Vectors in One Dimension - Revision

Vector - physical quantity having magnitude and direction.
Scalar - physical quantity having magnitude only.
Examples:

Vector	Scalar
Force	Time
	Energy
Weight	Mass
Velocity	Speed
Displacement	Distance
Acceleration	

Graphical Representation of a vector

- Vector is represented by an arrow
- The length of an arrow represents the size (magnitude) of the vector
- The arrow-head represents the direction of the vector.

Direction of a horizontal or vertical vector

A positive sign (+) or a negative sign (-) is used to indicate the direction of a vector that are either horizontal or vertical. For each example you must select the sign.

Examples

a) right is + 5 N
b) left is -

Three methods to describe the direction of a vector that is not horizontal or vertical

On a graph

$\mathrm{F}_{\mathrm{A}}: 10 \mathrm{~N}$ at 30° above the positive x - axis (horizontal axis)
$F_{B}: 8 \mathrm{~N}$ at 12° left of the negative y - axis (vertical axis)
$\mathrm{F}_{\mathrm{c}}: 5 \mathrm{~N}$ at 65° above the negative x - axis (horizontal axis)

Bearing

- Only for vectors in the horizontal plane i.e parallel to the surface of the Earth
- Use North as 0° and always measure clockwise

$\mathrm{F}_{\mathrm{A}}: 10 \mathrm{~N}$ on a bearing of 60°
F_{B} : 8 N on a bearing of 192°
Fc: 5 N on a bearing of 335°

Compass (Cardinal points or directions)

$\mathrm{F}_{\mathrm{A}}: 10 \mathrm{~N}$ at 30° North of East
F_{B} : 8 N at $12^{\circ} \mathrm{West}$ of South
$\mathrm{F}_{\mathrm{c}}: 5 \mathrm{~N}$ at 65° North of West

RESULTANT OF VECTORS

Define a resultant as the vector sum of two or more vectors, i.e. a single vector having the same effect as two or more vectors together.

- Resultant vector is greatest when vectors are in the same directions
- Resultant vector is smallest when vectors are in the opposite directions

1. Two vectors acting in the same direction :(one dimension)

A girl walks 120 m due East and then 230 m in the same direction. What is her resultant displacement?

By calculation:

Sign of direction: Take to East to be +
$R=120 m+230 m=350 m$ East

By construction:

2. Two vectors acting in opposite direction (one dimension)

A boy walks 210 m due East. He then turns and walk 60 m due West. Determine his resultant displacement.

By calculation: (taking East as positive)
$R=210 m+(-60 m)=150 m$ East 210 m East

3. Multiple vectors acting in different directions (one dimension)

Determine the resultant(net) force when 8 N force acts to the right, a 10 N force acts to the right, a 25 N force acts to the left and a 12 N force acts to the left

Let to the right be positive

$$
\begin{aligned}
& F_{n e t}=F_{1}+F_{2}+F_{3}+F_{4} \\
& F_{n e t}=8+10+(-25)+(-12) \\
& F_{n e t}=-19 \mathrm{~N} \\
& F_{n e t}=19 \mathrm{~N} \text { left }
\end{aligned}
$$

Vectors in Two Dimension

Resultant of perpendicular vectors

- Perpendicular vectors are at right angles to each other.
- A horizontal force of 30 N and a vertical force of 40 N that act on an object are an example of two forces that are perpendicular to each other.
Diagram

Adding co-linear vectors

- Vectors that act in one dimension are called co-linear vectors
- The net x-component $\left(R_{x}\right)$ is the sum of the vectors parallel with the x direction: $R_{x}=R_{x 1}+R_{x 2}$
- The net y-component $\left(\mathrm{R}_{\mathrm{y}}\right)$ is the sum of the vectors perpendicular to the x direction: $R_{y}=R_{y 1}+R_{y 2}$

Worked Example

Two forces of 3 N and 2 N apply an upward force to an object. At the same time two forces each of 2 N act horizontally to the right. Find the resultant force acting on the object.

Step 1: Draw a diagram and calculate the net vertical and net horizontal forces

$$
\begin{aligned}
& R_{y}=R_{y 1}+R_{y 2} \\
& R_{y}=2+3 \\
& R_{y}=5 N \text { upwards }
\end{aligned}
$$

$$
\begin{aligned}
& R_{x}=R_{x 1}+R_{x 2} \\
& R_{x}=2+2 \\
& R_{x}=4 \text { N right }
\end{aligned}
$$

Step 2: Graphical representation of R_{x} and R_{y}

$R_{x}=4 \mathrm{~N}$
Step 3: To find resultant (R) of the above vectors, one can using tail-to-tail drawing of vectors

Tail to tail method or Parallelogram:

Note: When vectors are drawn tail-to-tail, a parallelogram must be completed in order to determine their resultant.

- Phythagoras theorem is used to calculate the magnitude of the resultant.
- Considering the vector diagram above we can use Pythagoras theorem as follows:

$$
\begin{aligned}
& R^{2}=R_{x}{ }^{2}+R_{y}{ }^{2} \\
& R^{2}=4^{2}+5^{2} \\
& R=\sqrt{4^{2}+5^{2}} \\
& R=6.40 \mathrm{~N}
\end{aligned}
$$

- Use trigonometry to find the direction of the resultant as follows:
$\tan \theta=\frac{\mathrm{R}_{\mathrm{y}}}{\mathrm{R}_{\mathrm{x}}}=\frac{5}{4}$
$\therefore \theta=51,34^{\circ}$

Worked Example:

A force of $F_{1}=5 \mathrm{~N}$ is applied to a block in a horizontal direction. A second force $\mathrm{F}_{2}=$ 4 N is applied to the object at an angle of 30° above the horizontal. Determine the resultant of the two forces, by accurate scale drawing.

Step 1: Draw rough sketches of the vector diagrams:
Note: Forces are NOT perpendicular

Step 2: Choose the suitable

Step 3: Draw the first vector $\left(F_{1}\right)$ on the horizontal, according to the scale.

Step 4: Draw the second scaled vector $\left(F_{2}\right) 30^{\circ}$ above the horizontal.
Step 5: Complete the parallelogram and draw the diagonal (which is the resultant)

Step 6: Use the protractor to measure the angle between the horizontal and the resultant.

Step 7: Apply scale and convert the measured length to the actual magnitude.

The resultant is $8,7 \mathrm{~N}, 13,3^{\circ}$ above the horizontal.

GRAPHICAL DETERMINATION OF THE RESULTANT VECTOR

Tail-to-head method is used to find the resultant of two or more consecutive vectors (vectors that are successive)

Steps to be followed:

- Choose the suitable scale e.g. $10 \mathrm{~mm}: 10 \mathrm{~N}$
- Accurately draw the first vector as an arrow according to chosen scale and in the correct direction
- Draw the second vector by placing the tail of the second vector at the tip of the first vector \{ tail - to - head method\}
- Complete the diagram by drawing the resultant from the tail of the first vector to the head of the last vector.
- Make sure that you measure the angles correctly with a protractor.
- Always add arrow heads to vectors to indicate the direction.
- Measure the length and direction of the resultant vector.

Use the scale to determine the real magnitude of the resultant.

Worked Example 1:

A ship leaves a harbour H and sails 6 km north to port A . From here the ship travels 12 km east to port B, before sailing $5,5 \mathrm{~km}$ at 45° south-west to port C .

Determine the ship's restaurant displacement using the tail-to-head technique.

Rough sketch:

Using a scale $1 \mathrm{~cm}: 2 \mathrm{~km}$, the accurate drawing of vectors is:

Measure the angle between the North line and the resultant with a protractor to find that the direction of the resultant displacement:

Resultant displacement of the ship is $9,2 \mathrm{~km}$ on a bearing of $72,3^{\circ}$.

Example 2:

A man walks 40 m East, then 30 m North. Use a scale of $1 \mathrm{~cm}: 10 \mathrm{~m}$ and answer the following questions:

1. What was the total distance he walked?
2. Determine by construction his resultant displacement?
3. Calculate determine the direction of the resultant.
4. Calculate the magnitude of resultant displacement

Solutions:

1. Rough sketch

Total distance $=40 \mathrm{~m}+30 \mathrm{~m}$

$$
=70 \mathrm{~m}
$$

2. Scale: $1 \mathrm{~cm}: 10 \mathrm{~m}$

The resultant is $50 \mathrm{~m}, 37^{\circ}$ from the horizontal
3. $\operatorname{Tan} \Phi=\underline{30}$

40

$$
\Phi=36,87^{\circ}
$$

4. $R^{2}=x^{2}+y^{2}$

$$
=40^{2}+30^{2}
$$

$$
=2500
$$

$$
\mathrm{R}=50 \mathrm{~m}
$$

THE TRIANGLE RULE FOR FORCES IN EQUILIBRIUM

Closed vector diagram

- When drawing force vectors at equilibrium, a closed quadrilateral such as triangle (closed vector diagram) will be obtained. In that case, the resultant is zero and all vectors are drawn from head-to-tail.
- The forces F_{1}, F_{2} and F_{3} act on the same object and keep it in equilibrium so that the object does not move, or continues moving with the constant velocity. (No change in motion occurs).
- These three forces can be shifted to form a close triangle, where the sides of the triangle still represent the magnitude and direction of the forces.

The triangle rule for forces in equilibrium is as follows:

When three forces acting at the point are in equilibrium, they can be represented in both magnitude and direction by the three sides of a triangle taken in order.

- The triangle is formed because the three forces are in equilibrium.

$$
\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{3}=0
$$

For example: when the forces F_{1}, F_{2} and F_{3} are in equilibrium, they can be represented by a closed triangle as:
F_{2}

or

RESOLUTION OF A VECTOR INTO ITS PARALLEL AND PERPENDICULAR COMPONENTS

- The process of breaking down the vector quantity into its components that are at right angles to each other is known as resolving a vector into its components.

Worked Example

A force of 400 N acts at an angle 60° to the horizontal.

Horizontal component:

$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\cos 60^{\circ}=\frac{R_{x}}{400 \mathrm{~N}}$
$\mathrm{R}_{\mathrm{x}} \quad=400 \mathrm{~N} \cdot \cos 60^{\circ}$
$\mathrm{R}_{\mathrm{x}} \quad=200 \mathrm{~N}$

Vertical component:
$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$
$\sin 60^{\circ}=\frac{\mathrm{R}_{y}}{400 \mathrm{~N}}$
$\mathrm{R}_{\mathrm{y}} \quad=400 \mathrm{~N} \cdot \sin 60^{\circ}$
$\mathrm{R}_{\mathrm{y}} \quad=346,41 \mathrm{~N}$

GRADE 11 - PHYSICAL SCIENCES : MECHANICS

Finding resultant of vectors acting at angles (using component method)

Step 1: Find horizontal and vertical components of each force.
Components of $F_{1}: \quad$ Components of $F_{2}: \quad$ Components of F_{3}

Horizontal (F_{x})

$$
\begin{aligned}
\left(F_{x}\right) & =F_{1} \sin \Phi \\
& =100 \sin 40^{\circ} \\
& =64,28 \mathrm{~N} \text { (right) }
\end{aligned}
$$

Horizontal (F_{x})
$\left(F_{x}\right)=F_{2} \sin \Phi$
$=80 \sin 30^{\circ}$
$=40 \mathrm{~N}$ (right)
Vertical (F_{y})
Vertical (F_{y})

$$
\begin{aligned}
\left(F_{y}\right) & =F_{1} \cos \Phi \\
& =100 \cos 40^{\circ} \\
& =76,60 \mathrm{~N} \text { (up) }
\end{aligned}
$$

$\left(F_{y}\right)=F_{2} \cos \Phi$
$=80 \cos 30^{\circ}$
$=90 \sin 20^{\circ}$
$=69,28 \mathrm{~N}$ (down)
$=30,78 \mathrm{~N}$ (down)

Step 2: Hence, the new situation is:

Step 3:

Thus, the sum of horizontal components $=64,28+40+(-84,57)$
$=19,71 \mathrm{~N}$ to the right
And the sum of vertical components $=69,28+30,78+(-76,20)$ $=23,46 \mathrm{~N}$ downwards

Step 4:

The resultant of the two vectors (at right angles to each other) is:

$$
\begin{aligned}
& \mathbf{R}^{2}=R_{x^{2}}+\mathrm{Ry}^{2} \\
& =19,71^{2}+23,86^{2} \\
& =30,64 \mathrm{~N} \\
& \tan \Phi=23,86 / 19,71 \\
& \quad \Phi=50,47^{\circ}
\end{aligned}
$$

Thus, the resultant of the three forces is $30,95 \mathrm{~N}$ in a bearing of $50,47^{\circ}$ from the horizontal.

Exam questions

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A-D) next to the question number (1.1-1.10) in the ANSWER BOOK, for example 1.11 D.
1.1 Consider the following vector diagrams. Which ONE of these vector diagrams represents a zero resultant?
A

B

C

D

1.2 If the resultant of two forces acting at a point is zero, the forces ..

A are of equal magnitude and act perpendicular to each other.
B are of different magnitudes, but act in opposite directions.
C are of equal magnitude and act in the same direction.
D are of equal magnitude, but act in opposite directions.
1.3 Two forces of magnitudes 3 N and 4 N respectively act on a body. The maximum magnitude of the resultant of these forces is .

A $\quad 12 \mathrm{~N}$.
B $\quad 7 \mathrm{~N}$.
C $\quad 5 \mathrm{~N}$.
D 1 N .
(2)
1.4 Three forces of magnitude 20 N each act on object \mathbf{P} as shown below.

The resultant force on object \mathbf{P} is ...
A zero.
B $\quad 20 \mathrm{~N}$ to the left.
C $\quad 20 \mathrm{~N}$ upwards.
D 20 N downwards.
1.5 Two forces of magnitudes 15 N and 20 N act at a point on an object. Which one of the following magnitudes CANNOT be the resultant of these forces?
A. $\quad 35 \mathrm{~N}$
B. $\quad 10 \mathrm{~N}$
C. $\quad 4 \mathrm{~N}$
D. 18 N
(2)
1.6 Three forces, each of magnitude 7 N , act on object \mathbf{P} as shown.

The resultant force on object \mathbf{P} is ...
A zero.
B $\quad 7 \mathrm{~N}$ to the left.
C $\quad 7 \mathrm{~N}$ upwards.
D $\quad 7 \mathrm{~N}$ downwards.
1.7 Two forces of magnitude 50 N and 70 N respectively act on a body. The maximum magnitude of the resultant force on the body is ...

A $\quad 20 \mathrm{~N}$.
B $\quad 60 \mathrm{~N}$.
C $\quad 120 \mathrm{~N}$.
D $\quad 140 \mathrm{~N}$.
1.8 Two forces of magnitudes 8 N and 6 N are added to each other.

Which of the following values CANNOT be a resultant of these two forces?

A 2 N
B 3 N
C $\quad 14 \mathrm{~N}$
D 16 N
1.9 You can replace two forces, P and Q , with a single force of 7 N . If the magnitude of force P is 3 N , which one of the following can be the magnitude of force Q ?

A 2 N
B 3 N
C 8 N
D 13 N
1.10 Consider the following vector diagram:

The vector which represents the resultant of the other two, is ...
A. AB.
B. AC.
C. CB.
D. BA.

STRUCTURED QUESTION

QUESTION 1 (Grade11 KZN MARCH 2015)

The diagram below shows TWO forces \mathbf{P} and \mathbf{Q} of magnitude 250 N and 150 N respectively acting at a point \mathbf{R}.

1.1 Calculate the horizontal and vertical components of vector P.
1.2 Calculate the vector sum of horizontal components of P and Q.
1.3 The vector sum of the vertical components of these forces is $129,45 \mathrm{~N}$.

Using the vector sums of the horizontal and vertical components of P and Q, draw a labeled force vector diagram to show the resultant force acting on the point R.
1.4 Calculate the magnitude of the resultant of forces P and Q.
1.5 Calculate the direction (measured clockwise from the positive Y axis) of the resultant of vectors P and Q .
1.6 If vector P was fixed but the direction of vector Q could be changed, for which value of Θ will the resultant force have a maximum value?

QUESTION 2 (FS CONTROL TEST TERM 1 - 2014)

Force vectors \mathbf{P} and \mathbf{Q} were drawn to scale on the Cartesian plane shown below.

2.1. Define the term resultant of a vector.
2.2. From the graph, without using a scale drawing, CALCULATE the (no units are required):

2.2.1 Magnitude of the horizontal component of vector \mathbf{P}

2.2.2 Magnitude of the horizontal component of the resultant of vectors \mathbf{P}
and Q
2.2.3 Magnitude of the vertical component of the resultant of vector \mathbf{P} and

Q
(2)
2.2.4 Resultant of vectors \mathbf{P} and \mathbf{Q}.

QUESTION 3(Fs CONTROL TEST TERM 1 - 2015)

Three forces, $\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}}$ and \mathbf{w}, act on point \mathbf{O} as shown in the diagram below.

3.1 Define the term resultant of forces.
3.2 By means of an accurate scale drawing, determine the vertical component of F_{1}. Use a scale where 10 N is represented by 10 mm .
3.3 The horizontal and vertical components of F_{2} are equal to 40 N and 42 N respectively.
3.3.1 Prove with calculations that the horizontal components of the forces are in equilibrium.
3.3.2 Calculate the magnitude and direction of force \mathbf{w}.

QUESTION 4

The diagram below shows a rope and pulley arrangement of a device being used to lift an 800 N object. Assume that the ropes are light and inextensible and also that the pulley is light and frictionless.

Deter mine the:
2.1 Magnitudes of the tensions $\mathbf{T}_{\mathbf{1}}$ and $\mathbf{T}_{\mathbf{2}}$
2.2 Magnitude and direction of the reaction force at pulley \mathbf{P}

QUESTION 5 (EC NOV 2016)

The diagram below shows a rope and pulley system of a device being used to lift a $122,5 \mathrm{~kg}$ container upwards at a constant velocity. Assume that the ropes are light and inextensible and the pulley is frictionless.

5.1 Calculate the weight of the container.
5.2 The system is moving upwards at a constant velocity as indicated above.
5.2.1 Draw a vector diagram of all forces acting on the container and indicate the angles represented in the diagram.

GRADE 11 - PHYSICAL SCIENCES : MECHANICS

5.2.2 Determine the magnitudes of the forces T1 and T2.
5.3 The system is moving upwards at a constant velocity.
5.3.1 What does the statement above tell us about forces acting on the container?
5.3.2 Which Newton's law support your answer in QUESTION 5.3.1?

