POLYNOMIALS

REMAINDER & FACTOR THEOREMS

THE REMAINER THEOREM

If a polynomial f(x) is divided by a linear polynomial (ax + b), then the remainder is given by $f\left(-\frac{b}{a}\right)$.

- If a function f(x) is divided by x 3, the remainder is f(3)
- If a function f(x) is divided by 2x 5, the remainder is $f\left(\frac{5}{2}\right)$
- If a function f(x) is divided by 5x + 1, the remainder is $f\left(-\frac{1}{5}\right)$

Example

If $2x^2 + 5x - 1$ is divided by x + 4, determine the remainder.

Solution

Remainder = f(-4) $f(-4) = 2(-4)^2 + 5(-4) - 1 = 11$

: the remainder is 11.

THE FACTOR THEOREM

If f(x) is a polynomial, and $f\left(-\frac{b}{a}\right) = 0$, then ax + b is a factor of f(x).

Example

Determine if x - 1 is a factor of $f(x) = 3x^4 + 3x^2 - 5x - 1$.

Solution

Remainder = f(1)

 $f(1) = 3(1)(1)^4 + 3(1)^2 - 5(1) - 1 = 0$

 $\therefore x - 1$ is a factor of f(x)

The FACTOR THEOREM is mostly used to:

- 1. Factorize cubic (third degree) expressions
- 2. Find solutions (x values) of cubic equations
- 3. Find the *x* intercepts of the graph of the cubic function

EXERCISE 1: (Remainder & Factor theorems)

- 1. For each of the following, determine the remainder if
 - 1.1 $f(x) = x^3 + x^2 1$ is divided by 2x + 3
 - 1.2 $g(x) = x^3 + 4x^2 11x 31$ is divided by x + 5
 - 1.3 $p(x) = 2x^3 x^2 + 3x 8$ is divided by s(x) = x 2
 - 1.4 $h(x) = 8x^4 4x^2 5$ is divided by (2x 1)
- 2. Given: $f(x) = x^3 2x^2 4x + 3$
 - 2.1 Use the remainder theorem and determine the remainder if f(x) is divided by 2.1.1 x + 1 2.1.2 x 3
 - 2.2 What may be concluded from the previous two calculations?
- 3. Prove that x + 1 is a factor of $f(x) = x^3 + 5x^2 17x 21$.
- 4. Given: $g(x) = x^3 + px + 6$

Determine the value of p if (2 - x) is a factor of g.

- 5. Given: $p(x) = x^3 + ax^2 + bx + 6$
 - 5.1 If x 2 is a factor of p, show that 2a + b = -7.
 - Hence, determine the values of a and b if it is further given that the remainder is 48 when p is divided by x 3.

Your knowledge of the Remainder and Factor theorems will mainly be used to factorise cubic functions, in order to determine the x – intercepts of the graphs.

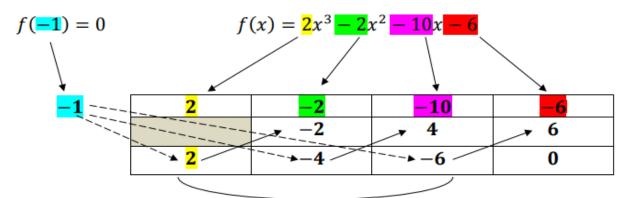
DIFFERENT METHODS TO FACTORISE A CUBIC POLYNOMIAL (3RD DEGREE)	
METHOD AND DESCRIPTION OF STEPS	EXAMPLES
SUM AND DIFFERENCE OF CUBES	A) $f(x) = x^3 + 27$ $= (x+3)(x^2 - 3x + 9)$ Cannot factorise further B) $f(x) = 8x^3 - 1$ $= (2x-1)(4x^2 + 2x + 1)$ Cannot factorise further $f(x) = x^3 + 3x^2 - 4x - 12$
 FACTORISE BY GROUPING Group terms in two pairs Take out common factor from each pair Two sets of brackets now become common factor Factorise bracket further if possible 	$= x^{2}(x+3) - 4(x+3)$ $= (x+3)(x^{2}-4)$ $= (x+3)(x+2)(x-2)$
FACTORISE BY INSPECTION • Find one linear factor using factor theorem • Find other factor (quadratic expression) by inspection	$f(x) = 2x^{3} - 2x^{2} - 10x - 6$ $f(-1) = 2(-1)^{3} - 2(-1)^{2} - 10(-1)$ $- 6 = 0$ $\therefore (x + 1) \text{ is a factor}$ $f(x) = (x + 1)(ax^{2} + bx + c)$ Now find these coefficients Start with a and c : $1 \times a = 2 \therefore a = 2$ $1 \times c = -6 \therefore c = 6$ You now need to find b : Multiply the two brackets; the two $x^{2}\text{-terms need to give you } -2x^{2}:$ $f(x) = (x + 1)(2x^{2} + bx + 6)$ $bx^{2} + 2x^{2} = -2x^{2} \therefore b = -4$ $\therefore f(x) = (x + 1)(2x^{2} - 4x + 6)$ $= (x + 1)(2x + 2)(x - 3)$
SYNTHETIC OR LONG DIVISION Find one linear factor using factor theorem Find other factor (quadratic expression) by long division or synthetic division (SEE NEXT PAGE)	$f(x) = 2x^3 - 2x^2 - 10x - 6$ $f(-1) = 2(-1)^3 - 2(-1)^2 - 10(-1)$ $-6 = 0$ $\therefore (x + 1) \text{ is a factor}$ $f(x) = (x + 1)(ax^2 + bx + c)$ Find a, b, c using synthetic division

repeat

steps

SYNTHETIC DIVISION

$$f(-1) = 0$$
, so $(x + 1)$ is a factor



This method is called SYNTHETIC division, because we don't really divide.

We actually multiply and add.

Note the following:

- The x-value of -1 that gave us the factor (x+1) is written on the LHS
- The coefficients of the cubic polynomial are written in the top row
- The first coefficient, 2, is carried down to the last row
- Now starting from the left:

 MULTIPLY along the dotted arrow

 and write the ANSWER in the block one row up and one column right
- Now ADD DOWN in the column (the two values underneath each other)
- You MUST get 0 in the last block
- The 3 values in the bottom row are the coefficients of the quadratic factor.

So,
$$f(x) = (x+1)(2x^2 - 4x - 6)$$

You can now complete the factorising:

$$f(x) = (x+1)(2x+2)(x-3)$$

EXERCISE 2: (Factorise cubic expressions and functions)

Factorise the following expressions completely:

a
$$27x^3 - 8$$

b
$$5x^3 + 40$$

c
$$x^3 + 3x^2 + 2x + 6$$

d
$$4x^3 - x^2 - 16x + 4$$

e
$$4x^3 - 2x^2 + 10x - 5$$

f
$$x^3 + 2x^2 + 2x + 1$$

h
$$x^3 + 2x^2 - 5x - 6$$

i
$$3x^3 - 7x^2 + 4$$

$$x^3 - 19x + 30$$

k
$$x^3 - x^2 - x - 2$$

Solve for x:

a
$$x^3 + 2x^2 - 4x = 0$$

b
$$x^3 - 3x^2 - x + 6 = 0$$

c
$$2x^3 - 12x^2 - x + 6 = 0$$

d
$$2x^3 - x^2 - 8x + 4 = 0$$

e
$$x^3 + x^2 - 2 = 0$$

$$f x^3 = 16 + 12x$$

$$g x^3 + 3x^2 = 20x + 60$$

- Show that x 3 is a factor of $f(x) = x^3 x^2 5x 3$ and hence solve f(x) = 0.
- Show that 2x 1 is a factor of $g(x) = 4x^3 8x^2 x + 2$ and hence solve g(x) = 0.