$ base \angle of isosceles right-angled $\triangle A O B$
20.4 Similarly, $B \hat{C} A=45^{\circ} \quad \ldots$ in $\triangle B C O$

In $\triangle A B C, A \hat{B} C=90^{\circ} \ldots \angle$ sum of \triangle
Area of $\triangle A B C=\frac{1}{2} A B . B C$ $A=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \sqrt{18} \sqrt{18} \quad \ldots B C=A B=\sqrt{18} \\
& =\frac{1}{2}(18)=9 \text { square units }<
\end{aligned}
$$

$20.5 m_{A B}=-1 \Rightarrow m_{D E}=1 \ldots A B \perp D E$

$$
\text { Equation of } D E: y=x<
$$

20.6 At D, $y=x$ and $x^{2}+y^{2}=9$放 0
$x^{2}+x^{2}=9$ $2 x^{2}=9$ $\therefore x^{2}=4 \frac{1}{2}$
$\therefore x=-\sqrt{4 \frac{1}{2}}$
$\& y=-\sqrt{4 \frac{1}{2}}$
$D\left(-\sqrt{4 \frac{1}{2}} ;-\sqrt{4 \frac{1}{2}}\right)$

CIRCLES - ANY CENTRE

$21.1(x-2)^{2}+(y-3)^{2}=49<\ldots r^{2}=7^{2}=49$
$21.2(x+1)^{2}+(y-4)^{2}=5<\ldots r^{2}=(\sqrt{5})^{2}=5$
$22.1 x^{2}-6 x+y^{2}+8 y=11$
$x^{2}-6 x+9+y^{2}+8 y+16=11+9+16$

$$
(x-3)^{2}+(y+4)^{2}=36<
$$

22.2 Centre: (3;-4) \& radius, $r=6$ units <
23.1 $m_{\text {radius } P Q}=\frac{2-(-2)}{4-1}=\frac{4}{3}$

$$
m_{\text {tangent }}=-\frac{3}{4} \quad \ldots \text { tangent } \perp \text { radius }
$$

Substitute $(4 ; 2) \& m=-\frac{3}{4}$ in

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =-\frac{3}{4}(x-4) \\
y-2 & =-\frac{3}{4} x+3
\end{aligned}
$$

Equation of tangent : $y=-\frac{3}{4} x+5<$
$23.2 x^{2}-2 x+1+y^{2}+4 y+4=5+1+4$ $(x-1)^{2}+(y+2)^{2}=10$
$m_{\text {radius } P Q}=\frac{-1-(-2)}{-2-1}=\frac{1}{-3}$
: $m_{\text {tangent }}=+3$

Substitute $(-2 ;-1) \& m=3$ in

$$
y=m x+c
$$

$-1=(3)(-2)+c$
$5=c$
Equation of tangent: $y=3 x+5<$
24.1 Centre of \odot is midpoint of $A B$:
$\left(\frac{-3+1}{2} ; \frac{-2+4}{2}\right)$, say M

- $M(-1 ; 1)$

\& radius, $M B^{2}=(1+1)^{2}+(4-1)^{2}$

$$
\begin{aligned}
& =4+9 \\
& =13 \\
r^{2} & =13 \quad \ldots(\therefore r=\sqrt{13})
\end{aligned}
$$

Equation of $\odot:(x+1)^{2}+(y-1)^{2}=13<$

Gr 12 Maths - Analytical Geometry: Answers
$24.2 m_{A B}=\frac{4-(-2)}{1-(-3)}=\frac{6}{4}=\frac{3}{2}$
Gradient of tangent $=-\frac{2}{3}$
Substitute $m=-\frac{2}{3}$ \& point $A(-3 ;-2)$ in

$$
\begin{aligned}
\mathbf{y}-\mathbf{y}_{1} & =\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
\therefore y+2 & =-\frac{2}{3}(x+3) \\
\therefore y+2 & =-\frac{2}{3} x-2 \\
\therefore y & =-\frac{2}{3} x-4
\end{aligned} \quad\left[\begin{array}{rl}
\text { OR: }: \\
\therefore-2 & =\mathbf{m x}+\mathbf{c} \\
\left.\therefore-\frac{2}{3}\right)(-3)+c \\
\therefore-2 & =2+c \\
\therefore-4 & =c, \text { etc. }
\end{array}\right]
$$

25.1 At the point(s) of intersection:

$$
x^{2}+(x+7)^{2}+8 x+2(x+7)+9=0
$$

$x^{2}+x^{2}+14 x+49+8 x+2 x+14+9=0$

$$
\therefore 2 x^{2}+24 x+72=0
$$

$\begin{aligned} &(\div 2) \\ & \begin{array}{l}\text { A perfect } \\ \text { square! }\end{array} \therefore x^{2}+12 x+36=0 \\ & \longrightarrow \quad \therefore(x+6)^{2}=0\end{aligned}$

$$
\therefore x=-6 \text { - only } 1 \text { solution! }
$$

The line is a tangent - only 1 point of contact <
$25.2 \mathrm{y}=\mathrm{x}+7=-6+7=1$
. Point of contact is $(-6 ; 1)<$
You can check your answer by making sure that it also satisfies the other equation.

$$
\text { 26. } \begin{aligned}
x^{2}+8 x+y^{2}-2 y & =47 \\
\therefore x^{2}+8 x+\mathbf{4}^{2}+y^{2}-2 y+1^{2} & =47+\mathbf{1 6}+\mathbf{1} \\
\therefore(x+4)^{2}+(y-1)^{2} & =64
\end{aligned}
$$

The radius, $r=8$ units
Equation required: $(x+2)^{2}+(y-5)^{2}=64<$
$27.1 \quad x^{2}+6 x$

$$
+y^{2}-2 y=15
$$

$\therefore x^{2}+6 x+9+y^{2}-2 y+1=15+9+1$
$(x+3)^{2}+(y-1)^{2}=25$
27.2 Centre, $M(-3 ; 1) \&$ radius, $M T=5$ units
radius $M T \perp$ tangent $P T$
$P T^{2}=M P^{2}-M T^{2} \quad \ldots$ Pythagoras
$=\left[(8+3)^{2}+(-1-1)^{2}\right]-25$
$=121+4-25$
$=100$
PT $=10$ units $<$
27.3

On the y-axis, $x=0$
so, substitute!

$$
\begin{aligned}
3^{2}+(y-1)^{2} & =25 \\
\therefore(y-1)^{2} & =16 \\
\therefore y-1 & = \pm 4 \\
\therefore y & =1 \pm 4 \\
\therefore y & =5 \text { or }-3<
\end{aligned}
$$

$28.1 x^{2}-x+y^{2}-2 y=5$

$$
\begin{aligned}
& x^{2}-x+\left(\frac{\mathbf{1}}{\mathbf{2}}\right)^{2}+y^{2}-2 y+1=5+\frac{\mathbf{1}}{4}+\mathbf{1} \\
& \therefore\left(x-\frac{1}{2}\right)^{2}+(y-1)^{2}=6 \frac{1}{4}
\end{aligned}
$$

Centre is $A\left(\frac{1}{2} ; 1\right)<$
$28.2 \quad r^{2}=6 \frac{1}{4}=\frac{25}{4}$
$r=\frac{5}{2}=2 \frac{1}{2}$ units $<$

28.3 AM || x-as $\ldots y_{A}=y_{M}$
$\mathrm{PQ} \| y$-as $\quad \ldots P Q \perp A M$
Equation of $\mathrm{PQ}: ~ x=2<$
28.4 Substitute $x=2$ in $\left(x-\frac{1}{2}\right)^{2}+(y-1)^{2}=6 \frac{1}{4}$

$$
\begin{aligned}
\frac{9}{4}+(y-1)^{2} & =\frac{25}{4} \\
\therefore(y-1)^{2} & =4 \\
\therefore y-1 & = \pm 2 \\
\therefore y & =1 \pm 2 \\
\therefore y & =3 \text { or }-1
\end{aligned}
$$

$P(2 ; 3) \& Q(2 ;-1)<$
$28.5 m_{A P}=\frac{3-1}{2-\frac{1}{2}}=\frac{2}{1 \frac{1}{2}}=\frac{4}{3}$
Gradient of tangent at $P=-\frac{3}{4}$

Subst. $m=-\frac{3}{4} \&(2 ; 3)$ in $\mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right)$

$$
\begin{aligned}
y-3 & =-\frac{3}{4}(x-2) \\
\therefore y & =-\frac{3}{4} x+1 \frac{1}{2}+3
\end{aligned}
$$

Equation of tangent: $\therefore y=-\frac{3}{4} x+4 \frac{1}{2}<$
$29.1 \quad A B^{2}=(1-3)^{2}+(3+5)^{2}$
$=4+64$
$=68$
$A B=\sqrt{68}(=\sqrt{4 \times 17}=2 \sqrt{17})$ units

29.2 Centre of \odot is midpoint of $A B$
viz. $O(2 ;-1)$
. . by inspection!
\& radius, $r=\frac{1}{2}$ diameter $=\sqrt{17}$ units
Equation of $\odot: \quad(x-2)^{2}+(y+1)^{2}=17<$
$29.3 m_{\text {radius }}=\frac{-5+1}{3-2}=-4$
$m_{\text {tangent }}=\frac{1}{4} \quad \ldots$ tangent \perp radius
Substitute $m=\frac{1}{4}$ \& point $A(3 ;-5)$ in

$$
\begin{aligned}
y-y_{1} & =\mathbf{m}\left(x-x_{1}\right): \\
y+5 & =\frac{1}{4}(x-3) \\
y+5 & =\frac{1}{4} x-\frac{3}{4} \\
\therefore y & =\frac{1}{4} x-5 \frac{3}{4}<
\end{aligned}
$$

$30.1 x^{2}-6 x+y^{2}+2 y=m$

$$
x^{2}-6 x+9+y^{2}+2 y+1=m+9+1
$$

$$
(x-3)^{2}+(y+1)^{2}=m+10
$$

Centre: $(3 ;-1)<$
$30.2 \quad m+10=(3 \sqrt{2})^{2} \quad\left(=r^{2}\right)$
$m+10=18$

31.1 Radius, $O M^{2}=(-4)^{2}+2^{2}$
$=16+4$
$=16$
$=20$
\& centre is $(-4 ; 2)$
Equation of \odot :

$(x+4)^{2}+(y-2)^{2}=20<$
31.2 Substitute $N(-2 ; y):(-2+4)^{2}+(y-2)^{2}=20$
$4+(y-2)^{2}=20$
$\therefore(y-2)^{2}=16$
$\therefore y-2= \pm 4$ $y=2 \pm 4$

AtN: $\therefore y=6<$
31.3 TOM $=\frac{2}{-4}=-\frac{1}{2}$
mop $=2$... tangent $O P \perp$ radius $O M$
Equation of OP: $y=2 x<$
31.4 Equation of NP:
$m_{M N}=\frac{6-2}{-2+4}=\frac{4}{2}=2$
$\therefore m_{N P}=-\frac{1}{2}$
\& $(-2 ; 6)$ in $\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(x-x_{1}\right)$:

$$
\begin{aligned}
y-6 & =-\frac{1}{2}(x+2) \\
y-6 & =-\frac{1}{2} x-1 \\
\therefore y & =-\frac{1}{2} x+5
\end{aligned}
$$

At $P: y=2 x$ as well

$$
\begin{aligned}
& \therefore 2 x=-\frac{1}{2} x+5 \\
& 2 \frac{1}{2} x=5
\end{aligned}
$$

$P(2 ; 4)<$
31.5 A square < $\ldots\left(M \hat{N P}=M \hat{O} P=90^{\circ} \& m_{O P}=m_{M N}\right.$

$$
\Rightarrow \quad \hat{M}=\hat{P}=90^{\circ}+00
$$

\& consec. sides, radii $M N=M O$)
$32.1 \quad r=D Q=5 \ldots$ look at sketch
\& centre is $(4 ; 5)$
\therefore Equation of \odot :
$(x-4)^{2}+(y-5)^{2}=25<$

32.2 $m_{Q E}=\frac{8-5}{8-4}=\frac{3}{4}$
$\therefore m_{B C}=-\frac{4}{3} \quad \ldots$ radius $Q E \perp$ tangent $B E$
Substitute $m_{B C}=-\frac{4}{3}$ \& point $E(8 ; 8)$ in:

$$
\begin{aligned}
\mathbf{y}-\mathbf{y}_{1} & =\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
\therefore y-8 & =-\frac{4}{3}(x-8) \\
\therefore y-8 & =-\frac{4}{3} x+\frac{32}{2} \\
\therefore y & =-\frac{4}{3} x+18 \frac{2}{3}<
\end{aligned}
$$

[OR: $4 x+3 y-56=0]$

32.3 $m_{D Q}=\frac{8-5}{0-4}=\frac{3}{-4}=-\frac{3}{4}$

$$
m_{A C}=\frac{4}{3} \quad \ldots D Q \perp A C-\text { radius } \perp \text { tangent }
$$

$32.4 \tan C \hat{A B}=m_{A C}=\frac{4}{3}$
$\& \tan C \hat{B A}=-\tan C \hat{B} X=-m_{B C}=-\left(-\frac{4}{3}\right)=\frac{4}{3}$

$$
\begin{aligned}
\therefore \quad C \hat{A B} & =C \hat{B A} \\
\therefore \quad A C & =B C<\quad \ldots \text { base angles equal }
\end{aligned}
$$

$33.1 \quad m_{A B}=\frac{4-7}{8-(-1)}=\frac{-3}{9}=-\frac{1}{3}$
\& $m_{B C}=\frac{1-4}{7-8}=\frac{-3}{-1}=3$
$\therefore m_{A B} \times m_{B C}=\left(-\frac{1}{3}\right)(3)=-1$

$\therefore A B \perp B C$,
i.e. $A \hat{B C}=90^{\circ}<$
33.2 Area of $\triangle A B C=\frac{1}{2} A B \cdot B C$
\& $A B^{2}=(8+1)^{2}+(4-7)^{2}=81+9=90$
\& $B C^{2}=(7-8)^{2}+(1-4)^{2}=1+9=10$

$$
\begin{aligned}
\therefore \text { Area } & =\frac{1}{2} \sqrt{90} \sqrt{10}=\frac{1}{2} \sqrt{900}=\frac{1}{2}(30) \\
& =15 \text { units }^{2}
\end{aligned}
$$

33.3 $A \hat{B} C=90^{\circ} \Rightarrow A C$ is the diameter of $\odot A B C$!

Centre of $\odot A B C$ is midpoint of diameter $A C$, say M.
Centre is $\left(\frac{-1+7}{2} ; \frac{7+1}{2}\right)$,
$M(3 ; 4)$
\& radius $=O M=5$ units ... 3:4:5 "trip" - Pythagoras Equation: $(x-3)^{2}+(y-4)^{2}=25<\ldots r^{2}=25$
34.1 Let centre, C be $(n ; q)$ - see the question!

The \odot "touches" the y-axis $\Rightarrow y$-axis is a tangent to the \odot ! $\therefore C P \perp y$-axis $\quad \therefore q=2$
Also, $C(n ; q)$ lies on line $3 x+4 y+7=0$

$$
\begin{aligned}
3 n+4(2)+7 & =0 \\
\therefore 3 n & =-15 \\
\therefore n & =-5
\end{aligned}
$$

Centre C(-5; 2)
\& radius ${ }^{2}, C E^{2}=(-1+5)^{2}+(-1-2)^{2}=25$ \therefore Equation: $(x+5)^{2}+(y-2)^{2}=25<$
$34.2 C E=5$ diameter DE = 10 units <
35.1 The centre of the circle is the midpoint of MN:
$\left(\frac{-1+3}{2} ; \frac{0-2}{2}\right) \therefore(1 ;-1) \quad \&$ the radius $=\frac{1}{2} M N$
$M N^{2}=(3+1)^{2}+(-2)^{2}=16+4=20$
$M N=\sqrt{20}=\sqrt{4 \times 5}=\sqrt{4} \sqrt{5}=2 \sqrt{5}$
radius, $r=\sqrt{5}$
Equation of $\odot:(x-1)^{2}+(y+1)^{2}=5<\ldots\left(=r^{2}\right)$
35.2 On the x-axis, $y=0$
so, substitute

$$
\begin{aligned}
(x-1)^{2}+1^{2} & =5 \\
\therefore(x-1)^{2} & =4 \\
\therefore x-1 & = \pm 2 \\
\therefore x & =1 \pm 2
\end{aligned}
$$

$$
\therefore x=3 \text { or }-1<
$$

$35.3 \quad 2$'s touch each other when the distance between their centres equals the sum of their radii

Distance between centres $(1 ;-1)$ and $(3 ; 3)$:
Distance $^{2}=(3-1)^{2}+(3+1)^{2}=4+16=20$
Distance $=\sqrt{20}=\sqrt{4 \times 5}=2 \sqrt{5}$
\& Sum of their radii $=\sqrt{5}+\sqrt{5}=2 \sqrt{5}$
The \odot 's touch < ... distance between centres = sum of radii !

