10  The Exponential and
Logarithm Functions

Some texts define ¢* to be the inverse of the function Inx = f§ 1/¢d¢. This
approach enables one to give a quick definition of ¢* and to overcome a number
of technical difficulties, but it is an unnatural way to define exponentiation.
Here we give a complete account of how to define expj (x) = b* as a continua-
tion of rational exponentiation. We prove that exp is differentiable and show
how to introduce the number e.

Powers of a Number

If n is a positive integer and b is a real number, the power b” is defined as the
product of b with itself » times:

b"=b-b-...- b (ntimes)

If b is unequal to 0, so is 5", and we define

1_

b = I -11)- -Il; (n times).

We also set
’=1

If b is positive, we define »'/? = \/3, b3 = b, etc., since we know how to
take roots of numbers. Recall that /3 is the unique positive number such that
(/b)Y = b;ie., <y is the inverse function of x”. Formally, for n a positive inte-
ger, we define

plin = b (the positive nth root of b)

and we define

1

-1
b /n =b1/72

123
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Worked Example 1 Express 97/2 and 6257/% as fractions.
Solution 92 =1/91?=1/A/9=4%and 6257/ = 1/7/625=1+.

Worked Example 2 Show that, if we assume the rule **Y = p*p” we are
forced to define b° =1 and 5™ = 1/b*.

Solution If we setx=1landy =0, we get 5170 = -1% ie., b =b-b"s0
b° = 1. Next, if we set y = —x, we get ¥** = p*p™ ie., 1 =b"=b"p7,s0
b = 1/b*. (Notice that this is an argument for defining b°, b™/" and b™ the
way we did. It does not prove it. Once powers are defined, and only then, can
we claim that rules like 5 ¥ = b*b” are true.)

Finally, if r is a rational number, we define &” by expressing r as a quo-
tient m/n of positive integers and defining

b= (bm)l,’n

We leave it to the reader (Exercise 8) to verify that the result is independent of
the way in which 7 is expressed as a quotient of integers. Note that pmin s
always positive, even if m or n is negative.

Thus the laws of exponents,

'™ =p"*"™ and b"/p™ =p" (i)
@")" =p"" (i)
(be)* =b"c" (iii)

which are easily seen for integer powers from the definition of power, may now
be extended to rational powers.

Worked Example 3 Prove (i) for rational exponents, namely,
pma/ny pmafny — p(m,/n)+(m,/n,) (M)
Solution From (iii) we get
(bm,/n, brrz;,/f12)rz1 ny = (pMalm Yt nz(bm:/nz)n1 n,
By (ii) this equals
((bnh/nl)n,)n,((bmz/n,)nz)m
By definition of 5™/" | we have o™ / ™Y = p™ | so the preceding expression is

(bml)nz(bmz)nl = pMi1t pMa 1y



POWERS OF A NUMBER 125

again by (ii), which equals

pman, tmyn,

by (i).
Hence

(bml/nl bmz/nz)n1"2 = pMila tmyn,

SO

bmx/nx bmz/nz = (b(mxnz+m2n1))1/n1nz

By the definition 5™/" = (b'_")1 /" this equals

b(mxnz+mzn1)/nlnz = b(mx/nx)'l'(mz/nz)

as required.

Similarly, we can prove (ii) and (iii) for rational exponents:

(bml/n,)m,/n, = bm,m,/n,n, (ii’)
(bc)m/n = pm/n m/n (iii")

Worked Example 4 Simplify (x*/3(x3/2))¥/3.

Solution (x%/3x™3/%)%/3 = (x@/3Hr2yy8/3 = (x/0)8/3 = x29/9 = 1/,9/x20-

- Worked Example 5 If b > 1 and p and g are rational numbers with p < ¢, prove
that P <p9. :

Solution By the laws of exponents, b7/bP =b7P Letz =q —p > 0. We shall
show that b% > 1, so b/bP > 1 and thus b9 > bP.

Suppose that z = m/n. Then b% = (3")/*. However,8” =b b+ ...+ b
(m times) > 1 since 5 > 1, and (bm)”" > 1 since b™ > 1. (The nth root et/ of
a number ¢ > 1 is also greater than 1, since, if ¢1/? < 1, then (¢! =<1
also.) Thus b > 1 if z >0, and the solution is complete.

As a consequence, we can say that if 5 > 1 and p < g, then b¥ <d9.

Solved Exercises*

1. Find 872 and 8'/2.

*Solutions appear in the Appendix.
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2. Find 932,
3. Slmplify (x2/3)5/2/xl/4.
4. Verify (ii) if either p or g is zero.

Exercises
1. Simplify by writing with rational exponents: ,
(@ |Yap® |6 (b) Va’b®
\/-b- v 4/ a6 b6

2. Factor (i.e., write in the form (x? + yb)(xc + yd), a, b, ¢, d rational num-
bers):

(2) x —Vxy -2y () x -y
) Vi +vyxl+x+ty @ x-2vVx -8
(e) x+ 2v/3x+3
3. Solve for x:
(2) 10* =0.001 (b) =1
(c) =0 (@) x —2Vx —3=0 (factor)
4. Do the following define the same function on (2) (-1, 1), (b) (0, 3)?
filx)=x'"?
f2(0) = V2

f3(x) = (Vx)* (which, if any, are the same?)

5. Based on the laws of exponents which we want to hold true, what would be
your choice for the value of 0°? Discuss.

6. Using rational exponents and the laws of exponents, verify the following
root formulas.

a b
( ) a/ \Zy—za\b/; ( ) acf x7b = c/xb
7. Find all real numbers x which satisfy the following inequalities.
(a) xl/3 >x1/2 (b) x1/2 >x1/3
() x17 >x1a p g positive odd integers, p > ¢
(@) xl/a> xllp, p, q positive odd integers, p > q

8. Suppose that b >0 and thatp = m/n = m'/n’. Show, using the definition of
rational powers, that »”/" = p™ /" ie., bP is unambiguously defined.
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The Function f(x) = bX

Having defined f(x) = »* if x is rational, we wish to extend the definition to

allow x to range through all real numbers. If we take, for example, b = 2 and
compute some values, we get:

x| 2 -3 —1 -+ o L 1 % 2

2
2* | 025 0354... 05

2
0.707... 1 1414... 2 2828... 4

These values may be plotted to get an impression of the graph (Fig. 10-1). It

seems natural to conjecture that the graph can be filled in with a smooth curve,
i.e., that * makes sense for all x.

y
44 .
31 .
21 )
.
1¢
] L4 b ¢
-2 -1 0 1 2 x

Fig. 10-1 The plot of some points (x, 2¥) for rational x.

To calculate a number like 2\/3_, we should be able to take a decimal
approximation to /3 ~ 1.732050808 ..., say, 1.7320, calculate the rational
power 217320 = 17320710000 414 hope to get an approximation to 2V 3. Experi-
mentally, this leads to reasonable data. On a calculator, one finds the following:

x| 2
112

1.7 | 3.24900958
1.73 | 3.31727818
1.732 | 3.32188010
1.73205 | 3.32199523
1.7320508 | 3.32199707
1.732050808 | 3.32199708
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The values of 2* as x gets closer to /3 seem to be converging to some
definite number. By doing more and more calculations, we could approximate
this number to as high a degree of accuracy as we wished. We thus have amethod
for gener tl\l}g_ the decimal expansion of a number which could be called 2V3,
To define 2V? and other irrational powers, we shall use the transition idea.

Let b be positive and let x be irrational. Let 4 be the set of all real num-
bers a which are less than or equal to 7, where p is some rational number and
p < x. Similarly, let B be the set of numbers 8 = b9 where g is some rational
number and g > x (Fig. 10-2).

Fig. 10-2 Powers of 2
with rational exponents
less than /3 go into set
A (along with all numbers
less than such powers) and
all powers of 2 with ra-
tional exponents larger

21Tz 2VE e than /3 go into set B
__'MW_ (along with all numbers
A B larger than such powers).

Theorem 1 There is exactly one transition point from A to Bif b > 1
fand from B to A if 0 <b < 1). This transition point is called b* (if b= 1,
we define 1* =1 for all x).

' The function b* so obtained is a continuous function of x.

The proof is given in the next two sections. (We shall assume it for now.)
There we shall also show that the laws of exponents for rational numbers remain
true for arbitrary real exponents. A specific case follows.

Worked Example 6 Simplify (v/(3™))(3™ 4.

Solution /3™ 374 = (3712374 — 3(m/2)~(x[4) - 3[4

Sometimes the notation exp, x is used for 5%, exp standing for “exponen-
tial.” One reason for this is typographical: an expression like

2
expp (%—+ 3x>
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is easier on the eyes and on the printer than pO*/D+3x  Another reason is
mathematical: when we write expj x, we indicate that we are thinking of 5% as a
function of x.

We saw in Worked Example 5 that, for 4 > 1 and p and q rational with p <
g we had pP < b9. We can prove the same thing for real exponents: if x <y, we
can choose rational numbers, p and g, such that x < p <g <y. By the definition
of »* and ¥ as transition points, we must have b* < »” and b7 <P ,s50 6™ <
bP <b? <P, and thus b* <pY.

In functional notation, if » > 1, we have expp x < expp y whenever x < y:
in the language of Chapter 5, expy is an increasing function. Similarly, if 0 <
b <1, expp is a decreasing function.

It follows from Theorem 1 of Chapter 8 that for 5 > 1, 5* has a unique in-
verse function with domain (0,0) and range (—oo,0). This function is denoted
logp . Thus x = logy v is the number such that 5* =y.

Worked Example 7 Find logs 9,1og;0 (10%), and logs 3.

Solution Let x = log3 9. Then 3* = 9. Since 3* = 9, x must be 2. Similarly,
logyo 10% is a and logg 3 = F since 9'/2 = 3.

The graph of logpx for b > 1 is sketched in Fig. 10-3 and is obtained by
flipping over the graph of expp x along the diagonal y = x. As usual with inverse
functions, the label y in logy y is only temporary to stress the fact that logp y is
the inverse of y = expp x. From now on we shall usually use the variable name
x and write logp x.

, Yy =expp X y =logs X
/s
/
1 yd
—_/ s/
Vi
e
7/
/ 3
il 1 x
Vs .
e Fig. 10-3 The graphs of
e y = exppXx and y = logy, x
- compared.

Notice that for & > 1, logg x is increasing. If b < 1, expp x is decreasing
and so is logp x. However, while expp, x is always positive, log, x can be either
positive or negative.

From the laws of exponents we can read off corresponding laws for
logp x:
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logp (xy) = logp x + logp ¥ and logy, (%) = logp x —logp y @
logp (x¥) = y logp x (i)
logy, x = logy, (c) log, (x) (iii)

For instance, to prove (i), we remember that logy x is the number such
that expp (logp x) = x. So we must check that

expp, (logp x + logy y) = expp (logp xp).

But the left-hand side is expp (logp x)expp (logp ¥) = xy as is the right-hand
side. The other laws are proved in the same way.

Solved Exercises

5. How is the graph of expj /p x related to that of expp x?
6. Simplify: (2\/_3- + 2'\/-:"‘-)(2‘/-?7 — Z_ﬂ).

7. Match the graphs and functions in Fig. 10-4.

/

\\ F

o] (d)

Fig. 10-4 Match the graphs and functions:
(a) y =Xﬁ (b) % =X1/\/_3.
(@ y=cA3* (@ y=0A3*

8. Find log; 4, log; 81 and log,p 0.01.
9. (a) Simplify logp, (52%/2b)
(b) Solve for x: log, x =log, 5 + 3log, 3.
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Exercises
o s, V=DV
IR AT
10. Give the domains and ranges of the following functions and graph them:
@ y =267 () y =2 @ y=2!

11. Graph y = 3**2 by “shifting” the graph of y = 3% two units to the left.
Graph y = 9(3%) by “stretching” the graph of y = 3* by a factor of 9 in the
y-axis direction. Compare the two results. In general, how does shifting the
graph y = 3* by k units to the left compare with stretching the graph by a
factor of 3% in the y-axis direction?

12. Consider f(x) = (—3)*. For which fractions x is f(x) defined? Not defined?
How might this affect your ability to define f(7)?

13. Graph the following functions on one set of axes.
(a) fx)=2" (b) gx)=x2+1 (©) Ax)=x+1
Can you make an estimate of f'(1)?

14. Solve forx:

(a) log,5=0 (b) log,(x*) =4 (c) 2logsx +1logsd =2
15. Use the definition of logyx to prove:

(a) logp (x¥) =ylogyx (b) logp x = logp (c) log. (x)
Convex Functions™*

We shall use the following notion of convexity to prove Theorem 1.

Definition Let f(x) be a function defined for every rational [real] x. We
call f convex provided that for every pair of rational [real] numbers x,
and x, with x; <Xx,, and rational [real] A with 0 <A <1 we have

*See ““To e Via Convexity” by H. Samelson, 4 m. Math. Monthiy, November 1974, p. 1012.
Some valuable remarks were also given us by Peter Renz.
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FQxy + (1 = N)x) S A(xy) + (1 — Nf(x2)

If < can be replaced by < throughout, we say that fis strictly convex.

Notice that Ax; + {1 — A)x, lies between x; and x5; for example, if A =
-;-, M (1 =Ax, = %(xl + Xx,) is the midpoint. Thus convexity says that at
any point z between x; and x,, (2, f(z)) lies beneath the chord joining (x,, f(x;))
to (x,, f(x2)). (See Fig. 10-5.) To see this, notice that the equation of the chord

is
flxea) —fGxy)

2 — X,

y—fG)= x —x4)

Settingx =z = Ax; +(1 — A)x,, we get

y = ree + (LE2=L50 = :f;(j‘l)

= flx1) + (f(x2) — f(x1))1 - 2)
= Mx)+ (1 —Nfx2)

> (Axy +(1 = N)xz —x4)

So the condition in the definition says exactly that f(z) <N (x;) + (1 — 0)f(x2),
the y value of the point on the chord above z.

y)

i
T T et
o & Fig. 10-5 For a convex
Xy Z X2 X function, the chord lies
Z=AXy + (1= Mx, above the graph.

Theorem 2 If b > 1, f(x) = b* defined for x rational, is (strictly ) convex.

Proof First of all, we prove that forx; <x,,

{Z55) <3¢t +6ea)

ie.,

b(.x1 +x2)/2 <%(bx, +bxz)
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Indeed, this is the same as
PO A2 _ pxy & pXa _ p(xi¥2,)/2
ie.,
bx,(b(x,—xl)/2 -1 <(b(x,—x,)/2 _ l)b(x,+x,)/2
Since x; < (x; * x,)/2, this is indeed true, as »*1 < pX1+%,)/2 (see
Worked Example S).

Having taken care of A = 5, we next assume 0 <A <1 Proceeding
as above,

b?\x1+(l—}\)xz <)\be + (1 _ x)bx,
is the same as
)\(bhx,-l-(l—}\)x, _ bx,) <1 - l)(bx2 _bkxl'l'(l—?\)xz)

ie.,
)\bxl(b(l'”(xz'xl) —1)<(1 - )\)(b(l—i\)(xz—xl) _ l)be,-r(l—A)x,
But if 0 <A <%, then A <(1 — ), and since x; <Nx, + (1 — A, b <

prM:* (10X Hence the inequality is true. If we replace A by (1 — A)
everywhere in this argument we get the desired inequality for -;- <AL

One can prove that »* is convex for b < 1 in exactly the same manner.

Note The inequality obtained in Solved Exercise 11 is important and will
be used in what follows.

Solved Exercises

10. (a) Prove thaty =x? is strictly convex.
(b) Find a convex function that is not strictly convex.

11. Suppose f is convex and x; <x, <x3.Show that

F(x1) 2 flx2) + {[H(x3) — f(x2)] (x5 — %2)} (1 — Xx2)

Sketch. What if f is strictly convex? Make up a similar inequality of the
form f(x3) = something.
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Exercises

"16. If f(x) is twice differentiable on (—so, o) with f”'(x) continuous and f"'(x) >
0, prove that f is convex. [Hint: Consider g(x) = M(x) + (1 — A)f(x,) —
JF(x + (1 — A)x;) and show that g is increasing, and g(x;) = 0.]

17. Show that f(x) = Ix|is convex.

Proof of Theorem 1

Let us suppose that 5 > 1 and that x is a given irrational number (the case b <1
is dealt with similarly). Let 4 be the set of & such that @ < 5P, where p is ratio-
nal and p < x, and let B be the set of 8 > b4, where q is rational and g > x.

Lemma 1 A and B are convex and hence intervals; A = (—vs,aq) or
(—se, o] and B = (By,°0) or [Bo, %) for some o < Bo.-

Proof Suppose y, and y, belong to 4, and y; <y <y,. Thusy, <&? for
some rational p < x. Hence y < b? for the same p, so y belongs to A. This
shows 4 is convex and, if v, belongs to 4 and ¥y <., then ¥ belongs to 4.
Hence 4 = (—o0,aq) 0r (—oo, ap] "for some number ay.

Similarly, B = (Bg, =) or' [B8o, =°) for some number f,.

Either g << By or g > By. If ag > By, then Bg belongs to A so B <
P for some p <x. This implies that 57 belongs to B, so b > b7 for some
g >x.Butif p <x <gq,b” <b?. Thusay > f, is impossible, so it must be
that ap < 3y, as required.

The next step uses convexity.

Lemma 2 The numbers ag and §, given in Lemma 1 are equal.

Proof Suppose ag < f, the only possibility other than oy = B, (see
Lemma 1). Pick p and g rational with p <x and ¢ > x. Then b” belongs to
A, 50 bP < ap and similarly 7 > §,. Picking a smaller p and larger g will
insure that b <aq and b7 > §,.

If we choose A such that A is rational and 0 < (b7 — B)/(B% — bP) <
A< (7 —ao)/(B? — BP) < 1, then we will have

g <NBP + (1 = N)B? < By
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(Why is it possible to choose such a A?)

Suppose that Ap + (1 — X)g > x. By Solved Exercise 11 with x; = p,
X, =N+ (1 —MN)q,and x3 = q, we get
_ b?\p"‘(l—}\)q

e
P> bxp+(1—)\)q +(
Mg -p)

1-MF-9

ie.,

AP + (1 — N7 >N > 5,

which is impossible, since AbP + (1 — AN)b7 < By. Similarly, if Ap +
(1 —A)g <x, the inequality (also from Solved Exercise 11),

— prp+-M)q

Y (EEVCED )

> b?\P+(i-7\)q + oal

leads to a contradiction. Since A, p, ¢ are rational and x is irrational, we
cannot have Ap + (1 — A)g = x. Hence oy < 3, is impossible.

Lemmas 1 and 2 can be summarized as follows: The sets 4 and B are as
shown in Fig. 10-6 and the endpoints may or may not belong to 4 or B. This
means that ay = B, is the transition point from 4 to B. Thus, b* is defined.
From the construction, note that if p <x < g and p, ¢ are rational, then b <
P <pl.

a = B

A\ 8

~W ~

74%%26%6%6@5&55&555FSFSSSSSS& , Fig. 106 The configura-
x tionof 4, B, &g, and ;.

Lemma 3 The function b* is increasing (b > 1).

Proof 1If x, <x,and x;,x, are irrational, then pick a rational r with x; <
r <x,. Then b1 < B < b*2 (see the comment just before the statement
of the lemma). If x{,x, are rational, see Worked Example 5.

Lemma 4 The laws of exponents hold for b*.
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Proof -We prove b*b” = b**7 . The rest are similar.

Assume BB > b and let € = p*p — b*7Y. Pick a rational
number 7 > x + y such that 5 — p**” < e (why is this possible?). Write
r = p; + p, where p; >x and p, > y. Since the laws of exponents are true
for rationals, we get

B =pP1pPr > p*pY

Hence
B <B <t +e =" + 0° — 0¥ =P,

which is a contradiction. Similarly, 5*»” < »**7? is impossible, so we must
have equality. .

Lemma 5 b* is a (strictly ) convex function (defined for every real x ).

Proof Since we know that b* is increasing and that the laws of exponents
hold, our proof given in Theorem 2 is valid for arbitrary x,, x,, and A,
rational or not.

It only remains to prove that »* is continuous. The following might sur-
prise you.

Theorem 3 Any convex function f(x) (defined for all real x)is con-
tinuous.

Proof Fix a number x, and let ¢ > f(xq). Refer to Fig. 10-7 and the defi-
nitions on pp. 54 and 31. Pick x; <xo <x;.

By convexity,

fQoxz + (1 —Axo) SAMx2) + (1 — N)f(xo)

fx)

Fig. 10-7 The geometry
X needed for Theorem 3.
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Chaoose e, such that 0 <e, <1 and such that

€2/ (x2) +(1 — €)f(xo) <c

ie.,
€2(f(x2) — f(x0)) <c —f(xo)

Gf f(x2) — f(xo) <0, any €, will do; if f(x,) — f(xo) > 0, we need
€2 < (¢ — f(xo))/ [f(x2) — f(x0)]). Then if 0 <A< ey, f(Axy + (1 — N)xo)
KM@ + (1 = Nflxo) <c. I xo <x <xg + €5(xy —Xg), Wwe can write
x =M, + (1 — A)xo, where X = (x —Xx¢)/(x3 —Xo) < €,. Thus

F) =12 + (1 = Nxo) SMlx2) + (1 - Mflxo) <c

whenever xy < x < xg¢ + ¢;(x; - Xg). Similarly, by considering the line
through (x,,f(x;)) and (x,,f(x¢)) we can find €, such that if xo — €,(xo —
x1) < x < xg, then f(x) <c. If I =(xo — €1(x0 — X1)Xo *+ €2(X2 — X0)),
then for any x in 7, f(x) <c.

If d < f(xo), we can show that if x; <x <x, but x is sufficiently
close to x, then f(x) > d by using the inequality

i stz + )1

(x —xo)
and an argument like the one just given. The case x > x, is similar. Thus
there is an open interval J about x, such that f(x) >d ifx isin J.

Thus, by the definition of continuous function, f is continuous
atxy.

Solved Exercises

12. Suppose that f(x) is convex, a < b, and f(eg) < f(x) for every x in (g, b].

Prove that f is increasing on [g, 5] .

13. A certain function f(x) defined on (—oo, c0) satisfies f(xy) = (f(¥))* for all

real numbers x and y. Show that f(x) = »* for some » > 0.

Exercises

18.

19.

Give the details of the part of the proof of Theorem 3 dealing with the
case d <[f(xy).

Prove that if f is strictly convex and f(0) < 0, then the equation f(x) = 0
has at least one real root.
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20. Suppose that f satisfies f(x + ¥) = f(x)f(y) for all real numbers x and y.
Suppose that f(x) # 0 for some x. Prove the following.
(@ f(O)=1
(b) fix)#0 forallx
(c) f(x)>0 forallx

@ 9= 5

Differentiation of the Exponential Function

Now we turn our attention to the differentiability of 5*. Again, convexity will
be an important tool.

Theorem 4 If b> 0, then f(x) = b* is differentiable and

') =1'(0)f(x), ie., gx— b* =£'(0)- b*

Proof From the equation f(x) = f(x — x¢)f(xo) and the chain rule, all we
need to do is show that f(x) is differentiable at x = 0.
Refer to Fig. 10-8. Let x, > 0 and consider the line through (0, 1)

and (x,,f(x,)), i.e.,

y=1+&"2;—l-x=lz(x)

This line overtakes f(x) at x = 0. Indeed, if 0 < x < x,, then f(x) <
I5(x) since f is (strictly) convex. If x <0 <x,, then f(x) > I,(x) by Solved
Exercise 11, with x,, 0, x, replacing x,, x,, and x5.

//1

©.n

|

|

i

|
| |
‘ ‘ Fig. 10-8 The geometry
X needed for Theorem 4.
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In exactly the same way, we see that for x; < 0, the line [, passing
through (x;,f(x;)) and (0, 1) is overtaken by fatx = 0.
Going back to the definition of derivative in terms of transitions

(Theorem 4, p. 27), we let

A = the set of slopes of lines /; which are overtaken by fatx =0
and

B = the set of slopes of lines [, which overtake fatx =0
Let A = (—o0,@) or (—eo,a] and B = (, ) or [B, ). We know that a <§-
We want to prove that a = §.

Our remarks above on convexity imply that the slope of the line
¥ =1+{[f(x;) — 1] /x,}x belongs to B, i.e.,

6<f(xz) —1
X2
Similarly,
flx)—1 <a
X1

In particular, set x, = —x, = —¢, where ¢ > 0. Then

foafOD =1 _fo) -1 -1 b7 -1
X2 X1 t —t

t -t -t

=é—i%—:—2-=%-(b2' _ 26 +1)

b‘t
=—t-(bt - 1)

Now we may use the convexity inequality which tells us that f(#) <
lz(t) ifo<r <x2, i.e.,

p*2 — 1 p'—1 _p¥2 -1
t -
<1+ X, t, ie., : < ’
This gives
. b — 1
3-a<b’(b’—1)-< >
X2

Suppose that 8 — a is positive. Then, letting ¢ = (8 — a)x,/(b*2 — 1), we
have
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b - 1) >c
But g(r) = b7 (' — 1) is continuous, and g(0) = 0. Thus if # is near enough

to zero we would have b (b’ — 1) <¢, a contradiction. Thus § = & and so
7' (0) exists.

We still need to find f'(0). It would be nice to be able to adjust b so that
f'(0) = 1, for then we would have simply f'(x) = f(x). To be able to keep track

of b, we revert to the expp (x) notation, so Theorem 4 reads as follows:
expp () = expp (0)expp (x).
Let us start with the base 10 of common logarithms and try to find
another base b for which expj (0) = 1. By definition of the logarithm,
b=10%%0? (secp.129)
Therefore
= (lolo&ob)x = IOXIOwa
Hence
expp (X) = expyo (x 10g10 5)
Differentiate by using the chain rule:
expp (x) = explo (x 10g10 b) * logyo b
Setx =0:
expp (0) = expio (0) < logso b
If we pick b so that
eXP'IO (0)-logiob =1 (nH

then we will have expj (x) = expp (%), as desired. Solving (1) for b, we have

1

logyp b = ———
B0 eXP’lo (0)

That is,

We denote the number expjo [1/expio (0)] by the letter e. Its numerical value is
- approximately 2.7182818285, and we have
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expe (x) = expe (x)

Although we started with the arbitrary choice of 10 as a base, it is easy to show
(see Solved Exercise 15) that any initial choice of base leads to the same value
for e. Since the base e is so special, we write exp (x) for exp, (x) = €.

Logarithms to the base e are called natural logarithms. We denote log, x by
Inx. (The notation logx is generally used in calculus books for the common
logarithm logyox.) Since e! = e, we have Ine = 1.

Worked Example 8 Simplify In (e°) +In ().

Solution By the laws of logarithms, In(e%) +In(e®) = In(e® - €) =In(e?) = 2.

We can now complete our differentiation formula for the general expo-
nential function expp x. Since b = €2 we have »* = "8 Using the chain
rule, we find

d.x_4d xmb

rrdird
=exmb%(xlnb)
=fbpp
=b*Inb

Thus the mysterious factor expp (0) turns out to be just the natural logarithm
of b.

Worked Example 9 Differentiate: (a) f(x) = e>; (b) g(x) = 3*.

Solution

(2) Letu = 3x so e>* = ¥ and use the chain rule:
d u_ (4 e
ax _<dueu>dx
=M« 3 = 3¢3*

(b) %3" =3"In3.

This expression cannot be simplified further; one can find the value In3 =~
1.0986 in a table or with a calculator.
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Solved Exercises

14. Differentiate the following functions.

(2) e2* (b) 2
() xe3* (d) exp(x?+2x)
(e) x*

15. Show that, for any base b, expp, (1/expp (0)) =e.
16. Differentiate:

(a) e\/x— . (b) esinx
(c) 250* (d) (sinx)?
17. Prove that for 7> 0 and b > 1, we have b* — 1 < (' log, b)t.

Exercises

21. Differentiate the following functions.

() & *1 (b) sin(e¥) (c) 3* —2*-1

(d) €% (e) tan(3%¥) @ el +x3
22. Differentiate (assume f and g differentiable where necessary):

(a) (x3+2x — 1) Tsnx (b) e** —cos(x +¢%%)

(©) X **)1 - @ @ +DE ! -1

(e) fx)- & +5(x) (f) of GO+

(©) fx)-EX (h) f(&° +g(x))

23. Show that f(x) = €* is an increasing function.
24. Find the critical points of f(x) =x2%e™.
25. Find the critical points of f(x) = sinxe* , —47 <x < 4.
26. Simplify the following expressions:
() In(€**1) +1In(e?) (b) In(e™*) —In (e®%%)

The Derivative of the Logarithm

We can differentiate the logarithm function by using the inverse function rule of
Chapter 8. If y =Inx, thenx = ¢” and
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Hence

D=1
dx nx—x

For other bases, we use the same process:

ilo X = 1 = 1 = 1
& BETF S b T lbex
dy
That is,
oo x =L
dx % F = nb)x

The last formula may also be proved by using law 3 of logarithms:

Inx =log,x =logp x «Inb

dlo -4 —l—lnx‘= lnx=——-1——
T OB * T \Tnb ) ind dx (inb) - x

Worked Example 10 Differentiate: (a) In (3x); (b) xe¢* Inx; (c) 81og; 8x.
Solution

(a) By the chain rule, setting # = 3x,

d d du 1
—In3x = za(lnu) =

‘3=l
dx dx 3x X

Alternatively, In 3x = In 3 + Inx, so the derivative with respect to x is 1/x.

(b) By the product rule:

%‘(xex Inx) = xad;(ex Inx)+e&Inx=xeInx +¢e* +eInx
(¢) From the formula (d/dx)logy x = 1/(Inb)x with b = 3,

d d
E;S log; 8x = 8d—;log3 8x

143
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= s[4 du_. _
= 8<dulog3u>dx (u=8)

1
In3-u
64 8

T m3)8 (n3)x

8 -8

In order to differentiate certain expressions it is sometimes convenient to

begin by taking logarithms.
Worked Example 11 Differentiate the function y =x*.
Solution We take natural logarithms,
Iny = ln(:?‘) =xInx
Next we differentiate, remembering that y is a function of x:

1dy

1
=x—+lnx=1+
7 X 3 Inx=1+Inx

Hence

% =3(1 +Inx) =x*(1 +1nx)

In general, (d/dx)Inf(x) = f'(x)/f(x) is called the logarithmic derivative of

f. Other applications are given in the exercises which follow.

Solved Exercises

18. Differentiate:
(a) In10x (b) Inu(x) () In(sinx)
(d) (sinx)lnx (e) (Inx)/x (f) logsx

19. (a) If n is any real number, prove that

d—ix” =nx""1 forx>0
(b) Find (d/dx)(x™).

20. Use logarithmic differentiation to calculate dy/dx, if y is given by
y=(2x+3*/xF+1.

X
21. Differentiate y = x*").
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Exercises

27. Differentiate:
(a mn(2x +1) (b) In(x® — 3x) (¢) In(tanx)
(d) (lnx)® (&) @ —2x)ln(2x+1) () &H*

28.

(g) [In(tan3x)]/(1+1nx?)

Use logarithmic differentiation to differentiate:

@ y=x* (b) y = x"*

(c) ¥ = (sinx)™* @ y=62+172
(&) y=(x —2)"" (4x +3)*7

Problems for Chapter 1 ()

1.

Simplify:

(a) e4x[1n(e3x—1)_1n(el—x)] (b) e(xln3+lx12x)
. Differentiate:

(a) & sin x (b) x€

(c) 14%'~Bsinx @ x*

(e) In(x= +x) () (nx)™P*

(2) sin(x® + 1)~ logg (14x — sinx)

. Sketch the graph of ¥y = xe *; indicate on your graph the regions where y

is increasing, decreasing, concave upward or downward.

. Find the minimum of y = x* for x in (0,=°).

5. Suppose that f is continuous and that f(x + y) = f(x)f(y) for all x and y.

10.

Show that f(x) = »* for some b. [Hint: Try showing that f is actually dif-
ferentiable at 0.]

. Let f be a twice differentiable convex function. Prove that f''(x) = 0.

Let f be an increasing continuous convex function. Let f ! be the inverse
function. Show that —f ! is convex. Apply this result to logy x.

. Suppose that f(x) is a function defined for all real x. If x; < x, <x3 and

f(x1) = f(x,) = f(x3), prove that f is not strictly convex. Give an example
to show that f may be convex.

. Suppose that f(x) is a strictly convex differentiable function defined on

(—o0, ). Show that the tangent line to the graph of y = f(x) at (xg,¥0) does
not intersect the graph at any other point. Here, x¢ is any real number and
yo = f(xg). What can we say if we only assume f to be convex?

Suppose that f(x) is defined for all real x and that f is strictly convex on
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(—o0,0) and strictly convex on (0,%). Prove that if f is convex on (—o0,0),
then f is strictly convex on (—oo,o0). »

11. Prove that ¢® > 1+ x?, for x = 1. [Hint: Note that ¢ > 2 and show that the
difference between these two functions is increasing.]

12. We have seen that the exponential function exp (x) satisfies the following
relations: exp(x) > 0, exp(0) = 1, and exp' (x) = exp(x). Let f(x) be a
function such that

0<f'(x)<f(x)forallx>0
Prove that 0 < f(x) < f(0)exp(x) for all x = 0. (Hint: Consider g(x) =
Fle)fexp (x).) ,
13. Let f(x) be an increasing continuous function. Given x,, let
A = the set of f(x) where x <xg
B = the set of f(x) where x > x
Show that f(x) is the transition point from 4 to B.

14. Show that the sum f(x) + g(x) of two convex functions f(x) and g(x) is con-
vex. Show that if f is strictly convex, then so is f+ g. Use this to show that
f(x) = ax? + bx + ¢ is strictly convex if ¢ > 0, where q, b, and ¢ are con-
stants.

15. Suppose f(x) is defined and differentiable for all real x.
(a) Doesf"'(x) > 0'for all x imply that f(x) is convex?
(b) Does f''(x) > 0 for all x imply that f(x) is convex? Strictly convex?



