

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2022

MATHEMATICAL LITERACY P2 MARKING GUIDELINE

MARKS: 150

Symbol	Explanation
M	Method
MA	Method with accuracy
CA	Consistent accuracy
RCA	Rounding consistent accuracy
A	Accuracy
С	Conversion
S	Simplification
SF	Correct substitution in a formula
J	Justification
O	Opinion/Example/Definition/Explanation/Justification/Verification
RT/RG/RM	Reading from a table/graph/map
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off
NPR	No penalty rounding or omitting units
AO	Answer only, full marks

This marking guideline consists of 12 pages.

MARKING GUIDELINES

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out (cancelled) an attempt to a question and NOT redone the solution, mark the crossed out (cancelled version).
- Consistent Accuracy (CA) applies in ALL aspects of the marking guidelines; however, it stops at the second calculation error.
- If the candidate presents any extra solution when reading from a graph, table, layout plan and map, then penalise for every extra incorrect item presented.

LET WEL:

- As 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek (kanselleer) en nie oordoen nie, merk die doodgetrekte (gekanselleerde) poging.
- Volgehoue akkuraatheid (CA) word in ALLE aspekte van die nasienriglyn toegepas, maar dit hou by die tweede berekeningsfout op.
- Wanneer 'n kandidaat aflees van 'n grafiek, tabel, uitlegplan en kaart en ekstra antwoorde gee, penaliseer vir elke ekstra item.

KEY TO TOPIC SYMBOL:

F = Finance; M = Measurement; MP = Maps, plans and other representations; P= Probability

QUESTION 1 [30 MARKS]

Quest	Solution	Explanation	Level
1.1.1	1,56 kg to g	1M multiply by 1 000	M
	1,56 × 1 000 ✓ M	1A correct answer	L1
	= 1 560 g ✓ A		
		(2)	
1.1.2	125 g : 625 g ✓MA	1M divide by 125	M
	1:5 ✓	1MA answer	L1
		(2)	
1.1.3	Convert 8 kg to g	1C convert 8 kg to g	M
	$8 \times 1000 = 8000 \mathrm{g}$ \checkmark C		L1
	6,25 cups: 5 000 g		
	0.000 v. 6.25	1M using ratio format	
	No. of cups = $\frac{8\ 000 \times 6,25}{5\ 000}$ \checkmark M		
	5 000		
	50 000		
		1MA correct answer	
	$=\frac{1}{5000}$	(3)	
	= 10 ✓ MA		
1.1.4	450 g × 125 g	2MA 450 multiply correct	M
	Mass of raisins = $\frac{450 \text{ g} \times 125 \text{ g}}{5000 \text{ g}} \checkmark \text{MA}$	value and divide by 5 000	L1
	= 11,25 g ✓ A	1A answer (3)	
1.2.1	Diameter is a line through the centre of the circle	2A correct explanation	M
	that touches the circumference of the circle at		L1
	two points. ✓ ✓ A		
	(Accept any relevant explanation.)	(2)	
1.2.2	Difference = $8,04 - 0,9025 \checkmark RT \checkmark MA$	1RT correct values	M
	$= 7,1375 \times 100 \checkmark C$	1MA subtract correct values	L1
	$= 713,75 \text{ mm}^2 \checkmark \text{ A}$	1C convert to mm	
		1A correct answer	
	OR	2C convert on to war	
	0.0025 × 100 - 00.25 ······· 2 / C	2C convert cm to mm	
	$0.9025 \times 100 = 90.25 \text{ mm}^2 \checkmark \text{C}$		
	$8.04 \times 100 = 804 \text{ mm}^2 \checkmark \text{ C}$	1M subtract correct values	
	Difference = 804 - 90,25 ✓ M	1A correct answer	
	Difference $= 804 - 90,25 \lor M$ = $713,75 \text{ mm}^2 \checkmark A$	(4)	
	- /15,/5 IIIII V A	(4)	

1.2.3	0,9025	1M multiply by 100	M
1.2.3	$\% = \frac{0,9025}{8,04} \times 100 \checkmark M$	1M multiply by 100	L1
			L1
	= 11,225 % ✓ A	1A correct percentage	
		174 correct percentage	
		NPR (2)	
1.2.4	Mass in kg = $28,25 \div 1000$ ✓ MA	1MA dividing by 1 000	M
1.2.1	171005 III Kg = 20,25 . 1 000 · 1711	1A answer	L1
	$= 0.02825 \text{ kg } \checkmark \text{A}$		
	0,02020 118	(2)	
1.2.5	Radius = 32 ÷ 2 ✓ MA	1MA dividing by 2	M
11210	= 16 mm ✓ A	1A correct radius	L1
	10	(2)	
1.2.6	Weight = $15 \times 28,25 \checkmark MA$	1MA multiplying by 15	M
1.2.0	10.75	in in industrying by the	L1
	= 423,75 g ✓ A	1A mass in g	
	120,70 8 11	(2)	
1.2.7	Time: $11:15 + 4:50 = 15:65 \checkmark M$	1M adding time	M
11217			L1
	✓C ✓ A	1C convert minutes to hrs	
	= 16h05 minutes		
	101100 111111110	1A correct time	
		(3)	
1.3.1	Dimensions on drawing are portrayed smaller than in	2A correct explanation	MP
	real life. ✓ ✓A	•	L1
	OR		
	Dimensions on drawing are portrayed bigger in real	(2)	
	life. ✓ ✓ A		
1.3.2	Perimeter = sum of all sides		M
			L1
	Length $C = 8.9 \text{ m} - (2.7 + 1.70 + 1)$		
	$= 8.9 \text{ m} - 5.4 \text{ m} \checkmark \text{ M}$	1M add sides and subtract	
	= 3,5 m ✓A	1A correct answer	
		(2)	
		[31]	

QUEST	ION 2 [31 MARKS]		
Quest.	Solution	Explanation	Level
2.1.1	A3. ✓✓ RT	2RT correct answer (2)	MP L1
2.1.2	R572 ✓ ✓ RT	RT correct answer	MP L2
2.1.3	N1 ✓✓ RT	2RT correct answer	MP L1
2.1.4	NW or North West ✓✓ RT	2RT correct direction	MP L2
2.1.5	 Drive from Pretoria and take the N1 North to Polokwane in Polokwane CBD take the R521 to Dendron, approximately 60 km to Vivo, approximately 40 km to join Alldays and drive approximately 46 km and another 23 km to Mapungubwe National Park entrance and reception. ✓ ✓ RT 	3RT for using R521, N1 with explanation.	MP L2
	 AND Take the N1 from Pretoria to Polokwane for approximately 260 km to Makhado for approximately 107 km join with Musina for approximately 92 km and turn left, take the R572 for another 68 km to Mapungubwe National Park entrance and reception. ✓ ✓ RT 	3RT for using N1, R572 with explanation (6)	
2.2.1	Actual distance Beitbridge – Musina: $= \frac{1,3 \times 3\ 000\ 000}{100\ 000} \checkmark M$ $= 39 \text{ km} \checkmark \text{ A}$	1M conversion ratio 1M divide by 100 000 1A correct answer	MP L2
2.2.2	Pretoria to Mapungubwe: Distance = 260 + 60 + 40 + 50 + 22 + 23 + 23 ✓ M = 478 km ✓ A	1M for adding correct values 1A correct answer (2)	MP L2

2.2.3	D = Average Speed x Time		MP
	$478 = 120 \text{ x T} \checkmark \text{SF}$	1SF substitute	L3
	$T = \frac{478}{120}$	correct values 1A correct answer	
	= 3,983333333 ✓ A		
	$= 0.9833 \times 60 \checkmark C$	1C convert time	
	= 58.998 min OR 3-59'00"		
	≈ 59 min + 3hrs + 45 min + 15 min ✓ M	1M adding time	
	≈ 4 hr 59 min ✓ S	1S simplification	
	Departure time: 4 hr 30 min + 4 hr 59 min		
	Departure time. 4 m 30 mm + 4 m 39 mm		
	Arrival time: $= 08h89 \text{ min } \checkmark \text{ S}$	1S simplified time	
	≈ 09h29 min ✓ CA	1CA arrival time	
	Yes, they will make it in time. ✓ J	1J conclusion (8)	
2.2.4 (a)	Distance from Pretoria to Mapungubwe National Park: = 478 km ✓ CA	CA from 2.2.2 1CA correct distance	MP L2
	✓M \checkmark M Total litres = $\frac{478 \text{ km}}{10 \text{ km}} \times 0.79 = 37.76 \text{ litres} \checkmark \text{ A}$	1M multiplying by 0,79	
	10 km	1M dividing by 10 1A correct answer (4)	
2.2.4 (b)	Cost of petrol: 1 litre = R23,90	CA from Q2.2.4 (a)	MP L1
	Cost = R23,90 × 37,76 \checkmark M = R902,46 \checkmark CA	1M multiply correct values. 1CA correct answer (2)	
		[33]	

QUEST	TION 3 [31 MARKS]		
Quest	Solution	Explanation	Level
3.1.1	Circumference = $2 \times 3,142 \times \text{radius}$	1SF for radius value 14	M
	4		L2
	✓ SF	1C correct values	
	$= 2 \times 3{,}142 \times 14 \checkmark C$	1MA correct answer	
	= 87,976 cm ✓ MA	TWIA correct answer	
	37,570 CM 1411	(3)	
3.1.2	Volume = $3,142 \times r^2 \times h$	1M finding radius of	M
	✓ SF	140 mm.	L3
	$3\ 079,16\ \text{cm}^3 = 3,142 \times 14 \times 14 \times \text{height} \checkmark M \checkmark C$	1C convert 140 mm to	
	Height (H) = $3.079,16 \text{ cm}^3 \div 615,832 \text{ cm}^2 \checkmark \text{MA}$		
		1SF for radius value 14	
	= 5 cm ✓ CA		
		1MA divide by area of	
		cylinder baking pan	
		1CA correct answer	
		(5)	
3.1.3	$^{\circ}\text{C} = (^{\circ}\text{F} - 32) \div 1,8$. ,	M
	$= (430 - 32) \div 1,8 \checkmark SF$	1SF correct substitution	L2
	$=398 \div 1.8 \checkmark S$	1S simplification	
	= 221,11 °C ✓ A	1A correct answer	
2.2.1		(3)	3.6
3.2.1	1 g of sugar $= 4$ calories	1MA finding value A	M L2
	57.3 × 4	1A correct answer	L2
	$A = \frac{57,3 \times 4}{1} \qquad \checkmark MA$	Tri correct ans wer	
	220.2 1 : //		
	= 229,2 calories ✓A	1MA finding value B	
	169,2 × 1	TWIA Initing value b	
	$B = \frac{169,2 \times 1}{4} \checkmark MA$		
		1A correct answer	
	= 42,3 grams ✓ A	(4)	
3.2.2	Total amount in sugar = $57.3 \text{ g} \times 3 \checkmark \text{MA}$	1MA multiply 57,3 by 3	M
	<i>5 /- 6 -</i>		L1
	= 171,9 grams ✓ MA	1MA correct answer	
		(2)	

2.2.2	To the second se	G	13.6
3.2.3	Daily consumption sugar intake:	CA from 3.2.2	M
			L4
	Vitamin water = 5.5×2	1MA correct value	
	= 11 g √ MA	1M finding weekly	
	-	intake	
	Per week = $11 \times 7 \checkmark M$		
	= 77 + 20 g		
		104	
		1CA correct answer	
	= 97 g ✓ CA		
		1M finding percentage	
	97 g	1CA correct answer	
	% Sugar intake = $\frac{97 \text{ g}}{171.9 \text{ g}} \times 100 = 56.4\% \text{ VM V C}$		
	171,7 5	1J justification	
	Her statement is valid. ✓J	3	
	Thei statement is vand. • J	(6)	
3.2.4	$2 \times 35 \text{ g} = 70 \text{ g} \checkmark \text{MA}$	1MA divide by 4 g	M
3.2	2 / 30 g / 0 g / MT	IIIII arvide by 1 g	L2
	1 year = $70 \times 365 \checkmark M$ (70×366) ÷ 1 000	1M multiply by 365 or	
	1 year $= 70 \times 303 \text{ M}$ $(70 \times 300) \div 1000$	366	
	25.550 1.000 (G		
	$= 25550 \text{ g} \div 1000 \checkmark \text{C}$	1C convert gram to kg	
		1CA correct answer	
	$= 25,55 \text{ kg } \mathbf{OR} \ 25,62 \text{ kg } \checkmark \mathbf{CA}$	(4)	
3.2.5	She must look for 'unsweetened products'. ✓ ✓ R	2R reason 1	M
			L4
	Consume more healthy fats. ✓✓ R	2R reason 2	
	•		
	OR		
	She should change her daily drinks to a bottle of vitamin		
	water. ✓✓ R		
		(4)	
		[31]	
		[31]	

QUEST	TION 4 [34 MARKS]		
Quest	Solution	Explanation	Level
4.1.1	There is no wall separating the kitchen and living	2A correct explanation	MP
	room ✓ ✓		L1
		(2)	
4.1.2	2 and 3 \checkmark \checkmark A	2A correct explanation	MP
4.1.3	South ✓✓ RT	2RT correct answer	L1 MP
4.1.3	South V K1	2R1 correct answer (2)	L2
4.1.4	11 ✓✓ RT	2RT correct answer	MP
7.1.7	II / / KI	(2)	L1
4.2.1	Total length in feet $=14 + 12$	(2)	MP
			L3
	= 26 feet		
		1A total length in feet	
	Total length in inches = $5 + 2$	and inches	
	= 7	1M converting feet	
	-	The converting rect	
	Feet to cm = $26 \times 30,48$ \checkmark	1 CA length in metres	
	= 792,48	1 MA length from	
	T 702.40 100	inches to metres	
	To m = $792,48 \div 100$	1M adding values	
	= 7,9248 ✓	1M adding values	
	= 1,72 1 0 v	1 CA answer	
	Inches to m = 7×0.0254	1 Off and well	
	= 0,1778 ✓		
	T + 11 - 4 - 7.0240 + 0.1770 /		
	Total length = $7,9248 + 0,1778 \checkmark$		
	= 8,1 m ✓	(6)	
L	- 0,1 m	(0)	L

4.2.2	Bedroom 2 leng	th = 14 x 30,48	1 A length in metres	M L4
		$=426,72 \div 100$	1 A length in metres	L4
		= 4,2672 √	1 CA total length	
	Inches	= 5 x 0,0254		
		= 0,127	1 CA total width	
	Total	= 4,3942m ✓	1 M calculating area	
	Width	$= 10 \times 30,48$	1 CA area	
		= 304,8 ÷100	1M dividing by 6	
		= 3,048 m		
	Inches	$=9 \times 0,0254$		
		= 0,2286		
	Total	=3,048+0,2286		
		= 3,2766 ✓		
	Area	= length x width		
		= 4,3942 x 3,2766 ✓		
		$= 14,398 \text{ m}^2 \checkmark$		
	Litres paint	= 14,398 ÷6 ✓	104 61'	
		= 2,399 litres ✓	1CA no of litres	
	Statement valid	✓	10 Statement valid	
			(8)	

4.3.1	Length of one side = $\sqrt{2025}$ cm ² \checkmark M		M
		1M finding one side	L3
	$S = 45 \text{ cm} \checkmark A$	1A correct answer	
	Perimeter = Side \times 4	1SF substitute correct	
	$= 45 \text{ cm} \times 4 \checkmark \text{ SF}$	values	
	= 180 cm ✓ MA	1MA for 180 cm	
	Conversion = $180 \text{ cm} \div 100$ = $1.8 \text{ m} \checkmark \text{ C}$	1C convert to cm	
	Her statement is valid ✓ O	1O justification	
		(6)	
4.3.2	Length of fabric = 270 cm	CA cushion length	M
		from 4.3.1	L3
	Number of cushions = $270 \div 45 \text{ cm} \checkmark \text{MCA}$ = $6 \checkmark \text{CA}$	1MCA dividing fabric by 45 cm	
	Width of fabric = 180 cm	1CA correct value	
	Number of cushions = $180 \div 45$ cm	1CA correct value	
	$= 4 \checkmark CA$	1S simplify	
	Cushions faces = $6 \times 4 \checkmark S$	1CA total number of cushions	
	= 24 ✓		
	Total cushions faces = $24 \div 2$		
	= 12 ✓ CA		
		(6)	
		[34]	

QUEST	ION 5 [21 MARKS]		
Quest	Solution	Explanation	Level
5.1.1	Width of car = $1.860 \div 1.000$ \checkmark C	1C mm to m	M
	1 06	1 M subtraction	L4
	= 1,86 m	1 M subtraction	
	Remaining space = $3.5 - 1.86$ \checkmark M	1 M dividing by 2	
	= 1,64	1 CA answer	
	Space on both sides = $1,64 \div 2$ \checkmark M		
	= 0,82m ✓CA	1 O statement valid	
	Statement is valid ✓O	(5)	
5.1.2		2M for correct	P
	$P(Grey SUV) = \frac{5}{20} \checkmark M$	numerator and	L2
	20	denominator	
	= 0,25 ✓ A	1A correct answer	
		(3)	
5.1.3	(A (M		P
5.1.5	Probability (non-metallic) = $(11 \div 20) \times 100\%$	1A correct fraction	L4
	110000111ty (non-metallic) = (11 : 20) × 100 / 0	1M percentage	L
	= 55% ✓ CA ✓ A	1CA answer	
	· A		
	∴ It is less than 56%. ✓ O	10 conclusion	
	OR True OR valid.	(4)	
5.2.1	Length of Model	1M divide by 8	MP
3.2.1	$= 482.5 \text{ cm} \div 8 \checkmark \text{M}$	1A correct answers	L4
	$= 60,3125 \text{ cm } \checkmark \text{A}$	Tri correct uns wers	
	00,0000		
	Width of Model	1M divide by 8	
	= 186 cm ÷ 8 ✓ M	1A correct answer	
	= 23,25 cm ✓A	43.5.0	
		1M finding area	
	Area of Model = $60,3125 \times 23,25$	1CA correct answer	
	$= 1 402,265625 \text{ cm}^2 \checkmark \text{CA}$	1M finding table	
	35 27151215 2 25	1M finding table area	
	35% of table area = $\frac{35}{100}$ × 3 716,1216 cm ² ✓ M	arca	
	= 1 300,64256 cm ² ✓CA	1CA correct answer	
	The scale of 1 , 9 will not be switchle ./O	10 reason	
	The scale of 1 : 8 will not be suitable ✓O	(9)	
		[21]	
		TOTAL: 150	