

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2020

AGRICULTURAL SCIENCES P1 MARKING GUIDELINE EXEMPLAR

MARKS: 150

This marking guideline consists of 9 pages.

SECTION A

QUESTION 1

1.1	1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9 1.1.10	C ✓ ✓ D ✓ ✓ C ✓ ✓ A ✓ ✓ C ✓ ✓ D ✓ ✓ D ✓ ✓ D ✓ ✓ A ✓ ✓ B ✓ ✓	(10 x 2)	(20)
1.2	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5	B only ✓ ✓ A only ✓ ✓ None ✓ ✓ B only ✓ ✓ Both A and B ✓ ✓	(5 x 2)	(10)
1.3	1.3.1 1.3.2 1.3.3 1.3.4 1.3.5	Halogen ✓✓ Lewis structure ✓✓ Loam ✓✓ Nitrogen ✓✓ Colloid ✓✓	(5 x 2)	(10)
1.4	1.4.1 1.4.2 1.4.3 1.4.4 1.4.5	Cation ✓ Hygroscopic ✓ Acid ✓ Mycorrhiza ✓ Illuviation ✓	(5 x 1)	(5)

TOTAL SECTION A: 45

SECTION B

QUESTION 2: BASIC AGRICULTURAL CHEMISTRY

2.1 Compounds

2.1.1 Classification of compounds

A – Organic ✓

B – Inorganic ✓

(2)

2.1.2 Reason

A – Presence of carbon atom ✓

B – Absence of carbon atom ✓

(2)

2.1.3 Name of compounds with the same molecular formula but different structure

Isomers ✓

(1)

2.1.4 Chemical formula of a compound represented by structure A

• C₄H₁₀ ✓ ✓

OR

• CH₃ (CH₂)₂ CH₃ ✓ ✓

(2)

2.1.5 Identification of the letter

(a) C ✓

(b) B ✓

(2)

2.2 Matter/elements/compounds/mixtures

2.2.1 Identification of substances

A – Compound ✓

B – Homogeneous mixture ✓

C – Heterogeneous mixture ✓

(3)

(2)

2.2.2 Difference between an element and a compound

Element is a substance that cannot be broken down by chemical means ✓

Compound is a substance formed when two or more elements are chemically combined \checkmark

2.2.3 Distinguishing between homogeneous and heterogeneous mixtures

Homogeneous – mixture in which the dissolved solute cannot be separated from the solvent by physical means ✓

Heterogeneous – mixture in which the components can be separated by physical means ✓ (2)

2.3 Fatty acids

2.3.1 Identification of the fatty acid

A – Unsaturated fatty acid ✓ B – Saturated fatty acid ✓

(2)

(4)

2.3.2 Indication of the letter representing the fatty acid

- (a) Originating from plants A ✓
- (b) Solid at room temperature B ✓
- (c) Has a high melting point B ✓
- (d) Liquid at room temperature A ✓

2.3.3 TWO importance of fats in living organisms

- Provide a source of stored energy ✓
- Source of insulation and temperature control ✓
- Vital part of membrane structure ✓
- Play a role in the flow of energy in and out of living cells ✓
- Assist in signal transduction ✓ (Any 2) (2)

2.4 pH values

2.4.1 Indicating the pH of substances

Baking powder – Alkaline ✓

Orange juice — Acidic ✓ Milk — Neutral ✓

Milk – Neutral ✓ Battery acid – Strongly acidic ✓

(4)

(2)

2.4.2 Indicating the substance with a high concentration of

- (a) Hydroxide ion Baking powder ✓
- (b) **Hydrogen ion** Battery acid ✓

2.5 Monosaccharide

2.5.1 Names of the structures

A – Fructose ✓

 $B - Glucose \checkmark$ (2)

2.5.2 Indication of the compound formed from fructose and glucose

Sucrose ✓ (1)

2.5.3 TWO elements that are basic composition of carbohydrates

- Carbon ✓
- Hydrogen ✓
- Oxygen ✓ (Any 2) (2)

[35]

(2)

QUE	ESTION	3: SOIL SCIENCE		
3.1	Soil texture			
	3.1.1	Indication of the sample (a) Sample B ✓ (b) Sample A ✓ (c) Sample B ✓ (d) Sample A ✓	(4)	
	3.1.2	Commenting on the pore space of soil sample B by referring to bulk density Soil sample B has a high bulk density / 3,2 g/cm3 ✓ and therefore lower pore space ✓	(2)	
3.2	Soil structure			
	3.2.1	Identification of the structure A – Platy ✓ B – Prism-like/columnar/prismatic ✓ C – Crumb/spheroid ✓	(3)	
	3.2.2	Indicating the letter representing the structure (a) A ✓ (b) C ✓	(2)	
	3.2.3	 TWO malpractices leading to the destruction of structure Flood irrigation ✓ Cultivation of soil when it is too dry or wet ✓ Ploughing and other tilling methods ✓ Overgrazing / burning / removal of plant material ✓ Movement of animals and equipment over wet soil ✓ Irrigation leading to salt accumulation ✓ (Any 2) 	(2)	
3.3	Soil moisture			
	3.3.1	Naming the term A – Saturation point ✓ B – Field water capacity ✓	(2)	
	3.3.2	 Reason A – Soil is completely filled with water ✓ B – Amount of water held in soil after saturation and drainage ✓ 	(2)	
	3.3.3	Plant response grown in soils in Container C and D (a) B − Plants will grow optimally ✓ (b) C − Plants will wither/die ✓	(2)	
	3.3.4	Differentiation between temporal and permanent wilting points Temporal wilting – The point when plants appear wilted only during the hottest part of the day and recover ✓	(0)	
		Permanent wilting – Plants do not recover from wilting ✓	(2)	

3.4 Soil colour

3.4.1 Differentiation between homogeneous and non-homogeneous soil colour Homogeneous – Single dominant colour in soil ✓ Non-homogeneous – Mixture of soil colours ✓ (2) 3.4.2 TWO factors determining the colour of soil Presence of water ✓ Gleying conditions ✓ Organic material ✓ Presence of oxides ✓ Presence of carbonates ✓ (Any 2) (2) 3.5 **Soil gas** 3.5.1 Indication of the gas deficient in experiment 1 Oxygen ✓ (1) 3.5.2 Role the gas could have played if not deficient Influenced seed germination ✓ (1) 3.5.3 Gas high in soil as a result of activities in experiment 2 Carbon dioxide ✓ (1) 3.5.4 Reason for the high amount of carbon dioxide Released during respiration ✓ of plant roots and soil (2) micro – organisms ✓ 3.6 Soil temperature 3.6.1 Indication of the letter (a) A ✓ (b) C ✓

(c) A ✓ (3)

3.6.2 TWO methods to manipulate soil temperature

- Irrigation ✓
- Mulching ✓
- Clear plastic covers ✓
- Shading ✓ (Any 2) (2) [35]

QUESTION 4: Soil science

4.1 Soil horizons

4.1.1 Sketching the soil profile

$$\frac{\underline{A}}{\underline{B}} \checkmark \checkmark \\ \underline{C}$$
R (2)

4.1.2 Indication of the horizon

4.1.3 TWO diagnostic horizons of A horizon

- Humic √
- Vertic ✓
- Melanic ✓
- Orthic ✓ (Any 2) (2)

4.2 Soil classification

4.2.1 THREE reasons for classification of soil

- Optimal utilisation of country's natural resources ✓
- Scientific planning of farm ✓
- Determining the crop production potential of the soil ✓
- Improved soil science communication ✓
- Development of new regions ✓
- Valuation of soils ✓ (Any 3) (3)

4.2.2 System used in South Africa to classify soil

Binomial system ✓ (1)

4.3 **Soil pH**

4.3.1 Line graph

Criteria/rubric/marking guideline

- Correct heading ✓
- X-axis : Correctly calibrated and labelled (Soil pH) ✓
- Y-axis : Correctly calibrated and labelled (Availability of molybdenum) ✓
- Line graph ✓
- Accuracy ✓
- Correct unit (g) ✓ (6)

4.3.2 Deduction of the influence of acidity and alkalinity on the availability of molybdenum

In acid soil/low pH molybdenum is not available ✓
In alkaline soil / high pH molybdenum is more available ✓
(2)

4.3.3 Measures to solve problems of:

(a) Decreased availability of molybdenum in soils with a pH of between 2 and 4

Application of basic fertilisers such as lime/CaCO₃ ✓ (1)

(b) Toxic quantities of molybdenum in soil with pH of 14
Application of gypsum/CaSO₄ ✓ (1)

4.4 Soil colloid

4.4.1 Deduction of the process

A – Cation adsorption ✓
B – Cation exchange ✓
(2)

4.4.2 Reason for cation exchange

Potassium cation from the soil solution exchanges with the hydrogen adsorbed in the colloid ✓ (1)

(EC/NO	VEMBER 2	020) AGRICULTURAL SCIENCES P1	9
	4.4.3	Indication of the hydrogen cation having an effect on plants Hydrogen in the soil solution ✓	(1)
	4.4.4	TWO types of colloids Organic colloid✓ Inorganic colloid ✓	(2)
	4.4.5	Differentiation between <i>sodic</i> and <i>saline soils</i> with regard to dominant salts Sodic soil – Sodium carbonates ✓ Saline soil – Chlorides and sulphates of sodium, calcium and magnesium ✓	(2)
4.5	Soil organisms		
	4.5.1	Classification of the worms into groups of soil organisms Macro-organisms ✓	(1)
	4.5.2	 TWO conditions for the survival of worms Organic nutrients ✓ Mineral nutrients (nitrogen/phosphorus/potassium) ✓ Soil moisture close to field water capacity ✓ Soil air for respiration ✓ Optimum temperature (temperature between 25 °C and 30 °C ✓ Optimum soil pH ✓ (Any 2) 	(2)
	4.5.3	 Explanation of how worms will assist farmers Break down plant and animal remains ✓ to liberate plant nutrients ✓ Improve soil structure ✓ for increased water retention capacity ✓ Worm casts is rich in organic matter ✓ which improves soil fertility ✓ Maintain CO₂ concentration ✓ which is used by plants during photosynthesis ✓ (Any 1) 	(2)
4.6	Nutrie	nt cycle	
	Nutrient cycle increasing nutrient content in plants (a) Protein content – Nitrogen cycle ✓ (b) Carbohydrate content – Carbon cycle ✓		(1) (1) [35]

TOTAL SECTION B: 105 GRAND TOTAL: 150