CAMBRIDGE

Study \& Master
 Support Pack Grade 12

Basic skills: answers to revision questions

This revision pack for Mathematical Literacy Grade 12 provides valuable support for the Basic Skills section of the CAPS Curriculum to help learners with exam preparation. These basic skills are required to work out problems in other sections of the Curriculum, and should therefore be revised before studying other topics. A set of 50 revision questions and their answers is also provided.

You have permission to print or photocopy this document, and to distribute it electronically via email or WhatsApp.

Cambridge University Press Africa is a proudly South African publisher - we are providing this material in response to the need to support teachers and learners during the school shutdown and for the remainder of the 2020 school year.

For more information on our Study \& Master CAPS-approved textbooks and valuable resource material, visit www.cambridge.org

We are all in this together!

Basic skills: answers to revision questions

1. a) Convert 375 g (recommended intake) to $0,375 \mathrm{~kg}$.

Protein: $400 \times 0,375=150 \mathrm{~g}$
Fibre: $50 \times 0,375=18,75 \mathrm{~g} \approx 19 \mathrm{~g}$
Moisture: $120 \times 0,375=45 \mathrm{~g}$
Calcium: $32 \times 0,375=12 \mathrm{~g}$
Phosphorus: $16 \times 0,375=6 \mathrm{~g}$
Sulphur: $7,5 \times 0,375=2,8125 \mathrm{~g} \approx 3 \mathrm{~g}$
Cobalt: $2,5 \times 0,375=0,9375 \mathrm{mg} \approx 1 \mathrm{mg}$
Copper: $50 \times 0,375=18,75 \mathrm{mg} \approx 19 \mathrm{mg}$
Iodine: $2,6 \times 0,375=0,97 \mathrm{mg} \approx 1 \mathrm{mg}$
Iron: $220 \times 0,375=82,5 \mathrm{mg}$
Manganese: $400 \times 0,375=150 \mathrm{mg}$
Zinc: $350 \times 0,375=131,25 \mathrm{~g} \approx 131 \mathrm{mg}$
Magnesium: $250 \times 0,375=93,75 \mathrm{mg} \approx 94 \mathrm{mg}$
Selenium: $0,6 \times 0,375=0,225 \mathrm{mg} \approx 0,2 \mathrm{mg}$
b) i) 150 g protein : 150 mg manganese

First convert both values to the same unit.
$150000: 150($ both in mg$)=1000: 1$
ii) 1 mg cobalt: 1 mg iodine $=1: 1$
iii) 150 mg manganese : 94 mg magnesium $=75: 47$
2. girl : boy $=5: 2$
$39,10 \times 2=78,20 \quad(195,50 \div 5=39,10)$
195,50 : 78,20
A boy will spend R78,20 on skin care.
3. a) Botswana: approximately $\frac{170}{1000}=\frac{17}{100}=17 \%$

Kenya: approximately $\frac{105}{1000}=\frac{21}{200}=10,5 \%$
Malawi: approximately $\frac{200}{1000}=\frac{1}{5}=20 \%$
Tanzania: approximately $\frac{110}{1000}=\frac{11}{100}=11 \%$
Zambia: approximately $\frac{140}{1000}=\frac{7}{50}=14 \%$
Zimbabwe: approximately $\frac{150}{1000}=\frac{3}{20}=15 \%$
b) Malawi: $0,2: 0,13$; simplify to $20: 13$

Zimbabwe: 0,15:0,03; simplify to $15: 3$
4. a) i) Standard-rate time applies; so R1,00 per minute

3 minutes: $2 \times \mathrm{R} 1,00=\mathrm{R} 3,00$
0,5 minutes: $0,5 \times \mathrm{R} 1,00=\mathrm{R} 0,50$
Total cost of call: R3,50
ii) Talkmore time applies; so, R0,50 per minute

2 seconds: $\frac{2}{60} \times \mathrm{R} 0,50=\mathrm{R} 0,02$
Total cost of call: R0,72
The minimum charge applies to this call.
b) i) Standard-rate time applies; so, R0,79 per minute

5 minutes: $5 \times \mathrm{R} 0,79=\mathrm{R} 3,95$
20 seconds: $\frac{20}{60} \times \mathrm{R} 0,79=\mathrm{R} 0,26$
Total cost of call: R4,21
ii) Talkmore time applies; so, R0, 42 per minute

5 minutes: $5 \times \mathrm{R} 0,42=\mathrm{R} 2,10$
20 secods: $\frac{20}{60} \times \mathrm{R}, 42=\mathrm{R} 0,14$
Total cost of call: R2,24
c) Standard time: R0,82

Talkmore time: R0,41
So, R0, $82-\mathrm{R} 0,41=\mathrm{R} 0,41 / \mathrm{min}$.
Thus Standard time cost is double the cost of Talkmore time.
Standard time : Talkmore time $=2: 1$
5. a) $\mathrm{R} 2184 \div 3=\mathrm{R} 728$

Employer's contribution: $2 \times$ R728 $=$ R1 456/month
Shafiek's contribution: $1 \times$ R728 $=$ R728/month
b) Tax deductions allowed per month:

Principal member and first registered dependant: $2 \times$ R310 $=$ R620
For other registered dependants: $2 \times \mathrm{R} 209=\mathrm{R} 418$
Total Shafiek may deduct from tax: $(\mathrm{R} 620+\mathrm{R} 418)=\mathrm{R} 1038$ per month
6. a) $\mathrm{R} 52,50$ for first kilogram, then $32 \mathrm{~kg} \times \mathrm{R} 7,05=\mathrm{R} 225,60$
(Use 32 kg as charged fully for part of a kg.)
Total cost of sending the parcel: R52,50 + R225,60 = R278, 10
b) R52,50 for first kilogram, then $12 \mathrm{~kg} \times \mathrm{R} 7,05=\mathrm{R} 84,60$
(Use 12 kg as charged fully for part of a kg.)
Insurance: 3% of R150,00 $=$ R4,50
Total cost of sending parcel: R52,50 + R84,60 + R4,50 $=$ R141,60
c) R52,50 for first kilogram, then $19 \mathrm{~kg} \times \mathrm{R} 7,05=\mathrm{R} 133,95$
(Use 19 kg as charged fully for part of a kg.)
Insurance: 3% of R1 500,00 = R45,00
COD charge: R28,20
Total cost of sending parcel: R52,50 + R133,95 + R45, $00+\mathrm{R} 28,20=\mathrm{R} 259,65$
7. a) The maximum mass should be $5,1 \mathrm{~kg}$.
b) 10% of $41 \mathrm{~kg}=4,1 \mathrm{~kg}$
$750 \mathrm{~g}=0,75 \mathrm{~kg}$
$0,75 \mathrm{~kg} \times 7=5,25 \mathrm{~kg}$
The school bag will not adhere to the unofficial rule, but exceed it by $1,15 \mathrm{~kg}(5,25-4,1)$.
8. $1: 1,618$
$\begin{aligned} 1 x & =1,618 \times 4,5 \\ x & =7,281\end{aligned}$
$4,5: x$
$x=7,281$
The length of the rectangle should be $7,281 \mathrm{~cm}$.

9. Concrete more than 75 mm thick

The ratio of cement, river sand and washed aggregate should be $1: 2,5: 4$.
$1: 2,5: 4$
$50: x: y \quad$ (Use cross-multiplication)

$$
\begin{array}{rlrl}
x & =50 \times 2,5 & y & =50 \times 4 \\
& =125 & & =200
\end{array}
$$

For the mixture, 125 buckets of river sand and 200 buckets of washed aggregate are needed.

Concrete that is less than $\mathbf{7 5} \mathbf{~ m m}$ thick

The ratio of cement, river sand and washed aggregate should be $1: 2: 3$.
1:2:3

```
\(50: x: y \quad\) (Use cross-multiplication)
\(x=50 \times 2 \quad y=50 \times 3\)
    \(=100=150\)
```

For the mixture, 100 buckets of river sand and 150 buckets of washed aggregate are needed.

Rough bedding concrete

The ratio of cement, river sand and washed aggregate should be $1: 3: 6$.
$1: 3: 6$
$\begin{array}{rlrl}50: x: y & & \text { (Use cross-multiplication) } \\ x & =50 \times 3 & y & =50 \times 6 \\ & =150 & & =300\end{array}$
For the mixture, 150 buckets of river sand and 300 buckets of washed aggregate are needed.
10. a) Inflation is usually expressed as a percentage. This percentage indicates the rate at which the cost of goods (basic goods used in all households) changes over a certain period of time.
b) Rate of increase in inflation $=\frac{5000-1043}{1043} \times 100=379,4 \%$
c) It is an abnormal inflation rate.
d) The inflation rate shows that the country is in serious financial trouble.
11. $\frac{930000}{2,4 \times 10^{6}}=38,8 \%$
12. a) $800: 132: 120=20: 6,6: 3$ (in its simplest form)
b) $20: 6,6: 3$
$690: x: y \quad$ (Use cross-multiplication)
$20 x=6,6 \times 690$
$x=\frac{6,6 \times 690}{20}$

$$
=227,7
$$

The salmon would contain $227,7 \mathrm{~g}$ of nitrogen.

$$
\begin{aligned}
20 y & =3 \times 690 \\
y & =\frac{3 \times 690}{20} \\
& =103,5
\end{aligned}
$$

The salmon would contain 103,5 g of fat (lipids).
c) 1 calorie $=4,186 \mathrm{~kJ}$

$$
\begin{aligned}
4,186 x & =1 \times 20000 \\
x & =20000 \div 4,186 \\
& =4777,8 \\
& \approx 4778
\end{aligned}
$$

20000 kilojoules is approximately 4778 calories.
13. $4+2+5+1=12$

8:00 to $17: 00=9 \mathrm{~h}$
$\frac{9}{12}=0,75$
$4 \times 0,75=3 \mathrm{~h}$ in class
$2 \times 0,75=1 \mathrm{~h} 30 \mathrm{~min}$. having lunch
$5 \times 0,75=3 \mathrm{~h} 45 \mathrm{~min}$. socialising
$1 \times 0,75=(0,75 \times 60)=45 \mathrm{~min}$. in gym
14. a) $\frac{8900}{50570}=\frac{890}{5057} \div \frac{890}{890}=\frac{1}{5,7}$

Yes, one out of every six first-year students will graduate.
b) $\frac{8900}{50570} \times 100=17 \%$
15. a) 1972: 100000 people

1997: 60000 people
$\frac{60000-100000}{100000} \times 100=-40 \%$
The population decreased by 40% over the 25 years.
b) $40 \% \div 25$ years $=1,6 \%$ per year
16. a) A 100% rebate means that they receive 100% discount - they do not have to pay any tax on land value.
b) Household A had to pay R31,73 more: R125,94 - R94,21 = R31,73

Household B had to pay R381,70 more: R3 447,91 - R3 066,21 = R381,70
c) Household A: $\frac{125,94-94,21}{94,21} \times 100=33,7 \%$

Household B: $\frac{3447,91-3066,21}{3066,21} \times 100=12,4 \%$
17. $\mathrm{R} 100 \div 6,09=\mathrm{R} 16,42$

The price for a litre of fuel is R16,42.
18. a) First R900 000 no transfer duty.
b) First R900 000 no transfer duty,

R10 $500+6 \%$ on the balance above R1 250000
= R10 $500+\mathrm{R} 3000=\mathrm{R} 13500$
c) First R900 000 no transfer duty,

R40500 $+8 \%$ on the balance above R1 750000
$=\mathrm{R} 40500+\mathrm{R} 36000=\mathrm{R} 76500$
19. a) $50000: 18000=25: 9 \quad$ (Simplify)
$25 \div 25=1$ and $9 \div 25=0,36$
They will produce $0,36 \mathrm{t}$ of ash.
b) $0,36 \mathrm{t} \times 1000=360 \mathrm{~kg}$

20. a)	Items	Household \boldsymbol{A}		Household B	
	Land value (R)	10000,00	190000,00		
	Change in tarififs	Old	New	Old	New
Property rates/taxes (R)	-	-	1387,32	1484,43	
Electricity (kWh)	100,00	106,00	945,00	1001,70	
Water (kl)	35,00	37,45	611,10	653,88	
Sanitation (kl)	21,60	23,11	73,28	78,10	
Waste services (R)	18,40	19,69	52,16	55,81	
Totals	$\mathbf{1 7 5 , 0 0}$	$\mathbf{1 8 6 , 2 5}$	$\mathbf{3 0 6 8 , 8 6}$	$\mathbf{3 2 7 3 , 9 2}$	

b) Household A: R186,25 - R175,00 $=$ R11,25 more

Household B: R3 23,92 - R3 068,86 = R205,06 more
c) Household A:

Percentage increase $=\frac{186,25-175,00}{175,00} \times 100=6,43 \%$
Household B:
Percentage increase $=\frac{3273,92-3068,86}{3068,86} \times 100=6,68 \%$
d) The rebate means that they are exempt from paying rates and taxes - as long as the value of their property is R10 000 or less.
e) Percentage increase in petrol: $\frac{17,10-16,91}{16,91} \times 100=1,12 \%$
21. a) $\mathrm{R} 126,55 \times 0,95=\mathrm{R} 120,22$
b) $\frac{245,89-191,79}{245,89} \times 100 \%=22 \%$
c) $\frac{90 \%}{40,94}=\frac{100 \%}{x}$

$$
x=\frac{100 \% \times 40,94}{40 \%}
$$

$$
=45,49
$$

e) $\mathrm{R} 16 \times 0,75$
$=\mathrm{R} 12$
g) $\frac{288,64-184,73}{288,64} \times 100 \%$

$$
=36 \%
$$

f) $\frac{40 \%}{179,82}=\frac{100 \%}{x}$

$$
\begin{aligned}
x & =\frac{100 \% \times 179,82}{40 \%} \\
& =449,55
\end{aligned}
$$

h) $\frac{85 \%}{756,92}=\frac{100 \%}{x}$

$$
x=\frac{100 \% \times 756,92}{85 \%}
$$

$$
=890,49
$$

i) $\mathrm{R} 59,99 \times 88 \%=\mathrm{R} 52,79$
22. a)

Flour		
Mlass (kg)	Price (R)	Cost per $\frac{1}{2} \mathrm{~kg}(\mathrm{R})$
0,5	9,49	9,49
1,0	14,99	$\frac{14,99}{2}=7,49$
2,5	39,99	$\frac{39,99}{5}=7,99$
5,0	60,90	$\frac{60,90}{10}=6,09$

The table shows that the $5-\mathrm{kg}$ bag is the cheapest option. (Maybe you can persuade mother to bake two cakes.) If you buy two $1-\mathrm{kg}$ bags and one $0,5-\mathrm{kg}$ bag it will cost R39,47, only slightly cheaper than buying one $2,5-\mathrm{kg}$ bag at R39,99.
b)

Sugar		
Mass (kg)	Price (R)	Cost per $\frac{1}{2} \mathrm{~kg}(\mathbb{i})$
0,5	10,99	10,99
1,0	17,99	$\frac{17,99}{2}=8,99$
2,5	33,99	$\frac{33,99}{5}=6,79$
5,0	77,99	$\frac{77,99}{10}=7,79$

The $0,5-\mathrm{kg}$ bag is the most expensive option. It would be most economical to buy one $2,5-\mathrm{kg}$ bag of sugar.
23. Total number of parts: $7(5+2)$

Amount per part: $\mathrm{R} 430899 \div 7$ parts $=$ R61 557
Earnings of director: $5 \times$ R61 $577=$ R307 785
Earnings of each employee: $\frac{2 \times \text { R61 } 557}{6}=$ R20 519
24. Number of losses: $31-18=13$

Wins : Losses $=18: 13$
25. a) $\frac{\text { boys }}{\text { girls }}=\frac{9}{7}$

$$
\begin{aligned}
& \frac{9}{7}=\frac{x}{14} \\
& x=9 \times \frac{14}{7}
\end{aligned}
$$

$$
=18 \text { boys }
$$

b) $14+18=32$

There are 32 learners in the class.
26. $(8+14): 11=22: 11=2: 1$
27. a) Number of parts: $5+3=8$

Green sweets: $\frac{40}{8} \times 5=25$
Yellow sweets: $\frac{40}{8} \times 3=15$
b) $\frac{3}{8} \times 300 \mathrm{~g}=112,5 \mathrm{~g}$

The mass of the yellow sweets would be $112,5 \mathrm{~g}$.
28. Mr Smith: $\frac{\text { R52 } 000}{5 \text { parts }} \times 3$ parts $=$ R31 200 Mrs Smith: R52 000 - R31 $200=$ R20 800
29. a) $30: 90=1: 3$
b) $90: 30=3: 1$
c) $\frac{90}{30}=\frac{300}{x}$
$x=\frac{300 \times 30}{91}$
$=100$
You need 100 g of butter.
e) $\frac{90}{30}=\frac{78}{x}$
$x=\frac{30 \times 78}{90}$

$$
=26
$$

You need 26 g of butter.
30. a) Ratios (teachers : learners) at the different schools:

School 1: $\frac{76}{1254}=0,06$
School 2: $\frac{54}{1389}=0,04$
School 3: $\frac{63}{987}=0,06$
School 4: $\frac{59}{1008}=0,06$
School 5: $\frac{45}{574}=0,08$
b) $\frac{63}{987}=\frac{70}{x}$
$x=\frac{\frac{70}{887}}{63}$
$=1096,6 \ldots$
≈ 1096
The school would have 1096 learners (round your answer down, as it is not possible to get a fraction of a person).
c) $\frac{45}{574}=\frac{x}{1148}$

$$
\begin{aligned}
x & =\frac{45 \times 1148}{574} \\
& =90
\end{aligned}
$$

There would be 90 teachers at the school.
d) The school with the best teacher-to-learner ratio is school 5, as the ratio is the largest. This means there are more teachers per learner than at the other schools.
31. a)

Item	Cost price (R)	Selling price (R)	Profit (R)
Car	3549,00	3999,00	450,00
Petrol (per litre)	17,78	18,60	0,82
Car magazine	42,99	44,90	1,91
Spare parts	57,64	70,50	12,86

b) $\frac{450}{3549}=0,13$
c) $\frac{12,86}{0,82}=15,682 \ldots$

The owner must sell 16ℓ of petrol to make the same profit as on one set of spare parts.
32. Ratio of grey to white blocks:

Square 1: 1:8
Square 2: $9: 16$
Square 3: $25: 24$
The ratio does not remain the same.
33. a) Ratio of grey to white circles in the diagrams

Diagram 1: 1:4
Diagram 2: 2:7
Diagram 3: 3: 10
The ratio does not remain the same.
b) Ratio of grey circles to lines in the diagram:

Diagram 1: 1:4
Diagram 2: $2: 8$
Diagram 3: $3: 12$
The ratio remains the same. All the ratios can be simplified to $1: 4$.
34. a) Butter, roast chicken and full-cream milk
b) $\frac{100 \mathrm{~g}}{1,1 \mathrm{~g}}=90,91$

You would have to eat 91 bananas per day to meet your protein requirement.
c)

Food type	Fat (g)		Protein (g)	Carbohydrates (g)		
Roast chicken	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
	5,4	10,8	24,8	49,6	0	0
Boiled potato	$\mathbf{1 0 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{5 0}$
	0	0	1,4	0,7	19,7	9,85
Glass of milk	$\mathbf{1 0 0}$	$\mathbf{2 5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 5 0}$
Totals	3,8	9,5	3,3	8,25	4,8	12
		$\mathbf{2 0 , 3}$		$\mathbf{5 8 , 5 5}$		$\mathbf{2 1 , 8 5}$

d) Banana: carbohydrates : protein
$19,2: 1,1=\frac{19,2}{1,1}=17,45$
Boiled potato: carbohydrates : protein
$19,7: 1,4=\frac{1}{3}=14,0714 \ldots$
The banana has a higher carbohydrates to protein ratio.
35. a) There are 50 parts to the alloy $(1+3+46=50)$.
$1 \mathrm{~kg}=1000 \mathrm{~g}$
Copper: $\frac{1000}{50} \times 46=920 \mathrm{~g}$
Tin: $\frac{1000}{50} \times 3=60 \mathrm{~g}$
Zinc: $\frac{1000}{50} \times 1=20 \mathrm{~g}$
b) Tin: $\frac{23}{50} \times 3=1,38 \mathrm{~g}$
36. a) $\frac{60 \mathrm{~g}}{5 \text { fish }}=\frac{x}{16 \text { fish }}$

$$
\begin{aligned}
x & =\frac{60 \mathrm{~g} \times 16 \text { fish }}{5 \text { fish }} \\
& =192 \mathrm{~g}
\end{aligned}
$$

16 fish would need 192 g of fish food per day.
b) $\frac{500 \mathrm{~g}}{60 \mathrm{~g}}=8 \frac{1}{3}$

The fish would survive for eight days.
c) $\frac{60 \mathrm{~g}}{5 \text { fish }}=\frac{x}{12 \text { fish }}$

$$
\begin{aligned}
x & =\frac{60 \mathrm{~g} \times 12 \text { fish }}{5 \text { fish }} \\
& =144 \mathrm{~g}
\end{aligned}
$$

Twelve fish would need 144 g of fish food per day.
For seven days, they would need:
$144 \mathrm{~g} \times 7=1008 \mathrm{~g}$ of food
37. a) $750-\mathrm{ml}$ bottle (cost per ml):
$\frac{1494 \mathrm{c}}{750 \mathrm{ml}}=1,9933 \ldots \mathrm{c} / \mathrm{ml}$
$800-\mathrm{ml}$ bottle (cost per ml):
$\frac{1500 \mathrm{c}}{800 \mathrm{ml}}=1,875 \mathrm{c} / \mathrm{ml}$
The $800-\mathrm{ml}$ bottle gives better value for money.
b) $5 \times \mathrm{R} 4,50=\mathrm{R} 22,50$
profit: R22,50 - R15,00 $=$ R7,50
c) Volume of smaller bottles:
$\frac{800 \mathrm{ml}}{5}=160 \mathrm{ml}$
Cost per millilitre: $\frac{450 \mathrm{c}}{160 \mathrm{ml}}=2,8125 \mathrm{c} / \mathrm{ml} \approx 2,81 \mathrm{c} / \mathrm{ml}$
38. a) $\frac{84 \mathrm{~km}}{3 \mathrm{~h}}=28 \mathrm{~km} / \mathrm{h}$
b) $\frac{84 \mathrm{~km}}{3 \mathrm{~h}}=\frac{x}{2 \mathrm{~h}}$

$$
\begin{aligned}
x & =\frac{84 \mathrm{~km} \times 2 \mathrm{~h}}{3 \mathrm{~h}} \\
& =56 \mathrm{~km}
\end{aligned}
$$

c) $\frac{84 \mathrm{~km}}{3 \mathrm{~h}}=\frac{x}{\frac{3}{4} \mathrm{~h}}$

$$
\begin{aligned}
x & =\frac{84 \mathrm{~km} \times \frac{3}{4} \mathrm{~h}}{3 \mathrm{~h}} \\
& =21 \mathrm{~km}
\end{aligned}
$$

(Remember that 45 minutes is $\frac{3}{4}$ of an hour and that you can only compare units that are the same!)
d) $\frac{84 \mathrm{~km}}{3 \mathrm{~h}}=\frac{74 \frac{2}{3} \mathrm{~km}}{x}$

$$
\begin{aligned}
x & =\frac{74 \frac{2}{3} \mathrm{~km} \times 3 \mathrm{~h}}{84 \mathrm{~km}} \\
& =2 \frac{2}{3} \mathrm{~h}
\end{aligned}
$$

It would take her $2 \frac{2}{3}$ hours.

$$
\begin{aligned}
\frac{1 \mathrm{~h}}{60 \mathrm{~min} .} & =\frac{\frac{2}{3} \mathrm{~h}}{x} \\
x & =\frac{\frac{2}{3} \mathrm{~h} \times 60 \mathrm{~min} .}{1 \mathrm{~h}} \\
& =40 \mathrm{~min} .
\end{aligned}
$$

It would take her 2 hours 40 minutes to travel the distance.
39. a) Crime increased during this time. The bars that represent total violent crimes increase in length in later years.
b) Your estimate should be between 31% and 33%.
c) Percentage increase $=\frac{839639-630108}{630108} \times 100 \%=33,25 \%$
d) Answers will differ.
40. a)

Blectrical appliance	kW used per hour	Cost per hour (c)
Iron	0,50	80,50
Microwave oven	1,30	209,30
Kettle	2,00	322,00
Electric frying pan	1,50	241,00
Oven at about $200^{\circ} \mathrm{C}$	2,00	322,00
Large plate on hob at lowest setting	0,50	80,50
Slow cooker	0,15	24,15
Television set	0,30	48,30
Tumble dryer	3,00	483,00

b) i) $322,00-209,30=112,70$
ii) $241,50-24,15=217,35$
iii) $483,00-0=483,00$
c) i) Microwave and oven:

Percentage saving
$=\frac{(322,00-209,30)}{209,30} \times 100$
$=53,85 \%$ (rounded off to two decimal places)
You will save $53,85 \%$ electricity when you use a microwave rather than an oven.
ii) Electric frying pan and slow cooker:

Percentage saving
$=\frac{(241,50-24,15)}{24,15} \times 100$
$=900 \%$ (rounded off to two decimal places)
You will save 900% electricity if you use a slow cooker instead of an electric frying pan.
d) i) 5 min . 88,1
3 min.
 (Use cross-multiplication.)
$x=\frac{3 \times 88,1}{5}$
$x=52,86$
The cost of showering for three minutes is $52,86 \mathrm{c}$.
ii) 5 min .
 88,1
$15 \mathrm{~min}-x$ (Use cross-multiplication.)
$x=\frac{15 \times 88,1}{5}$
$x=264,3$
The cost of showering for 15 minutes is $264,3 \mathrm{c}$ or $(264,3 \div 100=$) 22,64 .
iii) 12 cm 176,10
15 cm
 (Use cross-multiplication.)
$x=\frac{176,10 \times 15}{12}$
$x=220,125$
The cost of having a bath in 15 cm warm water is $220,125 \mathrm{c}$ or $220,125 \div 100=\mathrm{R} 2,20$.
iv) Multiply the previous answer by 2 , or use cross-multiplication:

12 cm \qquad $30 \mathrm{~cm} \longrightarrow x \quad$ (Use cross-multiplication.)

$$
\begin{aligned}
& x=\frac{176,10 \times 30}{12} \\
& x=440,25
\end{aligned}
$$

The cost of having a bath in 30 cm warm water is $440,25 \mathrm{c}$ or $440,25 \div 100=\mathrm{R} 4,40$.
41. a) 13% of $62,4 \times 10^{9}$
$=8112000000$
$=\mathrm{R} 8,112 \times 10^{9}$
$=\mathrm{R} 8,112$ billion
b) percentage increase $=\frac{\text { difference between two values }}{\text { original value }} \times 100$

$$
\begin{aligned}
& =\frac{870-820}{820} \times 100 \\
& =6,1 \%
\end{aligned}
$$

Old-age pension: 6,1\%
Child support grant: 5,3\%
Disability grant: 6,1\%
Foster care grant: 5,1\%
Care dependency grant: 6,1\%
42. a) 157000×365 days $=57305000$

$$
=5,7 \times 10^{7} \text { vehicles }
$$

b) 7% of $5,7 \times 10^{7}$ vehicles $=3990000$

$$
\begin{aligned}
& =\mathrm{R} 5,7 \times 10^{7}+3,99 \times 10^{6} \\
& =60990000 \\
& =\mathrm{R} 6,1 \times 10^{7} \text { vehicles }
\end{aligned}
$$

43. a) $173800 \mathrm{~km}-165800 \mathrm{~km}=8000 \mathrm{~km}$

The width of Saturn's G-ring: 8000 km
b) Circumference
$=\pi \times$ diameter
$=\pi \times 2(173800)$
Outer radius $=173800 \mathrm{~km}$
$=1092017,606$
$=1,0^{9} \times 106 \mathrm{~km}$
44. a) $7,53 \times 10^{-10}$
b) $1,0 \times 10^{-6}$
c) $3,0 \times 10^{8}$
d) $2,0 \times 10^{11}$
e) $6,65 \times 10^{-27}$
45. a)

Year	Volume stored $\left(\mathrm{m}^{3}\right)$	Volume in scientific notation
1990	398500	$3,99 \times 10^{5}$
1991	396500	$3,97 \times 10^{5}$
1992	398300	$3,98 \times 10^{5}$
1993	403500	$4,04 \times 10^{5}$
1994	378400	$3,78 \times 10^{5}$

b) Add the exponents:
$(3,99+3,97+3,98+4,04+3,78) \times 10^{5}$
$=19,76 \times 10^{5}$
$=1,976 \times 10^{6}$
46. a) Imports have increased by R13 969 million (R89 890 - R75 921)

Thus,
$\frac{13969}{75921}=0,18399$
$0,18399 \times 100=18,4 \%$ (rounded off to one decimal place)
b) 24% of R89 890
$=\frac{24}{100} \times 89890$
$=\mathrm{R} 21$ 573,60
47. Convert the estimated 600 kg to milligram or $0,01 \mathrm{mg}$ to kilogram before subtracting.
$600 \mathrm{~kg}=600000 \mathrm{~g}$
$600000 \mathrm{~g}=600000000 \mathrm{mg}$

$$
=6 \times 10^{8} \mathrm{mg}
$$

So, $6,0 \times 10^{8}-1,0 \times 10^{-2}=6,0 \times 10^{8}$
or $\quad 0,01 \mathrm{mg}=1 \times 10^{-5} \mathrm{~g}$
$1 \times 10^{-5} \mathrm{~g}=1 \times 10^{-8} \mathrm{~kg}$
$600 \mathrm{~kg}-1 \times 10^{-8}=600 \mathrm{~kg}$
48. a) Average distance of moon from earth: $384400 \mathrm{~km}=3,84 \times 10^{5} \mathrm{~km}$

Mass of the moon: $73483000000000000000000 \mathrm{~kg}=7,35 \times 10^{22} \mathrm{~kg}$
Surface area of the moon: $37932330 \mathrm{~km}^{2}=3,79 \times 10^{7} \mathrm{~km}^{2}$
Orbital eccentricity: $0,05490=5,49 \times 10^{-2}$
Orbital circumference: $2290000 \mathrm{~km}=2,29 \times 10^{6} \mathrm{~km}$
b) Minimum temperature:

Degrees Celsius (${ }^{\circ} \mathrm{C}$)
$=$ temperature in Kelvin -273 , 15
$=40 \mathrm{~K}-273,15$
$=-233,15^{\circ} \mathrm{C} \quad$ (This is very cold!)
Maximum temperature:
Degrees Celsius (${ }^{\circ} \mathrm{C}$)
$=$ temperature in Kelvin -273 ,15
$=396 \mathrm{~K}-273,15=122,85^{\circ} \mathrm{C} \quad$ (This is very hot!)
49. a) $\frac{75}{10,7}=\frac{1,2 \times 1000}{x}$

$$
\begin{aligned}
x & =\frac{1200}{10,7} \\
& =112,149 \ldots \\
& =1,12 \times 10^{2}
\end{aligned}
$$

b) $\frac{75 \mathrm{~kg}}{161,25 \mathrm{~kg}}=\frac{x}{67 \mathrm{~kg}}$

$$
\begin{aligned}
x & =\frac{75 \mathrm{~kg} \times 67 \mathrm{~kg}}{161,25 \mathrm{~kg}} \\
& =31,1627907 \mathrm{~kg} \\
& =31163 \mathrm{~g}
\end{aligned}
$$

c) There is no direct conversion between the weight on the moon and the weight on Jupiter. So, start by converting $0,2 \mathrm{~kg}$ to a weight on Earth. Then convert the answer to a weight on Jupiter.
50. a) Flour: $1,0 \times 10^{6} \mathrm{~kg}$

Olive oil: $9,0 \times 10^{4} \ell$
Water: $6,8 \times 10^{5} \ell$
Mozzarella: $4,6 \times 10^{5} \mathrm{~kg}$
Tomato paste: $1,0 \times 10^{5} \ell$

