POLYNOMIALS

REMAINDER \& FACTOR THEOREMS

THE REMAINER THEOREM

```
If a polynomial f(x) is divided by a linear polynomial (ax + b), then the remainder is given
by f(-\frac{b}{a}).
```

- If a function $f(x)$ is divided by $x-3$, the remainder is $f(3)$
- If a function $f(x)$ is divided by $2 x-5$, the remainder is $f\left(\frac{5}{2}\right)$
- If a function $f(x)$ is divided by $5 x+1$, the remainder is $f\left(-\frac{1}{5}\right)$

```
Example
If 2\mp@subsup{x}{}{2}+5x-1 is divided by }x+4\mathrm{ , determine the remainder.
Solution
Remainder = f(-4)
f(-4)=2(-4\mp@subsup{)}{}{2}+5(-4)-1=11
 the remainder is ll.
```


THE FACTOR THEOREM

```
If f(x) is a polynomial, and f(-\frac{b}{a})=0, then }ax+b\mathrm{ is a factor of }f(x)
```


Example

Determine if $x-1$ is a factor of $f(x)=3 x^{4}+3 x^{2}-5 x-1$.
Solution
Remainder $=f(1)$
$f(1)=3(1)(1)^{4}+3(1)^{2}-5(1)-1=0$
$\therefore x-1$ is a factor of $f(x)$

EXERCISE 1: (Remainder \& Factor theorems)

1. For each of the following, determine the remainder if
1.1 $f(x)=x^{3}+x^{2}-1$ is divided by $2 x+3$
$1.2 g(x)=x^{3}+4 x^{2}-11 x-31$ is divided by $x+5$
$1.3 \quad p(x)=2 x^{3}-x^{2}+3 x-8$ is divided by $s(x)=x-2$
$1.4 h(x)=8 x^{4}-4 x^{2}-5$ is divided by $(2 x-1)$
2. Given: $f(x)=x^{3}-2 x^{2}-4 x+3$
2.1 Use the remainder theorem and determine the remainder if $f(x)$ is divided by
2.1.1 $x+1$
2.1.2 $x-3$
2.2 What may be concluded from the previous two calculations?
3. Prove that $x+1$ is a factor of $f(x)=x^{3}+5 x^{2}-17 x-21$.
4. Given: $g(x)=x^{3}+p x+6$

Determine the value of p if $(2-x)$ is a factor of g.
5. Given: $p(x)=x^{3}+a x^{2}+b x+6$
5.1 If $x-2$ is a factor of p, show that $2 a+b=-7$.
5.2 Hence, determine the values of a and b if it is further given that the remainder is 48 when p is divided by $x-3$.

DIFFERENT METHODS TO FACTORISE A CUBIC POLYNOMIAL (3 ${ }^{\text {RD }}$ DEGREE)	
METHOD AND DESCRIPTION OF STEPS	EXAMPLES
SUM AND DIFFERENCE OF CUBES	A) f $\begin{aligned} f(x) & =x^{3}+27 \\ & =(x+3)\left(x^{2}-3 x+9\right) \end{aligned}$ Cannot factorise further B) $f(x)=8 x^{3}-1$ $=(2 x-1)\left(4 x^{2}+2 x+1\right)$ Cannot factorise further
FACTORISE BY GROUPING - Group terms in two pairs - Take out common factor from each pair - Two sets of brackets now become common factor - Factorise bracket further if possible	$\begin{aligned} f(x) & =x^{3}+3 x^{2}-4 x-12 \\ & =x^{2}(x+3)-4(x+3) \\ & =(x+3)\left(x^{2}-4\right) \\ & =(x+3)(x+2)(x-2) \end{aligned}$
FACTORISE BY INSPECTION - Find one linear factor using factor theorem - Find other factor (quadratic expression) by inspection	$\begin{aligned} & \hline f(x)=2 x^{3}-2 x^{2}-10 x-6 \\ & f(-1)=2(-1)^{3}-2(-1)^{2}-10(-1) \\ & -6=0 \end{aligned}$ $\therefore(x+1)$ is a factor $f(x)=(x+1)\left(a x^{2}+b x+c\right)$ Now find these coefficients Start with a and c : $\begin{aligned} & 1 \times a=2 \therefore a=2 \\ & 1 \times c=-6 \therefore c=6 \end{aligned}$ You now need to find b : Multiply the two brackets; the two x^{2}-terms need to give you $-2 x^{2}$: $\begin{aligned} & f(x)=(x+1)\left(2 x^{2}+b x+6\right) \\ & b x^{2}+2 x^{2}=-2 x^{2} \therefore b=-4 \\ & \therefore f(x)=(x+1)\left(2 x^{2}-4 x+6\right) \\ & \quad=(x+1)(2 x+2)(x-3) \end{aligned}$
SYNTHETIC OR LONG DIVISION - Find one linear factor using factor theorem - Find other factor (quadratic expression) by long division or synthetic division (SEE NEXT PAGE)	$\begin{gathered} \hline f(x)=2 x^{3}-2 x^{2}-10 x-6 \\ f(-1)=2(-1)^{3}-2(-1)^{2}-10(-1) \\ -6=0 \end{gathered}$ $\therefore(x+1)$ is a factor $f(x)=(x+1)\left(a x^{2}+b x+c\right)$ Find a, b, c using synthetic division

SYNTHETIC DIVISION

$f(-1)=0$, so $(x+1)$ is a factor

$$
f(-1)=0 \quad f(x)=2 x^{3}-2 x^{2}-10 x-6
$$

This method is called SYNTHETIC division, becaûse we don't really divide.
We actually multiply and add.

Note the following:

- The x-value of -1 that gave us the factof $(x+1)$ is written on the LHS
- The coefficients of the cubic polynomial are written in the top row
- The first coefficient, 2, is carried down to the last row
- Now starting from the left: MULTIPLY along the dotted arrow and write the ANSWER in the block one row up and one column right
- Now ADD DOWN in the column (the two values underneath each other)
- You MUST get 0 in the last block
- The 3 values in the bottom row are the coefficients of the quadratic factor.

So, $f(x)=(x+1)\left(2 x^{2}-4 x-6\right)$
You can now complete the factorising:
$f(x)=(x+1)(2 x+2)(x-3)$

EXERCISE 2: (Factorise cubic expressions and functions)

1 Factorise the following expressions completely:
a $\quad 27 x^{3}-8$
b $\quad 5 x^{3}+40$
c $\quad x^{3}+3 x^{2}+2 x+6$
d $\quad 4 x^{3}-x^{2}-16 x+4$
e $\quad 4 x^{3}-2 x^{2}+10 x-5$
f $\quad x^{3}+2 x^{2}+2 x+1$
g $\quad x^{3}-x^{2}-22 x+40$
h $\quad x^{3}+2 x^{2}-5 x-6$
i $\quad 3 x^{3}-7 x^{2}+4$
j $\quad x^{3}-19 x+30$
k $\quad x^{3}-x^{2}-x-2$

2 Solve for x :

$$
\begin{array}{ll}
\mathrm{a} & x^{3}+2 x^{2}-4 x=0 \\
\text { b } & x^{3}-3 x^{2}-x+6=0 \\
\text { c } & 2 x^{3}-12 x^{2}-x+6=0 \\
\text { d } & 2 x^{3}-x^{2}-8 x+4=0 \\
\text { e } & x^{3}+x^{2}-2=0 \\
\text { f } & x^{3}=16+12 x \\
\text { g } & x^{3}+3 x^{2}=20 x+60
\end{array}
$$

3 Show that $x-3$ is a factor of $f(x)=x^{3}-x^{2}-5 x-3$ and hence solve $f(x)=0$.
4 Show that $2 x-1$ is a factor of $g(x)=4 x^{3}-8 x^{2}-x+2$ and hence solve $g(x)=0$.

