Chapter 1 Sequencesandseries
Revision

$$
\begin{aligned}
& T_{n}=a n^{2}+b n+c \\
& \begin{array}{cll}
2 a=6 & 3 a+b=11 & a+b+c=6 \\
a=3 & 3(3)+b=11 & 3+2+c=6
\end{array} \\
& b=2 \\
& c=1 \\
& \therefore T_{n}=3 n^{2}+2 n+1
\end{aligned}
$$

Arithmetic sequence
An arithmetic sequence is a sequence where the difference between the terms is constant.
The general term is $T_{n}=a+(n-1) d$
a - first term
d - constant difference
$\mathrm{n} \quad$ - number of the term
$\mathrm{T}_{\mathrm{n}} \quad-\quad \mathrm{n}^{\text {th }}$ term

Example

The first three terms of an arithmetic sequence is $3 p-4 ; 4 p-3$ and $7 p-6$.
Determine:
a) The value of p
b) the first three terms of the sequence
c) the $16^{\text {th }}$ term

Solution

a) Whenever we are dealing with consecutive terms in an arithmetic sequence we apply the principle:
$T_{k+1}-T_{k}=d$
$\therefore T_{2}-T_{1}=d$
And $T_{3}-T_{2}=d$
$\therefore T_{2}-T_{1}=T_{3}-T_{2}$ (both sides equal d)
$\therefore(4 p-3)-(3 p-4)=(7 p-6)-(4 p-3)$
$\therefore 4 p-3-3 p+4=7 p-6-4 p+3$
$\therefore p+1=3 p-3$
$\therefore p=2$
b) The first three terms of the sequence is $2 ; 5$ and 8
c) $T_{16}=a+15 d$

$$
\begin{aligned}
& =2+15(3) \\
& =47
\end{aligned}
$$

Geometric sequence

A geometric sequence is a sequence where the ration between the terms is constant
The general term is $T_{n}=a r^{(n-1)}$
a - first term
r - constant ration $\left(\frac{T_{2}}{T_{1}}\right)$
n - number of the term
$\mathrm{T}_{\mathrm{n}} \quad-\quad \mathrm{n}^{\text {th }}$ term

Determine the first three terms of the geometric sequence with the $2^{\text {nd }}$ term equal to -4 and 5 the term equal to $\frac{4}{125}$.

Solution
$T_{2}=a r=-4$
$T_{5}=a r^{4}=\frac{4}{125}$
$\frac{T_{5}}{T_{2}}=\frac{a r^{4}}{a r}=\frac{\frac{4}{125}}{-4}=-\frac{1}{125}$
$\therefore r^{3}=-\frac{1}{125}$
$\therefore r=-\frac{1}{5}$
Sub in (1): $a\left(-\frac{1}{5}\right)=-4$

$$
a=20
$$

Thus, the first three terms of the geometric sequence is $20 ;-4 ; \frac{4}{5}$.

Example

The geometric sequence $1 ; \frac{3}{2} ; \frac{9}{4} ; \ldots$. has a term equal to $\frac{243}{32}$. Which term is this in the sequence?

Solution

$\mathrm{a}=1, \mathrm{r}=\frac{3}{2}$ and $T_{k}=\frac{243}{32}$. We must determine k .
$T_{k}=a r^{k-1}=\frac{243}{32}$
$1 \times\left(\frac{3}{2}\right)^{k-1}=\left(\frac{3}{2}\right)^{5}$
$k-1=5$
$\mathrm{k}=6$
$\frac{243}{32}$ is the $6^{\text {th }}$ term in the sequence.

Arithmetic Series

Sum of arithmetic series: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Proof: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\left.\begin{array}{rl}
S_{n} & =a+(a+d)+(a+2 d)+\ldots+[a+(n-2) d]+[a+(n-1) d] \\
S_{n} & =[a+(n-1) d]+[a+(n-2) d]+\ldots+(a+2 d)+(a+d)+a \\
(1)+(2): \quad 2 S_{n} & =[2 a+(n-1) d]+[2 a+(n-1) d]+\ldots+(2 a+(n-1) d)+(2 a+(n-1) d) \\
& \therefore \quad 2 S_{n}
\end{array}\right)=n[2 a+(n-1) d] .
$$

Example

How many terms are there in the following arithmetic series and what is the sum of the series?
$2+5+8+\ldots+62$
Solution
$\mathrm{a}=2 ; \mathrm{d}=3$ and $\mathrm{T}_{\mathrm{n}}=62$
$T_{n}=a+(n-1) d$
$62=2+(n-1)(3)$
$n=21$

There are 21 terms in the series
$S_{n}=\frac{n}{2}[a+l]$
$S_{21}=\frac{21}{21}[2+62]$
$=\frac{21}{2} \times \frac{61}{1}$
$=672$

Geometric Sequence

Sum of geometric sequence: $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
Proof: $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$S_{n}=a+a r+a r^{2}+\ldots+a r^{n-2}+a r^{n-1}$
$r \times S_{n}=a r+a r^{2}+\ldots+a r^{n-2}+a r^{n-1}+a r^{n}$
(1) - (2): $\quad S_{n}-r S_{n}=a+0+0+0+\cdots+0-a r^{n}$
$S_{n}-r S_{n}=a-a r^{n}$
$S_{n}(1-r)=a\left(1-r^{n}\right)$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$ for $\mathrm{r}<1$

Example

The sum of the first n terms of the geometric series $\frac{3}{4}+\frac{3}{2}+3+\cdots$ is $23 \frac{1}{4}$
Determine n, the number of terms in the series
Solution
$S_{n}=23 \frac{1}{4} ; \mathrm{a}=\frac{3}{4}$ and $\mathrm{r}=2$
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$\frac{93}{4}=\frac{\frac{3}{4}\left(2^{n}-1\right)}{2-1}$
$31=2^{n}-1$
$2^{n}=32=2^{5}$
$\mathrm{n}=5$.

There are 5 terms in the series

For a geometric series with first term a and common ratio r, with $-1<r<1$,

$$
\mathrm{S}_{\infty}=\frac{a}{1-r} \quad \text { of } \quad \sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}
$$

Note: This does not mean that we have added up an infinite number of terms, which is of course impossible to do.

Example

Convert the repeating decimal $3,2 \dot{7}$ to a common fraction.
Solution
$3,272727 \ldots .=3+\left(\frac{27}{100}+\frac{27}{10000}+\frac{27}{1000000}+\ldots.\right)$
In the brackets we have an infinite geometric series with $a=\frac{27}{100}, r=\frac{1}{100}$ and $-1<\mathrm{r}<1$
$S_{\infty}=\frac{a}{1-r}$
$S_{\infty}=\frac{\frac{27}{100}}{1-\frac{1}{100}}=\frac{\frac{27}{100}}{\frac{99}{100}}=\frac{3}{11}$
$3, \dot{2} \dot{7}=3+\frac{33}{11}=3 \frac{33}{11}$

Example

For which values of x will the infinite geometric series $(1-x)+(1-x)^{2}+\ldots$. converge and what is the sum of the series?

Solution
In the series is $\mathrm{a}=1-x$ and $\mathrm{r}=1-x$
The series will converge if $-1<r<1$
$-1<1-x<1$
$-2<-x<0$
$2>x>0$
For $0<x<-2: S_{\infty}=\frac{1-x}{1-(1-x)}=\frac{1-x}{x}$
For all other values of x the series will diverges.

Example

Calculate the value of:
$\sum_{j=4}^{8} j(j+2)$
Solution
$\sum_{j=4}^{8} j(j+2)=(4 \times 6)+(5 \times 7)+(6 \times 8)+(7 \times 9)+(8 \times 10)$

$$
\begin{aligned}
& =24+35+48+63+80 \\
& =250
\end{aligned}
$$

The number of terms in this series is 5 because j started at 4 and not at 1 .
In general, $\sum_{k=m}^{n} T_{k}$ has $\mathrm{n}-\mathrm{m}+1$ terms $(n \geq m)$
E.g. $\sum_{k=3}^{7} T_{k}=T_{3}+T_{4}+T_{5}+T_{6}+T_{7}$ have $7-3+1=5$ terms.

Example

Calculate:
$\sum_{i=1}^{100}(2 i-1)$
Solution
$\sum_{i=1}^{100}(2 i-1)=1+3+5+\cdots+199$
This is an arithmetic series with first term a $=1$ and $l=199$
$\mathrm{n}=100-1+1=100$ terms
$S_{n}=\frac{n}{2}[a+l]$
$S_{100}=\frac{100}{2}[1+199]$

$$
=10000
$$

Do the following:

QUESTION 2

2.1.1 Show that this sequence has a constant second difference.
2.1.2 Write down the next term of the sequence.
2.1.3 Determine an expression for the $\mathrm{n}^{\text {th }}$ term of the sequence.
2.1.4 Calculate the $30^{\text {th }}$ term.
2.2 In the arithmetic series: $\boldsymbol{a}+\mathbf{1 3}+\boldsymbol{b}+\mathbf{2 7}+\ldots$.
2.2.1 Prove that $a=6$ and $b=20$.
2.2.2 Determine which term of the series will be equal to 230 .
2.3 For which value(s) of k will the series:

$$
\begin{equation*}
\left(\frac{1-k}{5}\right)+\left(\frac{1-k}{5}\right)^{2}+\left(\frac{1-k}{5}\right)^{3}+\ldots \quad \text { converge? } \tag{3}
\end{equation*}
$$

2.4 Given: $\mathbf{1 6}+\mathbf{3}+\mathbf{8}+\mathbf{3}+\mathbf{4}+\mathbf{3}+\mathbf{2}+\ldots$
2.4.1 Determine the sum of the first 40 terms of the series, to the nearest integer.
2.4.2 Write the series: $\mathbf{1 6 + 8 + 4 + 2 + \ldots}$ in the form

$$
\begin{equation*}
\sum_{k=\cdots}^{\cdots} T_{k} \tag{2}
\end{equation*}
$$

where $T_{k}=a r^{k-1}$ and a and r are rational numbers.
2.4.3 Determine S_{∞} of the series in QUESTION 2.4.2.

Chris bought a bonsai (miniature tree) at a nursery. When he bought the tree, its height was 130 mm . Thereafter the height of the tree increased, as shown below.

INCREASE IN HEIGHT OF THE TREE PER YEAR		
During the first year	During the second year	During the third year
100 mm	70 mm	49 mm

3.1 Chris noted that the sequence of height increases, namely $100 ; 70 ; 49 \ldots$, was geometric. During which year will the height of the tree increase by approximately $11,76 \mathrm{~mm}$?
3.2 Chris plots a graph to represent the height $h(n)$ of the tree (in mm) n years after he bought it. Determine a formula for $h(n)$.
3.3 What height will the tree eventually reach?

QUESTION 4

4.1 The first 4 terms of an arithmetic sequence are: $3 ; p ; q ; 21$.

Determine the values of p and q
4.2 The sum of n terms of an arithmetic sequence is given by $S_{n}=4 n+3 n^{2}$, determine the first three terms of the sequence
4.3 Prove that the sum of n terms of an arithmetic series is given by the following formula:
$S_{n}=\frac{n}{2}(2 a+(n-1) d)$

QUESTION 5

5.1 Determine the value of n if $\sum_{t=1}^{n} 3(2)^{t-1}=381$
5.2 Given the series: $1+3 x+9 x^{2}+\ldots .$.
5.2.1 Determine the possible values of x so that the series is convergent.
5.2.2 \quad Determine the value of x if $1+3 x+9 x^{2}+\ldots . .=\frac{2}{3}$

