Document no.	ACAD-FO-002b (4)
Revision no.	003

ASSESSMENT COVER PAGE : INTERNAL EXAMINATION

CORE

SUBJECT: ELECTRICAL PRINCIPLES AND PRACTICE FOCUS GROUP EXAMINER: JT KAYEMBA LEVEL: 3 DATE:/09/2019 FOCUS GROUP MODERATOR:

COLLEGE MODERATOR: E HALFCROWN

Student Surname	Name	
ID. Number	Group	

Topic and outcomes	ALL
Duration	3 HOURS
Evidence Required	ANSWER SHEET
Instrument	MEMORADUM

SIGNATURES:

Student declaration: I declare that the evidence provided is my own work.

STUDEN (Signature) FEEDBA					DA	ATE:				
(Indicate	which qu	estions yo	ou found o	difficult	(tick √)					
1	2	3	4	5	6	7		8	9	10
LECTURER: (Print Name and Sign) COMMENT:						DATE	::			
MODERATOR: (Print Name and Sign)						DATE	E			

TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

QUESTION 1

1.1	Establish the difference between a valence electron and a free electron	(2)
1.2	If the atomic number of Aluminium is 13, how many electrons will: 1.2.1 the last shell occupy 1.2.2 the second shell occupy 1.1.5. the first shell occupy	(1) (1) (1)

The figure below shows a graph of resistance/temperature of FOUR materials. Identify the materials labelled A – D. Write only the answer in your answer book. 1.3

1.4	What difference would you make between <i>electromotive force</i> and <i>potential difference</i> ?	(2)
1.5	An ion is an atom that has lost or gained one or more electron. Give an another name for " <i>positive ion</i> "	(1)
1.6	List FOUR materials which have a positive temperature coefficient of resistance.	(4)
1.7.	Calculate the cost to use a 7KW geyser for 9 hours if one unit of electricity cost 49 cents	(4) [20]
QUESTI	ON 2	
2.1	The size and the direction of forces between the current-carrying conductors depend on certain factors.	

(4) (1) 2.2. What do you understand by the term 'reluctance'.

State those FOUR factors.

2.3. A conductor 550 mm long moves at a uniform velocity of 10 m/s at right angles to a uniform magnetic field of flux density of 6.5 T.

Calculate the following:

	2.3.1.	The maximum emf induced in a conductor.	(2)					
	2.3.2.	The instantaneous value of the induced emf if the conductor has moved through 30° from zero.	(2)					
2.5	State THR	State THREE applications of electromagnets.						
2.6	Explain the principle of 'Mutual Induction' as in transformers.							
2.7	Two condu Force in Ne	actor each carrying a current of 5A are placed 4 mm apart. Calculate the ewton meter length between them	(2)					
2.8	If a coil of magnetic fi	20cm long has 80 turns and a current of 2A flowing through. Calculate the ield strength (H) in Amp per meter (A/m).	(3) [20]					

QUESTION 3

3.1	In a parallel ohms and F	a parallel circuit, calculate the value of current through each resistor, if R_1 is 4 ms and R_2 is 2 ohms and that the total current is 10A? (4						
3.2	There are v battery.	arious factors that significantly affect the life and performance of a						
	State FOUF	R main factors determining the capacity of a lead acid battery.	(4)					
3.3	Three capacitors of 10 $\mu F,~5\mu F$ and $25\mu F$ are connected in parallel to a 80 V DC voltage supply.							
	Calculate	the following:						
	3.3.1	The total capacitance of the circuit.	(2)					
	3.3.2	The total charge	(2)					
	3.3.3	The charge across the 10 μ F capacitor.	(2)					
3.4	Inductors FOUR of	are characterized by the factors that affect the inductance. List these factors.	(4)					
3.5 A three-phase star connected motor draws a current of 12 A from a 480 V supply at a power factor of 0,9 lagging.								

Calculate the following:

	3.5.1	The a	-5- apparent input power		
	3.5.2	The a	active input power.		
	0.0.2	The	abase veltage of the motor windings		
	3.3.3	i ne k	(3) (3) (3) (3)	× 2)	(6)
3.6	Four o	cells, each are conne	with an EMF of 2 volts and an internal resistance of 0,15 ected in parallel across a load resistor of 10 ohms.		
	Calcu	late the fo	llowing:		
	3.6.1	The b	pattery's total open circuit EMF		(1)
	3.6.2	The t	otal circuit current		(2)
	3.6.3	The v	voltage drop inside the battery		(2)
3.7	Descr	ibe the lim	itations when using an auto-transformers		(3)
3.8	Calcu induct	late the e or if 3000	nergy stored in the magnetic field of an inductor of a milli-Ampere flows through it.	5 H	(2)
3.9	List T	NO factor	s influencing the capacitance of a capacitor		(2)
					[36]
QUES	TION 4				
4.1	State TH	IREE disa	dvantages of moving iron instruments .		(3)
4.3	A moving The mete extend th	coil instrur r has a res e range of	nent give fall side deflection when 10 m A is flowing through it. istance of 20Ω . Calculate the resistance needed in parallel to the meter to measure up to 1 Ampere		(3)
4.3	Cons	ider an ana	alogue multi-meter having the following DC ranges:		
		Voltage: 3 Current: 5	8 V, 10 V, 30 V, 100 V 00 μΑ, 1 mΑ, 10 mΑ, 100 mΑ, 1 Α		
		Which rang	ge would be best suited to select when measuring the following	:	
		4.1.1	The terminal voltage of a 4,5 V battery		
		4.2.2	A voltage drop of 0,6 V across a semiconductor diode		
		4.3.3	A current of 5 mA through a circuit		

4.4.4 The base current of 300 μ A through a transistor (4 × 1) (4)

[10]

(

QUESTION 5

			TOTAL:	100		
5.6	List THR	EE losses in DC machines.		(3) [14]		
	Calculate	e the value of the back emf if the supply voltage is 400 V.		(2)		
5.5	The full- resistanc	load armature current of a direct current motor is 40 se of the armature is $0,25\Omega$.	A and its			
	5.3.2	No volt release coil	(2 × 2)	(4)		
	5.3.1	Overload Relay				
5.3	Explain h	now the following protection devices protect motors in a circ	uit:			
5.2	Draw a motor.	neat, labelled circuit diagram of a resistance -start ind	uction-run	(4)		
5.1	What do you understand by the term 'Differentially compounded ' windings					

ELECTRICAL PRINCIPLES AND PRACTICE

1.

$$Cos \phi = \frac{R}{Z}$$
 17.
 $\tan \phi = \sqrt{3} \left(\frac{W_1 - W_2}{W_1 + W_2} \right)$

 2.
 $P = V I Cos \phi$
 18.
 $E = V + Ir$

 3.
 $Q = V I Sin \phi$
 19.
 $V = IR$

 4.
 $S = V I$
 20.
 $R = \frac{pI}{A}$

 5.
 $V_1 = \left(\frac{R_1}{R_1}\right)V_r$
 21.
 $R_1 = R_0(1 + \alpha t)$

 6.
 $I_1 = \left(\frac{R_2}{R_1 + R_2}\right)I_r$
 22.
 $\frac{R_1}{R_2} = \frac{1 + \alpha t_1}{1 + \alpha t_2}$

 7.
 $R_7 = R_1 + R_2 + R_3$
 23.
 $P = V I$

 8.
 $\frac{1}{R_7} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
 24.
 $P = I^2 R_1$

 9.
 $\frac{V_1}{V_2} = \frac{N_2}{N_2} = \frac{I_2}{I_1}$
 25.
 $\eta = \frac{P_0}{P_m} \times 100$

 10.
 $V_L = \sqrt{3} V p h$
 26.
 $X_L = 2\pi f L$

 11.
 $E = V - I_a R_a$
 27.
 $X_c = \frac{1}{2\pi f C}$

 12.
 $f = \frac{Np}{60}$
 28.
 $Z = \sqrt{R^2 + (X_L - X_c)^2}$

 13.
 $S = \frac{N_r - N_r}{N_s}$
 29.
 $Mmf = N I$

 14.
 $R_{sh} = \frac{I_m R_m}{I_{sh}}$
 30.
 $H = \frac{Mmf}{I}$

 15.
 $R_{sc} = \frac{V_r}{I_r} - R_m$
 31.
 $B = \frac{\Phi}{A}$

33.
$$E = -L \frac{\Delta I}{t}$$

34.
$$A = \frac{\pi d^2}{4}$$

35.
$$E = \frac{1}{2} C V^2$$

36.
$$Q = C V$$

37.
$$F = 2 \times 10^{-7} \times \frac{I_1 I_2}{d}$$

38.
$$I = \frac{Emf}{R_T + r_T}$$

39.
$$L = N \frac{\Delta \phi}{\Delta I}$$

40.

 $E = V + R_a I_a$

Please turn over