basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

GEOGRAPHY

Grade 12

MAPWORK

TABLE OF CONTENTS PAGE

1. Foreword 3
2. How to use this booklet 4
3. Study and Examination Tips 5
4. Overview of Mapwork (Mind Map) 9
4.1 Mapwork skills and techniques 10
4.2 Map interpretation and application 35
4.3 Geographic Information Systems 53
5. Message to Grade $\mathbf{1 2}$ learners from the Writers 59
6. Thank you/ Acknowledgements 60

1. Foreword

Message from the Minister of Basic Education

2. How to use this Study guide

- The guide simply provides basic mapwork skills that cut across Grades 10-12.
- It should be used in conjunction with a relevant textbook, CAPS and exam guidelines specific for a particular grade.
- It explains important terms and key concepts.
- It develops key skills in reading, analysing and interpreting topographical and orthophoto maps.
- Theory and mapwork are integrated.
- Application of GIS concepts.

3. Study and Examination Tips

Some tips to approach the examinations

3.1 PAPER 2 (MAPWORK)

- This is a $11 / 2$-hour question paper and will be written second on the day of the Geography examination.
- The question paper consists of four questions that are compulsory and is comprised as follows:

QUESTION 1: Multiple-choice questions - 15 (single marks) (cuts across the syllabus)
QUESTION 2: Geographical techniques and calculations (includes cross-sections and application) - 20 (single marks)
QUESTION 3: Application of theory/Map and photo interpretation - $\mathbf{2 5}$ (single marks for definitions and identification of features such as landforms, slopes, drainage patterns, settlement patterns, street patterns, etc. Double marks for providing reasons, application, interpretation, analysis and evaluation.)
QUESTION 4: Geographical Information Systems - 15 (single marks for definitions. Double marks for providing reasons, application, analysis and evaluation.)

- The cognitive level rating of both question papers are as follows:

Low order:	25%
Middle order:	50%
High order:	25%

3.2 Topic specific

3.2.1 Topographic Maps (1:50000)

All the geographical skills and knowledge studied in Grades 10 and 11 are relevant to Grade 12.

Mapwork techniques

These concepts should be taught in an integrated fashion.

- Contour lines, contour interval and height and conventional signs
- Compass direction
- True/Geographic bearing
- Magnetic declination and bearing
- Map scale - types of scales and comparing the scales of topographic maps, orthophoto maps and aerial photographs
- Calculating straight-line distance in reality
- Calculating area of regular features
- Map reference numbers/Map index
- Alphanumeric reference/Grid reference
- Map coordinates/Fixing position - stating the coordinates
- Calculation and interpretation of gradient
- Cross-sections - drawing of cross-sections, indicating position of features on cross-sections and identifying features represented by crosssections
- Intervisibility
- Calculating vertical exaggeration

Topographic map application

- Interpretation of 1:50000 topographic maps: o Interpreting physical features, e.g. relief, drainage, climate and vegetation
- Interpreting cultural features, e.g. settlement, land-use and transport networks
- Application of all aspects of the syllabus covered in the theoretical section of Geography
- Interpreting of temperature, rainfall, climate zones and biomes, graphs and tables that are related to the 1:50000 topographic map and the $1: 10000$ orthophoto map being assessed

3.2.2 Photographs

- Types of photographs
- Advantages and disadvantages of different types of photographs
- Orthophoto maps
- Interpreting size, shape, tone, texture, shadow and patterns of vertical aerial photographs to identify features, landforms and activities on photographs and orthophoto maps
- Orientation of orthophoto map to topographic map
- Compare orthophoto maps to topographic maps
- All techniques mentioned under mapwork techniques are applicable to orthophoto maps

Orthophoto map application

- Interpretation of $1: 10000$ orthophoto maps o Interpreting physical features, e.g. relief, drainage, climate and vegetation
- Interpreting cultural features, e.g. settlement, land-use and transport networks
- Application of all aspects of syllabus covered in the theoretical section of Geography

3.2.3 Types of Maps

- Reference maps
- Thematic maps - defining, identifying and interpreting different types of thematic maps with the aid of atlases

3.2.4 Geographical Information Systems (GIS)

- Concepts of:
- GIS
- Remote sensing
- Resolution
- Pixels
- Spatial resolution
- Spatial and attribute data
- Vector and raster data
- Spatial objects
- Points/Nodes
- Lines
- Area/Polygons
- Concept of layering of information
- Components of GIS
- Sources of information for GIS
- Data manipulation and analysis:
- Concept of data manipulation
- Data integration
- Buffering
- Querying
- Statistical analysis
- Data standardisation
- Data sharing
- Data security
- Application of GIS by the:
- Government
- Private sector
- Developing a 'paper GIS' from existing maps, photographs and other sources of information on layers of tracing paper
- Identifying and interpreting concepts using given data such as satellite images, topographic maps, orthophoto maps, aerial photographs, pictures and statistics indicated on graphs and tables

4. Overview of the Mapwork (Mind Map)

4.1 Mapwork skills and techniques

Lines of latitude and longitude
Location
As a geographer it is important to determine the
exact location of phenomenon on the earth's
surface. To do this we make use of what is
termed as the coordinate system.
South Pole $\left(90^{\circ} S\right)$

Map Reference

Reference numbering

South Africa is located south of the equator and east of the Greenwich meridian.
Latitude is always represented first with a letter \mathbf{S} and then followed by longitude which is always represented with the letter \mathbf{E}.
The latitudinal values increase southwards and the longitudinal values increase eastwards

All topographical maps in South Africa are referenced according to their relevant latitudinal and longitudinal position on earth. In the diagrams the map reference is 3224 BA , which stands for 32° S and $24^{\circ} \mathrm{E}$.

Maps are divided into 16 sub areas between two latitude and longitude lines. The area between the latitude and longitude lines are divided into 4 equal blocks A to D.
The 4 blocks are further sub-divided into smaller blocks A to D. Therefore, 3224BA is in the bigger block B and the smaller block A, as indicated in the shaded area on the above diagram.

Coordinates: Alpha-numeric grid

Alpha (letters)				Alpha-numeric grid The alpha numeric grid serves as the first step in understanding the concept of location. Refer to the map on this page and: - locate the letter (alpha) along the side of the map indicated by an arrow. - locate the corresponding number (numeric) along the top of the map indicated by the downward arrow. - The letters represent the latitude and - The numbers represent the longitude

Compass direction	Direction Describing the position of one place in relation to another. Direction uses 16 cardinal points, the four main ones being North, South, East and West. Note: There are always two points involved when giving direction. - The place where one is calculating direction from, and - The place which you want the direction of.

Geographic co-ordinates

- $1^{\circ}=60^{\prime}$
- $1^{\prime}=60^{\prime \prime}$

Geographic co-ordinates

- Lines of latitude and longitude are used to locate places on the map.
- The point where a line of latitude crosses a line of longitude is called a coordinate.
- A coordinate is named by its latitude expressed numerically in degrees (${ }^{\circ}$) minutes (') seconds (") S of the equator; and longitude in degrees (${ }^{\circ}$) minutes (') seconds (") E of Greenwich meridian. Such a location is also referred to as absolute location.

Examples:

- On the sketch the co-ordinates of A are $26^{\circ} 45^{\prime} 12$ "S; $29^{\circ} 00^{\prime} 41^{\prime \prime} \mathrm{E}$
- On the sketch the co-ordinates of B are 2646'S; 2901'E

Type of scales

Written / Word scale

1 cm represents $0,5 \mathrm{kms}$

Ratio Scale or Representative Fraction

$$
1: 250,000 \text { or } \frac{1}{250,000}
$$

Line scale

Scale

A scale denotes the relationship between distances on a map and distances in real life.
All South African topographic maps have a scale of $1: 50000$. This means that 1 cm on the map represents $50: 000 \mathrm{~cm}$ on the ground.
Scale can be represented in three ways:

- Ratio scale (1:50 000) / representative fraction $\left(\frac{1}{50000}\right)$
- Word scale expresses the scale in words OR 1 cm represent $50: 000 \mathrm{~cm}$ on the ground
- Linear scale is a straight line subdivided to represent ground distances.

kilometers

CONVENTIONAL SIGNS

It is an internationally accepted letter or symbol indicating a real-life feature

The following are standardized conventional signs on South African Topographic maps

Standardised colours on a topographical map

Points	Lines	Polygons

Symbol - Brown

Symbol - Green

Symbol - Red

Symbol - Black

\square

Indicators of height on a topographic map

Indicators of height on a topographic map

It is indicated in the following ways: Contour lines, spot heights, trigonometrical beacons, and bench marks.

Contour lines

Contour lines are lines on the map that join places of the same height above sea level.

- A contour line is a brown line on the topographic map.
- The contour Interval is the difference in height between two contour lines that are next to one another and its value does not change.
- The contour interval used on topographic maps is 20 meters.
- They are one way of showing height above sea level.
- Contour lines connect places of equal altitude
- Contour lines do not cross each but can touch.
- Contour lines are continuous.
- Index contour lines are thick brown lines and are in multiples of 100 m .
- Arrangement of contour lines depict various landforms and slopes on a map.

By "reading" the contour lines we can determine what the terrain in an area looks like.

Spot height

It is shown as a dot with the value of the height next to it.

Trigonometrical beacon

It is indicated by a triangle, with two values on the map.
The value below the triangle is the height and the value on the side is the number of the beacon.

Bench marks

They are usually found along roads and rail ways and the height is indicated by a black arrow.

Calculations

Calculation of straight line distance

Measuring and calculating distance in km

- If you measured the distance between the two points in centimetres. In this case the distance is 2.4 cm .
- To get the actual distance in reality. \checkmark Multiply map distance by map scale
E.g. $2.4 \mathrm{~cm} \times 50000$
$=120000 \mathrm{~cm}$
Convert to km: 120000
100000

$$
=1.2 \mathrm{~km}
$$

Converting cm to km

Km	h	dam	m	dm	cm	mm
1	0	0	0	0	0	

- If you measured the distance between the two points in millimetres. In this case the distance is 24 mm .
- To get the actual distance in reality.

Multiply map distance by map scale
E.g. $24 \mathrm{~mm} \times 50000$ = 1200000
Convert to km: 1200000
1000000
$=1.2 \mathrm{~km}$
Converting mm to km

Km	h	dam	m	dm	cm	mm
1	0	0	0	0	0	0

- If you measured the distance between the two points in centimetres. In this case the distance is 2.4 cm.
- To get the actual distance in reality.
\checkmark Multiply map distance by map scale E.g. 2.4cm $\times 50000$

$$
=120000 \mathrm{~cm}
$$

Convert to km: 120000
100

Converting cm to m

- If you measured the distance between the two points in millimetres. In this case the distance is 24 mm .
- To get the actual distance in reality.
\checkmark Multiply map distance by map scale
E.g. $24 \mathrm{~mm} \times 50000$

$$
=1200000
$$

Convert to km: 1200000
1000 $=1.200 \mathrm{~m}$

Converting mm to m

Km	h	dam	m	dm	cm	mm
			1	0	0	0

Method of calculating area

- Measure the length and multiply by the scale of the map and convert to kilometres/metres.
- Measure the breadth and multiply by the scale of the map and convert to kilometres.
- Multiply the length and breadth (remember you final answer must be in $\mathrm{km}^{2} / \mathrm{m}^{2}$.

Example of the calculation of area A on the topographic map in $\mathbf{k m}^{\mathbf{2}}$ Formula: Area $=$ length $(\mathrm{L}) \times$ breadth (B)
Length: $3.7 \mathrm{~cm} \times 50000$

$$
=\frac{185000 \mathrm{~cm}}{100000}
$$

$=1.85 \mathrm{~km}$
Breadth: $3.2 \mathrm{~cm} \times 50000$

$$
\begin{aligned}
& =\frac{160000}{100000} \mathrm{~cm} \\
& =1.6 \mathrm{~km}
\end{aligned}
$$

Area
$=1.85 \mathrm{~km} \times 1.6 \mathrm{~km}=2.96 \mathrm{~km}^{2}$
Example of the calculation of area A on the topographic map in $\mathbf{m}^{\mathbf{2}}$ Formula: Area $=$ length $(\mathrm{L}) \times$ breadth (B)
Length: $37 \mathrm{~mm} \times 50000$

$$
\begin{aligned}
& =\frac{1850000 \mathrm{~mm}}{1000} \\
& =1850 \mathrm{~m}
\end{aligned}
$$

Breadth: $32 \mathrm{~mm} \times 50000$

$$
=\frac{1600000}{100} \mathrm{~cm}
$$

100000

$$
\text { = } 1 \text { 600m }
$$

$1850 \mathrm{~m} \times 1600 \mathrm{~m}=2960000 \mathrm{~m}^{2}$
Note: (When calculating the distances of the length and the breadth, refer to the metric scale for conversions as illustrated in the examples above. The length's value measured is always more than the breadth's value measured.)

Average Gradient

Bearing

	\checkmark Mean annual change can either be westwards $\begin{aligned} & 19^{\circ} 33^{\prime} \mathrm{W} \\ & +2^{\circ} 40^{\prime} \mathrm{W} \\ & \hline 21^{\circ} 73^{\prime} \mathrm{W} \end{aligned}=22^{\circ} 13^{\prime} \mathrm{W} \mathrm{~W}$ Whenever the minutes are 60 and more, these minutes should be converted into degrees, e.g. $160^{\prime}=2^{\circ} 40^{\prime}$ $1^{\circ}=60^{\prime}$

Step 4

Step3

Draw the vertical and horizontal axis of the cross section by drawing two lines at 90° to each other on an A4 sheet of paper. Decide on the vertical scale. This is usually given to you, for example $1 \mathrm{~cm}=20$.

NOTE: The lowest contour line value that you've recorded, should be the first point on the vertical scale. The horizontal scale is labelled as the scale of the map you are using. e.g. 1:50 000.
Place the strip of paper on the horizontal line. Make a mark directly above the contour mark (on the blank page) in line with the correct height shown on the vertical scale.

Step 4

Join all your points on your graph free-hand. Keep checking your map, as there may be a river on your map that will require a dip between two points rather than just a straight line. Look out for hills that will

This refers to whether one point on a map is visible (can be seen) from another point.

In the diagram provided

- Paarl rock is visible from the school, because there are no obstacles preventing you from seeing the rock from the school.
\square - Paarl rock is not visible from the dam, because there is a high lying area between the dam and Paarl rock, which prevents you to see the dam or the rock.

Map interpretation and application

Climate and Weather

Interpreting wind direction: Wind direction is not annotated (marked) on a map. However, it is possible to interpret the general wind direction on topographic and orthophoto maps. The following will help to interpret the general wind direction.

On the map, the row of trees is planted on the northeastern part of the settlement (Clewer). It is therefore deduced that the prevailing wind in this area comes from the north-east.

The way the Landing Strip is constructed

The landing strip is where aircrafts land and take off. Generally, aircrafts take off against the wind. On this map extract the aircraft will most likely take off in an east southeasterly direction.

Katabatic wind during the night

Stream orders

Determining stream order

- The smallest streams are classified as first order streams.
- When two first order streams meet at a confluence, they form a second order stream.
- When two second order streams meet, they form a third order stream.
- The order of the stream will continue to increase in the manner described above.
- When streams of different order meet, there is no increase in the order.

Flow direction of the river

How to determine the direction that the river flows

- River flows towards the sea
- The river flows from high area to low area
- Contours bend upstream
- Dam wall shows downstream
- Tributaries joins acute angles

Flow direction of the Steenbras river indicated on the map

- This river is flowing in a WSW direction towards the sea
- The tributaries join at an acute angle
- It flows from a high to a low (contours)
- The contours bend upstream
- The dam wall is downstream

Waterfalls

- This landform is mostly found in the upper course of a river
- It is a temporary baseline of erosion

Identifying the different stages of a river

The upper course

Upper course

- The area is steep, with V-shaped valleys
- Fast flowing non-perennial rivers
- Downward/Vertical erosion
- Flow is turbulent
- Water falls, rapids, interlocking spurs can be found

Lower course

Identification of fluvial landforms and features

Flat and smooth - very few or no contour lines
Braided streams
Flood plains
Excessive Meandering
Marshes
Sandbanks
Mouth
Others:
Oxbow Lakes

Rural settlement: site and shape

The Site of a settlement describes the physical nature of where it is located.

Factors identifiable on the diagram

- Flat land - very few or no contour lines
- Quality of soil - arable land indicated by orchard and vineyards as well as cultivated land
- Fresh water supply - rivers, dams

Other factors

- building material
- climate - aspect
- shelter and defence

Shape is the external appearance of rural settlements as seen from above

Types of shape and how it is identifiable on maps

- T-shaped - At T-junction of roads
- Linear shape - along transport routes, rivers and between physical features like mountains

Other shapes

- Round - around a central feature like a dam
- Cross road - Where important roads cross

Schematic representation of GIS content

Geographic Information Systems (GIS)

WHAT IS A GIS?

A GIS is a:

- computer-based set of procedures for assembling, storing, manipulating, analysing and displaying geographically referenced information.
- system that uses geographical data for a purpose, such as providing information that can be used for making decisions.
- complex computer system which can hold and use data describing places on the earth's surface.

COMPONENTS OF GIS

Hardware	CPU, screen, keyboard, mouse, scanner, printer, digitizing tablet.
Software	Application programme such as ArcView.
Data	Maps, aerial photos, satellite images, administrative records, etc.
People	Data capturers, data users, GIS analysts.
Methods	GIS design according to user's needs.

REMOTE SENSING

The collection of information on the earth's surface without actually being in contact with it. (weather balloons, aeroplanes and satellites)

RESOLUTION

The ability of a remote sensing sensor to create a sharp and clear image.

There are two types of geographical information, namely, Locational (Spatial) data and Non-locational (Attribute) data.
Spatial data describes the location of, connections among, and relationships among point line and area features.
Attribute gives the characteristics of the point, line and area features in terms of certain attributes (attributes), which may be either qualitative, e.g. the type and names of roads in a given area or quantitative, e.g. the widths of roads.

RASTER AND VECTOR DATA

In vector data objects on the earth's surface is represented by using a point, a line or an area (polygon).

In raster data objects on the surface of the earth is represented
 by rows and columns of evenly sized blocks, called pixels. Pixels are the smallest unit of data storage

GIS LAYERS

All spatial data whether it is vector data or raster data are shown in layers.

Each layer represents a single entity/them ϵ
It is this characteristic that enables a GIS to manipulate, integrate, and query data

DATA MANIPULATION

What is data manipulation?
Data manipulation involves getting the different data sources into a format that can be integrated
Explain why data manipulation is important in a GIS.
When all the data layers are in similar data files the data can be integrated (put together)
Statistical information must be manipulated into such a file format that it can be used in the GIS software and linked to specific spatial features errors in the database can be eliminated during manipulation

DATA INTEGRATION

The integration of data involves the combination of two or more data layers to create a new one.

WHY DOES GIS MATTER?

Geographical Information Systems are a special class of information systems that keep track not only of events, activities and things, but also of where these events, activities and things happen or exist.

Problems that involve an aspect of location, either in the information used to solve them, or in the solutions themselves, are termed geographical problems.

Here are some examples

- Health care managers solve geographical problems when they decide where to locate new clinics and hospitals;
- Delivery companies solve geographical problems when they decide the route and the schedules of their vehicles;
- Transportation authorities solve geographical problems when they select route for new highway;
- Forestry companies solve geographical problems when they determine how best to manage forests, where to cut, where to locate roads and where to plant new trees;
- Governments solve geographical problems when they decide how to allocate funds for building sea defenses;
- Travelers solve geographical problems when they find their way through airports, give and receive driving directions and select hotels in unfamiliar cities;
- Farmers solve geographical problems when they employ new information technology to make better decisions about the amounts of fertilizers and pesticide to apply to their fields.

| Some examples of industries that use GIS in their planning, operation and decisio |
| :--- | :--- |
| Industry How they use GIS
 Oil Industry Planning and managing pipelines
 Military Planning troops movements or field study
 Mobile phone
 companies
 Mining Positioning and managing existing and new masts
 Agriculture/Farming Locating the mineral reserves, i.e. geological mapping
 Frops, land use decisions, mapping soils, vegetation, etc.
 Ambulance services
 Planning quickest route to assist patients
 Police services Planning quickest route to combat crime |

GIS can be done manually using transparency overlays (Paper GIS). This method is tedious and does not allow for changes in scale. The advantage of the modern GIS using computers is that it is faster and more efficient and can manage large volumes of data over large study areas.

BUFFERING

It is sometimes necessary to identify zones at different distances from certain geographic features.
Definition: A line used to demarcate an area around a spatial feature
Examples:
noise buffers next to roads

5 Message to Grade 12 learners from the Writers

Every challenging and difficult time that you have gone through in your life has shaped you into a winner you are today. Hard times are not permanent but should be seen as part of your normal growth. Just make a decision that you are going to keep on moving and complete the race. Portia January

It is through hard work and sacrifices that you will one day look back with pride and satisfaction and say to yourself: "So has been the story of my life, falling and crying, but most importantly, rising again." Your triumph over those challenges should serve as an inspiration and assurance that you are certainly a winner. Hettie Benjamin

Remember that you are not alone, many have walked the same road before and succeeded. Do not give up, keep on believing in yourself. Just know that there is something in you that is greater than any challenge. With Geography you will always know where you are going. Just keep on pushing. Jerome Meyer

Human beings are interesting creatures, they tend to learn the most when they do not get their way through. Use whatever setbacks in your life to become a mentally stronger person. Every successful person has gone through ups and downs of life, but what is unique with them is that "they kept on believing in themselves," so keep the faith. Mosebetsi Mofokeng

6 Thank you / Acknowledgements

The Geography guide was developed by Ms Portia January, Ms Hettie Benjamin, Mr Mosebetsi Mofokeng, and Mr Jerome Meyer who are Provincial Subject Specialists.

A special mention must be made to Mr Pule Rakgoathe, the DBE curriculum specialist who, in addition to his contribution to the development of the booklet, co-ordinated and finalised the process.

These officials contributed their knowledge, experience and in some cases unpublished work which they have gathered over the years to the development of this resource. The Department of Basic Education (DBE) gratefully acknowledges these officials for giving up their valuable time, families and knowledge to develop this resource for the children of our country.

Administrative and logistical support was provided by: Mr Richard Maboyi, Mr Noko Malope and Ms Jennifer Mphidi. These officials were instrumental in the smooth and efficient management of the logistical processes involved in this project.

