basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

LIFE SCIENCES P2
NOVEMBER 2018
FINAL MARKING GUIDELINES

MARKS: 150

These marking guidelines consist of 11 pages.

SECTION A

QUESTION 1

1.1 1．1．1 C 童素

1．1．2 B寺素
1．1．3 C空告
1．1．4 B透秀
1．1．5 A意素
1．1．6 C秀秀
1．1．7
1．1．8
1．1．9

1．1．9 B走表
1．2 1．2．1 Hydrogen夌bonds
1．2．2 Genomes，
1．2．3 Cultural素evidence
1．2．4 Speciation番
1．2．5 Haemophilias
1．2．6 Foramen magnum
1．2．7 Alleless
1．2．8 Discontinuous，寺variation
1．2．9 Gonosomes
1．3 1．3．1 A only素素
1．3．2 Both A and Bres
1．3．3 A only寺袁
（3 x
（6）
1.4

1．4．1 D－Chromatid寺
E－Centromeres
1．4．2 23袁 pairs
1．4．3（a）Es
（b） $\mathrm{C}_{5}{ }^{\mathbf{5} / \mathrm{B}}$
1．4．4（a）Nucleus害 Mitochondrions
（Mark first TWO only）
（b）Double helix
（c）（DNA）Replication意
1．5 1．5．1 Phylogenetic trees／cladogram
1．5．2 An exoskeleton各
1．5．3
（a） $\mathrm{S}_{\sqrt{\text { 者 }}}$
（b）T寺
1．5．4（a）Trilobites，寺
（b）Helmetids素
（b）Tegopeltids寺
（c）Helmetids
（c）Tegopeltidss
OR

QUESTION 2

2．1 2．1．1－Due to non－disjunction書／Non－separation of a chromosome pair
－during Anaphase Is
－Two chromosomes moved to the one poles，and
－none moved to the other poles
Any
2．1．2－Gamete A will have 24 chromosomess／an extra chromosome
－and when it fertilises a normal ovums／gamete with 23 chromosomes
－the zygote will have 3 chromosomes at position 21考／47 chromosomes

2．1．3（a）Prophase I各
（b）－Adjacent chromatids of homologous chromosomes crosss
－at a point called the chiasmas去
－There is an exchange of DNA segmentss／genetic material
（c）－Crossing over introduces genetic variation寺 in gametes
－Genetic variation may result in favourable characteristicss
－that ensure a better chance of survival夆
－when environmental conditions changes

OR

－Crossing over introduces genetic variation番 in gametes
－Genetic variation may result in unfavourable

- characteristics責
- that reduce the chance of survival去
－when environmental conditions change Any
（a）Female without SCID 秀
（b）Male with SCID番
（c）$X^{D} X^{\mathrm{d}}$ 童寺
2．2．2－He inherited the recessive alleles $/ X^{d}$
－from the mother ${ }^{\text {s }}$／individual 4

2．3 2．3．1（a）It allows for the production of organisms with desired characteristicss／high average milk yield
（Mark first ONE only）
（b）－It reduces genetic variation寺 in offspring
－It results in no further genetic improvements
－It is expensives
－It may not be economical for commercial agricultures
（Mark first ONE only）
Any
MJC 865 had a high average milk－production yields／produced 78 litres per day／had the desired characteristic

2．3．3－A diploid cells／a cell with all the genetic information is needed
－An ovum is a haploid cells／only contains half of the genetic information

2．3．4－The nucleus of an ovum is removeds and replaced with
－the nucleus of a somatic donor cell走／diploid donor cell
－The zygote is stimulateds
－for mitosiss to occur
－The embryo is then placed into the uterus of an adult female 盍

OR

－Plants may be cloned by vegetative reproductions／asexual reproduction／tissue culture／grafting
－A plant with the desired characteristics is selected素
－A vegetative part of the＂parent＂plant structure is removeds／（examples）and
－placed inside a growth mediums
－and allowed to grows
Any 4

2．4 2．4．1 Purple 夌
2．4．2－When purple－flowering plants and white－flowering plants are crossed 贵
－all the offspring have purple flowers逵／have no white flowers

2．4．4

\mathbf{P}_{1}	Phenotype Genotype G／gametes
Meiosis	

P_{1} and
F1各
Meiosis and fertilisation盍
＊Compulsory 1 ＋Any 5

OR

P_{1}	Phenotype Genotype		$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \text { Purple来 } \\ & \text { Dd考 } \end{aligned}$
Meiosis				
Fertilisation		Gametes	D	d
		D	DD	Dd
		d	Dd	dd
		1 mark 1 mark	$\mathrm{ct} \mathrm{~g}$ $\mathrm{ct} \mathrm{~g}$	metes notypes

F1 Phenotype
P_{1} and
F1責
Meiosis and fertilisations
Purple：Whites ${ }^{\text {s }}$＊
＊Compulsory 1 ＋Any 5

QUESTION 3

3．1 3．1．1－The jaw is large in the chimpanzee，左and small in Homo sapienss走
－The jaw／palate is rectangular in the chimpanzees，走and rounded in Homo sapienss，
－Large spaces between the teeth in the chimpanzees and small／no spaces in Homo sapiens，竞
－Large canines／teeth in the chimpanzees and small canines／teeth in Homo sapienss

Any 1×2
（Mark first ONE only）
3．1．2－The diet changed from eating raw food素 in Australopithecus
－to a diet of cooked foods in Homo sapiens
3．1．3（a）A transitional species shows intermediate characteristics between two genera／speciess

OR

It has characteristics common to both the ancestor species and the species that follows秀
（b）The jaw is smaller than that of the chimpanzee but larger than that of Homo sapiens，寺表

OR
The canines／teeth are smaller than those of the chimpanzee but larger than those of Homo sapiens，素

OR

The jaw／palate shape is more rounded than that of the chimpanzee but less rounded than that of Homo sapienss素 Any 1×2
（Mark first ONE only）

3．2 3．2．1－The bright colour pattern is associated with being poisonous，盍
－thus reducing predations and
－improving the chances of survival去
3．2．2－There is variation in the colour of kingsnakes \checkmark
－Some are bright in colour $\checkmark /$ resemble the coral snakes and
－the others are dull in colour \checkmark
－Those with dull colours are killed \checkmark by predators
－Those with bright colours are not eaten \checkmark
－so they survive，走and reproduce，
－passing on the allele for bright colour to the next generation \checkmark
Any 6
3.3 3．3．1 1900坴

3．3．2 $\left\{\frac{80}{20}\right\}$ 音 $\times 100$ 素 $=400$ 寺 $\%$

> OR
$\left\{\frac{(100-20)}{20}\right\}$ 去 $\times 100$ 去 $=400$ 考 $\%$
3．3．3

Natural selection	Artificial selection
The environment or nature is the selective force，竞	Humans represent the selective forces
Selection is in response to suitability to the environment	Selection is in response to satisfying human needss 秀
Occurs within a species，爯	May involve one or more species䎹（as in cross breeding）

1 for Table＋Any 2×2
（Mark first TWO only）
3．4 3．4．1－They invade farm fields \checkmark
－They outcompete the crop plants for space \checkmark
Any
3．4．2（a）Type of herbicide \checkmark
（b）Time taken for development of resistance \checkmark

3．4．3（a）Dicloflop \checkmark
（b）Trifluralin \checkmark
3.4.4 (a) - They would apply the herbicide to the weed \checkmark and

- observe if the weed survives \checkmark over many generations
(b) - They used the same weed species as other weed species may have developed resistance to that herbicide \checkmark
- Each weed species may respond differently \checkmark to a herbicide

OR

- It allows for a single variable \checkmark
- to which all results can be attributed \checkmark
3.4.5

Guideline for assessing the graph

Type: Bar graph drawn (T)	1
Title of graph	1
Correct: - Scale for Y-axis and - Width and interval of bars on X -axis	1
Correct: - Label for X-axis and - Label and unit for Y -axis	1
Plotting of bars	1-1 to 4 bars plotted correctly 2- All 5 bars plotted correctly

SECTION C

QUESTION 4

Structure (S)

- RNA is single stranded \checkmark
- and is made up of nucleotides \checkmark which comprise:
- riboser sugar
- phosphate \checkmark group
- nitrogenous bases \checkmark which are
- adenine, uracil, guanine and cytosine \checkmark / (A, U, G and C)
- The phosphate group is attached to the ribose sugar \checkmark
- and the nitrogenous base is attached to the ribose sugar \checkmark
- Bases on RNA are arranged in triplets \checkmark
- as codons on mRNA \checkmark
- and anticodons on tRNA \checkmark
- tRNA has a clover-leaf \checkmark /hairpin structure
- tRNA has a place of attachment for an amino acid \checkmark Any

Involvement in protein synthesis (P)

- mRNA \checkmark forms
- during transcription $\checkmark /$ by copying the coded message from DNA
- and moves out of the nucleus \checkmark
- and attaches to the ribosome \checkmark
- During translation \checkmark
- the anticodon matches the codon \checkmark
- tRNA
- brings the required amino acid \checkmark to the ribosome
- Amino acids become attached by peptide bonds \checkmark
- to form the required protein \checkmark

Any
Content:
Synthesis:

ASSESSING THE PRESENTATION OF THE ESSAY

Criterion	Relevance (R)	Logical sequence (L)	Comprehensive (C)
Generally	All information provided is relevant to the question	Ideas are arranged in a logical/cause-effect sequence	All aspects required by the essay have been sufficiently addressed
In this essay in Q4	Only information relevant to the: $-\quad$ structure of RNA and involvement of the different types of RNA in protein synthesis is given There is no irrelevant information	All the information regarding the structure of RNA and the involvement of the different types of RNA in protein synthesis is given in a logical manner	At least: $-\mathbf{6 / 9}$ correct points for the structure of RNA (S) 5/8 for the involvement in protein synthesis (P)
Mark	1	1	1

