

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE (VOCATIONAL)

MATHEMATICS (First Paper) NQF LEVEL 3

NOVEMBER EXAMINATION

(10501053)

31 October 2014 (X-Paper) 09:00–12:00

This question paper consists of 6 pages, 1 formula sheet and 3 diagram sheets.

TIME: 3 HOURS MARKS: 100

-2-

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write your EXAMINATION NUMBER in the space provided on the DIAGRAM SHEETS (attached) and put them inside your ANSWER BOOK.
- 5. Write neatly and legibly.

(3)

Copyright reserved

QUESTION 1

(10501053)

1.1 Determine $f'(x)$ from the first principles if $f(x) = -2 - 3x$	(4)
---	-----

1.2 Determine the following: $\lim_{x \to -2} \frac{6x^2 + 10x - 4}{2x + 4}$

1.3 Use differentiation rules to determine $\frac{dy}{dx}$ of the following. (Leave your answer with a POSITIVE exponent and in SURD form where applicable.)

1.3.1
$$y = \frac{x^3 - x^2 + 8x}{-2x}$$
 (3)
1.3.2 $y = -3x(2x-1)^2$ (3)

1.3.3
$$y = \frac{x^3}{3} + \frac{1}{3x^3}$$
 (3)

1.4 The dimensions of a cylinder are such that r + h = 12.

Determine the value of r if the volume of the cylinder is at its maximum.

Hint: $V = \pi r^2 h$ (4) [20]

QUESTION 2

2.1

Without the use a calculator and without conversion to polar form, simplify the given complex numbers to the standard form of a + bi:

2.1.1 $j(j+2)^2 - (2-j)^2$ (4)

2.1.2
$$(1-i)(1+i)(2-3i)$$
 (3)

2.1.3
$$i(2+3i^7) + (-2-i)$$
 (4)

2.1.4
$$(-i)(4+2i+i^2)+3i+2$$
 (4)

2.2	Given:	bi .	
	2.2.1	Express the above diagram in the form $a + bi$	(2)
	2.2.2	Write down the conjugate of z .	(1)
	2.2.3	Calculate the modulus (r) and argument (θ) of \overline{z} .	(3)
	2.2.4	Express \overline{z} in polar form.	(1)
2.3	Simplify $a+bi$:	the following complex numbers and leave the answer in standard form,	
	2.3.1	$\frac{4-3j+2+6j-1}{(3-j)(3-j)}$	(5)
	2.3.2	$6(\cos 30^\circ + i \sin 30^\circ) \times 3(\cos 10^\circ + i \sin 10^\circ)$	(3) [30]

QUESTION 3

3.1	Given:		
	$f(x) = \frac{2}{x}$	$\frac{2}{-4} + 1$ and $g(x) = \left(\frac{1}{4}\right)^x + 1$	
	3.1.1	Write down the asymptotes of $f(x)$	(2)
	3.1.2	Calculate the x and y intercepts of $f(x)$	(3)
	3.1.3	Draw graphs of $f(x)$ and $g(x)$ on the same system of axis on DIAGRAM SHEET 1 (attached). Clearly indicate the intercept and asymptotes.	(6)
3.2	Given y =	$x - x^2 + 2x + 3$	
	3.2.1	Draw a neat graph of $y = -x^2 + 2x + 3$ on DIAGRAM SHEET 2 (attached) and show all calculated values.	
		Hint: <i>x-intercepts</i> , <i>y-intercepts</i> and turning point	(7)
	3.2.2	Write down the range of $y = -x^2 + 2x + 3$	(1)
3.3	Lesedi is a available l	a small company that makes two types of cards, type A and type B. With the abour and material, the following are the constraints inequalities:	
	$x + y \le 20$	0	
	$x \ge 40$ $y \ge 10$		
	$x \le 150$ $y \le 120$		
	3.3.1	Sketch the graph with the given constraints on DIAGRAM SHEET 3 (attached).	(5)
	3.3.2	Determine the feasible region.	(1)
	3.3.3	Find the values of x and y which will maximize and minimize the objective equation: $P = 5x + 10y$	(4)
3.4	Solve for .	<i>x</i> :	
	(x-1)(x-	$2) \leq 6$	(4)
3.5	Solve for .	x by completing a square:	
	$x^2 - 10x =$	= 24	(3)

3.6 Solve for x and y:

$$2x - y = 1$$

y - x² = -3x + 3 (5)

3.7 Simplify the following:

$$\frac{x^2 - 9}{-3x - 9} \times \frac{6x^3 - 2x^2}{6 - 2x}$$

3.8 Simplify the following:

$$\frac{5}{x+1} + \frac{x-1}{x^2+1}$$

3.9 Factorize fully:

$$d^2 - 3d + 8d - 24$$

(4) (3) (2) [**50**]

FORMULA SHEET

1.	$z = r\cos\theta + r \ j\sin\theta$
2.	$z = a \pm bj$ or $z = a \pm bi$ where $i = j = \sqrt{-1}$
3.	$r = \sqrt{a^2 + b^2}$ or $r = \sqrt{z \times \overline{z}}$
4.	$\alpha = \tan^{-1} \left(\frac{b}{a} \right)$
5.	$r \ \underline{\theta} = r \ cis \ \theta$
6.	$x = \frac{-b \pm \sqrt{b^2} - 4ac}{2a}$
7.	$y = ax^2 + bx + c$
8.	$y = a(x-p)^2 + q$
9.	$y = a(x - x_1)(x - x_2)$
10.	$y = \frac{a}{(x+p)} + q$
11.	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
12.	$\frac{d}{dx}x^n = nx^{n-1}$
13.	$\frac{d}{dx}k = 0$
14.	Dx[kf(x)] = kDx[f(x)]
15.	$Dx[f(x) \pm g(x)] = Dx[f(x)] \pm Dx[g(x)]$

DIAGRAM SHEET 1

-1-

DIAGRAM SHEET 2

DIAGRAM SHEET 3

-3-