Document no.	ACAD-FO-002b (4)
Revision no.	003

ASSESSMENT COVER PAGE: INTERNAL EXAMINATION

CORE

SUBJECT: ELECTRICAL PRINCIPLES AND PRACTICE

 FOCUS GROUP EXAMINER: JT KAYEMBALEVEL: 3
DATE:/09/2019
FOCUS GROUP MODERATOR:

COLLEGE MODERATOR: E HALFCROWN

Student Surname		Name	
ID. Number		Group	

Topic and outcomes	ALL
Duration	3 HOURS
Evidence Required	ANSWER SHEET
Instrument	MEMORADUM

Paper 1	
Question	Mark obtained
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

Rating Scale	Remark	Rating
5	Outstanding	$80-100$
4	Highly competent	$70-79$
3	Competent	$50-69$
2	Not yet Competent	$40-49$
1	Not achieved	$0-39$

SIGNATURES:

Student declaration: I declare that the evidence provided is my own work.
STUDENT: \qquad DATE:
(Signature)
FEEDBACK:
(Indicate which questions you found difficult (tick $\sqrt{ }$)

1	2	3	4	5	6	7	8	9	10

LECTURER:
DATE:
(Print Name and Sign)
COMMENT:

MODERATOR: \qquad DATE
(Print Name and Sign)

TIME: 3 HOURS

 MARKS: 100
INSTRUCTIONS AND INFORMATION

1. Answer ALL the questions.
2. Read ALL the questions carefully.
3. Number the answers according to the numbering system used in this question paper.
4. Write neatly and legibly.

QUESTION 1

1.1 Establish the difference between a valence electron and a free electron
1.2 If the atomic number of Aluminium is 13 , how many electrons will:
1.2.1 the last shell occupy
1.2.2 the second shell occupy
1.1.5. the first shell occupy
1.3 The figure below shows a graph of resistance/temperature of FOUR materials. Identify the materials labelled A - D. Write only the answer in your answer book.

1.4 What difference would you make between electromotive force and potential difference?
1.5 An ion is an atom that has lost or gained one or more electron. Give an another name for "positive ion"
1.6 List FOUR materials which have a positive temperature coefficient of resistance.
1.7. Calculate the cost to use a 7 KW geyser for 9 hours if one unit of electricity cost 49 cents

QUESTION 2

2.1 The size and the direction of forces between the current-carrying conductors depend on certain factors.

State those FOUR factors.
2.2. What do you understand by the term 'reluctance'.
2.3. A conductor 550 mm long moves at a uniform velocity of $10 \mathrm{~m} / \mathrm{s}$ at right angles to a uniform magnetic field of flux density of 6.5 T .

Calculate the following:
2.3.1. The maximum emf induced in a conductor.
2.3.2. The instantaneous value of the induced emf if the conductor has moved through 30° from zero.
2.5 State THREE applications of electromagnets.
2.6 Explain the principle of 'Mutual Induction' as in transformers.
2.7 Two conductor each carrying a current of 5A are placed 4 mm apart. Calculate the Force in Newton meter length between them
2.8 If a coil of 20 cm long has 80 turns and a current of 2 A flowing through. Calculate the magnetic field strength (H) in Amp per meter (A / m).

QUESTION 3

3.1 In a parallel circuit, calculate the value of current through each resistor, if R_{1} is 4 ohms and R_{2} is 2 ohms and that the total current is 10A?
3.2 There are various factors that significantly affect the life and performance of a battery.

State FOUR main factors determining the capacity of a lead acid battery.
3.3 Three capacitors of $10 \mu \mathrm{~F}, 5 \mu \mathrm{~F}$ and $25 \mu \mathrm{~F}$ are connected in parallel to a 80 V DC voltage supply.

Calculate the following:
3.3.1 The total capacitance of the circuit.
3.3.2 The total charge
3.3.3 The charge across the $10 \mu \mathrm{~F}$ capacitor.
3.4 Inductors are characterized by the factors that affect the inductance. List FOUR of these factors.
3.5 A three-phase star connected motor draws a current of 12 A from a 480 V supply at a power factor of 0,9 lagging.

Calculate the following:
3.5.1 The apparent input power
3.5.2 The active input power.
3.5.3 The phase voltage of the motor windings

$$
\begin{equation*}
(3 \times 2) \tag{6}
\end{equation*}
$$

3.6 Four cells, each with an EMF of 2 volts and an internal resistance of 0,15 ohms are connected in parallel across a load resistor of 10 ohms.

Calculate the following:
3.6.1 The battery's total open circuit EMF
3.6.2 The total circuit current
3.6.3 The voltage drop inside the battery
3.7 Describe the limitations when using an auto-transformers
3.8 Calculate the energy stored in the magnetic field of an inductor of a 5 H inductor if 3000 milli-Ampere flows through it.
3.9 List TWO factors influencing the capacitance of a capacitor

QUESTION 4

4.1 State THREE disadvantages of moving iron instruments .
4.3 A moving coil instrument give fall side deflection when 10 m A is flowing through it. The meter has a resistance of 20Ω. Calculate the resistance needed in parallel to extend the range of the meter to measure up to 1 Ampere
4.3 Consider an analogue multi-meter having the following DC ranges:

Voltage: $3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}$
Current: $500 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}$
Which range would be best suited to select when measuring the following:
4.1.1 The terminal voltage of a $4,5 \mathrm{~V}$ battery
4.2.2 A voltage drop of $0,6 \mathrm{~V}$ across a semiconductor diode
4.3.3 A current of 5 mA through a circuit
4.4.4 The base current of $300 \mu \mathrm{~A}$ through a transistor (4×1)

QUESTION 5

5.1 What do you understand by the term 'Differentially compounded ' windings
5.2 Draw a neat, labelled circuit diagram of a resistance -start induction-run motor.
5.3 Explain how the following protection devices protect motors in a circuit:
5.3.1 Overload Relay
5.3.2 No volt release coil

$$
\begin{equation*}
(2 \times 2) \tag{4}
\end{equation*}
$$

5.5 The full- load armature current of a direct current motor is 40 A and its resistance of the armature is $0,25 \Omega$.

Calculate the value of the back emf if the supply voltage is 400 V .
5.6 List THREE losses in DC machines.

ELECTRICAL PRINCIPLES AND PRACTICE

1. $\operatorname{Cos} \phi=\frac{R}{Z}$
2. $P=V I \operatorname{Cos} \phi$
3. $Q=V I \operatorname{Sin} \phi$
4. $S=V_{I}$
5. $\quad V_{1}=\left(\frac{R_{1}}{R_{t}}\right) V_{T}$
6. $\quad I_{1}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) I_{T}$
7. $R_{T}=R_{1}+R_{2}+R_{3}$
8. $\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
9. $\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}=\frac{I_{2}}{I_{1}}$
10. $\quad V_{L}=\sqrt{3} V p h$
11. $E=V-I_{a} R_{a}$
12. $f=\frac{N p}{60}$
13. $S=\frac{N_{s}-N_{r}}{N_{s}}$
14. $R_{s h}=\frac{I_{m} R_{m}}{I_{s h}}$
15.

$$
R_{s e}=\frac{V_{t}}{I_{t}}-R_{m}
$$

16. $F=$ BIl
17. $\tan \phi=\sqrt{3}\left(\frac{W_{1}-W_{2}}{W_{1}+W_{2}}\right)$
18. $E=V+I r$
19. $V=I R$
20. $R=\frac{p l}{A}$
21. $R_{t}=R_{0}(1+\alpha t)$
22. $\frac{R_{1}}{R_{2}}=\frac{1+\alpha t_{1}}{1+\alpha t_{2}}$
23. $P=V I$
24.

$P=I^{2} R$
25. $\quad \eta=\frac{P_{0}}{P_{\text {in }}} \times 100$
26. $X_{L}=2 \pi f L$
27. $X_{C}=\frac{1}{2 \pi f C}$
28. $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
29. $M m f=N I$
30. $H=\frac{M m f}{l}$
31. $B=\frac{\Phi}{A}$
32. $E=B l v$
33.

$$
E=-L \frac{\Delta I}{t}
$$

-8-
41.. $E=\frac{1}{2} L I^{2}$
34.

$$
A=\frac{\pi d^{2}}{4}
$$

35.

$$
E=\frac{1}{2} C V^{2}
$$

36. $Q=C V$
37. $F=2 \times 10^{-7} \times \frac{I_{1} I_{2}}{d}$
38.

$$
I=\frac{E m f}{R_{T}+r_{T}}
$$

39.

$$
L=N \frac{\Delta \phi}{\Delta I}
$$

40. $E=V+R_{a} I_{a}$
