

sics.com

KWAZULU-NATAL PROVINCE

EDUCATION REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS

COMMON TEST

MARCH 2022 tanmoreph

MARKS:

1½ hours

This question paper consists of 7 pages.

Downloaded from Stanmorephysics. com

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- This question paper consists of 5 questions. 1.
- Answer ALL the questions. 2.
- Clearly show ALL calculations, diagrams, graphs, etc. which you have used in 3. determining your answers.
- Answers only will NOT necessarily be awarded full marks. 4.
- You may use an approved scientific calculator (non-programmable 5. non-graphical), unless stated otherwise.
- downloaded from stannor el If necessary, round off answers correct to TWO decimal places, unless stated 6. otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Write neatly and legibly.

(2)

QUESTION 1

Four options are provided as possible answers to the following questions.

Choose the correct option and write only the letter (A - D) next to the question number, for example: 1.1 E

1.1 If k is a negative single digit integer, which of the following is NOT a possible value of 2-k?

Stanmoreph Aics.com

- B. 8
- C. 10
- D. 12

1.2 An irrational number that lies between 5 and 6 is:

- A. $\sqrt[3]{28}$
- B. $\sqrt{20+8}$
- C. $\sqrt{20\times8}$
- D. 2π

Simplify the following: $-3x^2y(5xy^2+xy) =$

- A. $-15x^2y^2 3x^2y$
- B. $-15x^3y^3 3x^3y$
- C. $-15x^3y^3 3x^3y^2$
- D. $-15x^3y^3 + xy$ (2)

The formula for the volume of a cone is $V = \frac{1}{3}\pi r^2 h$. The radius, r, of the cone may be expressed as:

- $\sqrt{\frac{3V}{\pi h}}$
- B. $\sqrt{\frac{V}{3\pi h}}$
- C. $\sqrt[3]{\frac{V}{\pi h}}$
- D. $\frac{1}{3}\sqrt{\frac{V}{\pi h}}$ (2)

1.5 If $(a^3 + 27) = (a+3)(a^2 + ma + 9)$, then m equals:

> **-9** A.

> -3B.

C. 9

(2) D. 3

Factorise the following: $4x^2 - 3x - 27 =$ 1.6

> (2x+9)(2x-3)A.

> (2x-9)(2x+3)B.

(4x+9)(x-3)C.

(2) (4x-9)(x+3)D.

Simplify the following: $\frac{x^2 - 25}{25x - 125} =$ 1.7

A.

 $\frac{x+5}{25}$ B.

C.

D. (2)

If it is given that $y^5 = 50$ and $x^2 = 10$, determine the value of $y^{10}x^{-2}$. 1.8

> A. 5

25 B.

C. 50

(2) D. 250

1.9 Which quadrilateral is equiangular but not always equilateral?

> rectangle A.

parallelogram В.

C. rhombus

(2) D. square

1.10 Which of the statements below is false?

> All parallelograms are quadrilaterals. A.

B. All rectangles are parallelograms.

C. All squares are rhombuses.

(2) D. All rectangles are squares.

[20]

2.1 Determine the product of the following and simplify fully:

$$(a+2)(a^2-2a+8) (2)$$

2.2 Factorise the following expressions fully:

$$2.2.1 x^3 - y^9 (2)$$

2.2.2
$$f + e^{-1} - ef$$
 (3)

2.3 Simplify the following expressions fully:

$$2.3.1 \qquad \frac{18^{m-2} \times 6^{-m} \times 36^{m+2}}{3^{3m} \cdot 2^{2m}} \tag{4}$$

2.3.2
$$\frac{y^2 - y - 2}{y^2 - 4} \times \frac{y^2 + 2y}{y^2 + y}$$
 (4)

2.4 A picture is framed using four rectangular pieces of wood, as shown in the diagram below.

Find the area of the picture, in terms of x. Give your answer in simplified form.

[18]

Downloaded from Stanmorephysics. comNSC-Grade 10

QUESTION 3

3.1 Solve for x in each of the following equations:

$$3.1.1 \qquad \frac{3}{x+2} + \frac{5}{x-4} = 2 \tag{4}$$

$$3.1.2 5^{x-4} + 5^x = 626 (3)$$

3.2 Solve for $x : -6 \le 2x - 2 < 10$.

Illustrate your answer on a number line if x is a real number. (3)

3.3 Solve simultaneously for a and b:

$$4a - b = 5$$

$$-3a + 4b = 19$$
[15]

Give reasons for your statements in the answers to QUESTIONS 4 and 5.

QUESTION 4

4.1 In the diagram below, $\triangle ABC$ is drawn with $AB\square$

$$\hat{C}_1 = 10x$$
, $\hat{C}_2 = y$, $\hat{S}_1 = 78^{\circ}$, $\hat{T}_1 = 4x$ and $\hat{A} = z$

Calculate, with reasons, x, y and z. (4)

4.2 A parallelogram has two pairs of opposite sides parallel and equal.

Name 3 other quadrilaterals that have these same properties. (3)

[7]

In the diagram below, KL = LN = NM = EN and $KN \square$

Use the diagram above to prove the following:

5.1
$$\hat{M}_1 = \hat{K}$$
 (3)
5.2 $\Delta KLN \equiv \Delta MNL$ (4)

5.4
$$L\hat{M}E = 90^{\circ}$$
 (5) [15]

DIRECTORATE: EXAMINATION & ASSESSMENT

Private Bag X01, EAST END, 4018
Malgate Building, 72 Statwart Simelane Street, Durban,

Provincial Examination Administration

16/03/2022

TO: THE CHIEF INVIGILATOR OF ALL SCHOOLS OFFERING: MATHEMATICS

NATIONAL SENIOR CERTIFICATE: COMMON TEST

MARCH 2022: GRADE 10

ERRATA

Please take note of the following change:

PAGE	NUMBER	ERROR	CORRECTION
6	4.1	\triangle ABC is drawn with $AB \square$	AB // ST.
7	Question 5 Instruction	In the diagram below, $KL = LN = NM = EN$ and $KN\Box$	In the diagram below, KL = LN = NM = EN and KN // LM

Kindly ensure that candidates are informed of the Errata.

MR C. KHUMALO

PROVINCIAL EXAMINATIONS

AND ASSESSMENT SERVICES

16 03 2022 DATE

Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS

COMMON TEST

MARCH 2022

MARKING GUIDELINE

MARKS: 75

TIME: $1\frac{1}{2}$ hours

This memorandum consists of 6 pages.

1.	1 D	✓✓ answer	(2)
1.2	В	✓✓ answer (2)	
1.3	С	✓✓ answer (2)	
1.4	A	✓✓ answer (2)	
1.5	В	✓✓ answer (2)	
1.6	С	✓✓ answer (2)	
1.7	В	✓✓ answer (2)	
1.8	D	✓✓ answer (2)	
1.9	A	✓✓ answer (2)	
1.10	D	✓✓ answer (2)	
		[20]	

QUESTION 2

	_			
2.1	$(a+2)(a^2-2a+8)$			
	$= a^3 - 2a^2 + 8a + 2a^2 - 4a + 16$	✓	expand	
	$= a^3 + 4a + 16$	✓	simplification	(2)
2.2.1	x^3-y^9			
	=	✓	$(x-2y^3)$ $(x^2+xy^3+4y^6)$	
	$= (x - y^3)(x^2 + xy^3 + y^6)$	✓	$\left(x^2 + xy^3 + 4y^6\right)$	(2)
2.2.2				
2.2.2				
	f + e - 1 - e f		C .	
	= f - 1 + e - ef	✓	common factors	
	=1(f-1)+e(1-f)			
	=1(f-1)-e(f-1)	✓	common bracket	(3)
	= (f-1)(1-e)	✓	answer	
	OR			
	$f + e^{-1} - ef$			
	= f - ef + e - 1			
	= f(1-e) + (e-1)	✓	common factors	
	= f(1-e)-1(1-e)			
	=(1-e)(f-1)	✓ ✓	common bracket	
	()())		answer	(3)
	OR			(-)

Copyright Reserved

NSC -	Mar	king	Guideline

NSC – Marking Guideline						
	f + e - 1 - e f	✓	common factors			
	= f - ef + e - 1	✓	common bracket			
	= f(1-e) + (e-1)	✓	answer	(3)		
	= f(1-e)-1(1-e)			, ,		
	= (1-e)(f-1)					
2.3.1	$\frac{18^{m-2} \times 6^{-m} \times 36^{m+2}}{2^{2m+2} 3^{3m}}$					
	$= \frac{(2.3^2)^{m-2} \times (2.3)^{-m} \times (2^2.3^2)^{m+2}}{2^{2m+2} \cdot 3^{3m}}$	✓	prime bases			
	$=\frac{2^{m-2}.3^{2m-4}.2^{-m}.3^{-m}.2^{2m+4}.3^{2m+4}}{2^{2m+2}.3^{3m}}$	✓	raising powers			
	$=\frac{2^{m-2-m+2m+4}.3^{2m-4-m+2m+4}}{2^{2m+2}.3^{3m}}$	✓	simplification			
	$= 2^{2m+2-2m} \cdot 3^{3m-3m}$ $= 2^2$	✓	answer	(4)		
2.3.2	$\frac{y^2 - y - 2}{y^2 - 4} \times \frac{y^2 + 2y}{y^2 + y}$ $= \frac{(y - 2)(y + 1)}{(y - 2)(y + 2)} \times \frac{y(y + 2)}{y(y + 1)}$ $= 1$	✓ ✓ ✓ ✓ ✓	factors of trinomial difference of 2 squares common factor	(4)		
2.4	5x+2 $5x+2$ $7x+3$ $7x+3$ $7x+3$ x $7x+3$ x $Area = (6x+3)(4x+2)$	Stud	dents do not d to expand omial x binomial			
		✓	(6x+3)			
	$Area = (24x^2 + 12x + 12x + 6) \text{ units}^2$	✓	(4x + 2)	/=:		
	$Area = (24x^2 + 24x + 6) \text{ units}^2$	✓	$A = l \times w$	(3)		
				[18]		

Copyright Reserved Please turn over

3.1.1	$\frac{3}{x+2} + \frac{5}{x-4} = 2$ $LCD: (x+2)(x-4)$ $RESTR: x \neq -2 \text{ or } x \neq 4$	✓	LCD	
	$3(x-4)+5(x+2) = 2(x+2)(x-4)$ $3x-12+5x+10 = 2(x^2-2x-8)$	√	numerator	
	$8x-2 = 2x^{2}-4x-16$ $2x^{2}-12x-14 = 0$ $2(x-7)(x+1) = 0$ $x = 7 \text{ or } x = -1$	√	CA factors	(4)
2.1.2		✓	CA	(4)
3.1.2	$5^{x-4} + 5^{x} = 626$ $5^{x} \cdot 5^{-4} + 5^{x} = 626$ $5^{x} (5^{-4} + 1) = 626$ $5^{x} (5^{-4} + 1) = 626$	✓	common factor	
	$5^x = 625$	√	625	
	$5^x = 5^4$		023	
		✓	answer	(2)
3.2	$\therefore x = 4$ $-6 \le 2x - 2 < 10$			(3)
3.2				
	$-4 \le 2x < 12$ $-2 \le x < 6$	✓ ✓	$-4 \le 2x < 12$ $-2 \le x < 6$	
	-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6	✓	number line / notation	(2)
3.3	$A_a - b = 5 \qquad (F_a 1)$			(3)
3.3	$4a-b=5 (Eq1)$ $-3a+4b=19 (Eq2)$ $Eq1 \times 4 \to 16a-4b=20$ $Eq1+Eq2 -3a+4b=19$ $13a =39$ ∴ $a=3$ Sub $a=3$ in Eq1 → 4(3) - $b=5$	✓ ✓ ✓	$Eq1 \times 4$ Adding eqs $a = 3$ substitution	
	∴ <i>b</i> = 7	✓	b = 7	(5)
	OR			
		✓ ✓	$b = 4a - 5$ $Sub Eq 3 \rightarrow Eq 2$	

			1
4a - b = 5 (Eq1)			
-3a + 4b = 19 (Eq 2)			
$Eq1 \rightarrow Eq3$ $b=4a-5$			
Sub Eq 3 in Eq 2: $-3a + 4(4a - 5) = 19$	✓	a = 3	
-3a+16a-20=19	✓	substitution	
13a = 39	✓	b = 7	
$\therefore a=3$,	(5)
Sub $a=3$ in Eq1 $\to 4(3)-b=5$			
∴ b = 7			
			[15]

Give reasons for your statements in the answers to QUESTIONS 4 and 5.

QUESTION 4

$6x = 78^{\circ}$ $x = 13^{\circ}$ $y = 180^{\circ} - [78^{\circ} + 4(13^{\circ})] \text{ (sum of } \angle \text{s } \Delta \text{STC)}$ $y = 50^{\circ}$ OR $y = 180^{\circ} - (10 \times 13^{\circ}) \text{ (sum of } \angle \text{s st. line)}$ $y = 50^{\circ}$ $z = 78^{\circ}$ $(\text{corresp } \angle \text{s; ST}/\text{AB})$ $A.2 \text{ Rhombus}$ Square Rectangle (3)	4.1	$ \begin{array}{c c} 10x \\ \hline D & C \\ 10x = 78^{\circ} + 4x \end{array} $	A $ \begin{array}{c} A \\ \hline 78^{\circ} \\ \hline T \end{array} $ B $(\text{ext } \angle \text{ of } \Delta \text{STC})$			
$y = 50^{\circ}$ $y = 180^{\circ} - (10 \times 13^{\circ})$ $y = 50^{\circ}$ $z = 78^{\circ}$ $(corresp \angle s; ST //AB)$ $\sqrt{S/R}$ $\sqrt{S/R}$ $\sqrt{S/R}$ $\sqrt{S/R}$ \sqrt{AB} $\sqrt{S/R}$ \sqrt{AB} \sqrt		$6x = 78^{\circ}$ $x = 13^{\circ}$				
$y = 180^{\circ} - (10 \times 13^{\circ}) \qquad (\text{sum of } \angle \text{s st. line})$ $y = 50^{\circ} \qquad (\text{corresp } \angle \text{s; ST}/\text{AB}) \qquad \checkmark \qquad \text{S/R}$ $z = 78^{\circ} \qquad (\text{corresp } \angle \text{s; ST}/\text{AB}) \qquad \checkmark \qquad \text{S/R}$ $4.2 \text{Rhombus} \qquad \qquad \checkmark \qquad \text{answer}$ $\text{Square} \qquad \qquad \checkmark \qquad \text{answer}$)] (sum of \angle s \triangle STC)	✓	S/R	
$y = 50^{\circ}$ $z = 78^{\circ}$ 4.2 Rhombus Square $z = 78^{\circ}$ $z = $			OR			
4.2 Rhombus Square (4)			(sum of \angle s st. line)	✓	S/R	
4.2 Rhombus ✓ answer ✓ answer ✓ answer		$z = 78^{\circ}$	(corresp ∠s; ST//AB)	✓	S/R	(4)
Square ✓ answer	4.2	Rhombus		✓	answer	(4)
				✓		
				✓		(3)

Copyright Reserved Please turn over

	L			
5.1	$\hat{M}_1 = \hat{L}_2$ $(\angle s \text{ opp = sides})$	✓	S/R	
	but $\hat{N}_1 = \hat{L}_2$ (alt $\angle s$; KN // LM)	✓	S/R	
	$\hat{N}_1 = \hat{K}$ $(\angle s \text{ opp = sides})$	✓	S/R	
	$\therefore \hat{M}_1 = \hat{K}$			(3)
5.2	In ΔKLN and ΔMNL :			
	1. LN is common	✓	S/R	
	2. $\hat{K} = \hat{M}_1$ (proved above)	✓	S/R	
	3. $\hat{N}_1 = \hat{L}_2$ alt $\angle s$; $KN \parallel LM$	✓	S/R	
	ΔKLN and ΔMNL (A; A; S)	✓	S/R	(4)
5.3	KL = NM (given)		-	
	$KN = ML$ (congruent Δs proved above)	✓	S	
	∴ KLMN is a parallelogram.	√	R	
	Reason: 2 Pairs of opp sides equal and parallel	✓	S/R	(3)
5.4	$\hat{M}_1 + \hat{M}_2 + \hat{L}_2 + \hat{E} = 180^{\circ} \qquad (sum \angle s \ of \ \Delta NME)$	✓	S/R	
	but $\hat{L}_2 = \hat{M}_1$ ($\angle s \ opp = sides$)	✓	S/R	
	and $\hat{E} = \hat{M}_2$ ($\angle s \ opp = sides$)	✓	S/R	
	$\therefore \hat{M}_1 + \hat{M}_2 + \hat{M}_1 + \hat{M}_2 = 180^{\circ}$			
	$2\hat{M}_1 + 2\hat{M}_2 = 180^{\circ}$	✓	substitution	
	$2(\hat{M}_1 + \hat{M}_2) = 180^{\circ}$			
	$\hat{M}_1 + \hat{M}_2 = 90^{\circ}$	✓	simplification	
	$\therefore L\hat{M}E = 90^{\circ}$			(5)
				[15]

TOTAL: 75