

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2022

MECHANICAL TECHNOLOGY: (WELDING AND METALWORK) MARKING GUIDELINE

MARKS: 200

This marking guideline consists of 11 pages.

SECTION A: COMPULSORY

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

- 1.1 D ✓
- 1.2 B√
- 1.3 A ✓
- 1.4 C √
- 1.5 C√
- 1.6 B√

(6 x 1) **[6]**

(3)

(1)

(Any 3 x 1)

QUESTION 2: SAFETY (GENERIC)

2.1 Personal	protective	equipment
--------------	------------	-----------

- Welding helmet ✓
- Leather apron ✓
- Leather hand gloves ✓
- Overall/work suit ✓
- Safety boot ✓

2.2 Arc welding safety precautions

- Wear correct PPE ✓
- The welding cables and electrode holder must be well insulated \checkmark
- Your eyes must be protected with a welding helmet before attempting any strike \checkmark
- Ensure there is no water in the environment \checkmark
- Keep combustible materials away from the welding area \checkmark (Any 3 x 1) (3)
- 2.3 Reason why you must not force a drill bit into the workpiece
 - It can cause a broken drill bit and possible injuries. \checkmark

2.4 Reason for clamping a small workpiece before drilling

- To avoid slipping √
- Prevent drill bit from breaking ✓

• To ensure smooth and straight drilling \checkmark (Any 1 x 1) (1).

2.5 Safety precautions to be observed when handling gas cylinders

- Store or transport cylinders in an upright position \checkmark
- Avoid oil or grease from coming in contact with oxygen fittings \checkmark
- Never stack cylinders on top of one another \checkmark
- Do not bang or work on cylinders \checkmark
- Never allow cylinders to fall √ (Any 2 x 1) (2)

[10]

QUESTION 3: MATERIALS (GENERIC)

3.1	3.1.1	 1.1 Test required to determine the carbon content of a metal Sound test ✓ 		
		 Spark test ✓ 	(Any 1 x 1)	(1)
	3.1.2	 Test required to determine the ductility of metal Bending test 		(1)
3.2	Cutting • In or	g colour coded metals from unmarked end rder to keep its identity ✓		(1)
3.3	Types Carl Nitri Cya 	of case-hardening burising ✓ ding ✓ niding ✓		(3)
3.4	Effect ∉ ● The	of medium or high carbon steel on case-hardening hardness will penetrate the core of the steel \checkmark		(1)
3.5	Heat tr It has to in that t medium	reatment process of metal to the required temperature, \checkmark is the temperature for a given period of time, \checkmark then cool in the temperature for a given period of time, \checkmark then cool in the n. \checkmark	allow to soak le appropriate	(3)
3.6	Factors Wor Que	s that determine the hardness of steel during heat t is size \checkmark enching rate \checkmark bon content \checkmark	reatment	(3)
3.7	Proper	ties achieved from an annealed steel		
	Soft	ness √		
	 Duc 	tility ✓	(Any 1 x 1)	(1) [14]

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

- 4.1 В√ 4.2 B√
- 4.3 C √
- 4.4 D√
- 4.5 A √
- 4.6 C ✓
- 4.7 D√
- 4.8 D√
- 4.9 A √
- 4.10 C ✓
- 4.11 C ✓
- 4.12 D√
- 4.13 D√
- 4.14 B √

(14 x 1) **[14]**

(EC/SEPTEMBER 2022)

QUESTION 5: TERMINOLOGY (TEMPLATES) (SPECIFIC)

5.1 **Tools required in the template loft:**

- Circular saw ✓
- Planer ✓
- Drilling machine ✓
- Steel tape
- Straight edge

(Any 3 x 1) (3)

5.2 Roof truss sketch:

5.3 Rectangular lattice girder sketch:

Mean $\Theta = 320 - 30 \checkmark$ = 290 mm \checkmark Mean Circumference = π x mean Θ = π x 290 \checkmark = 911,18 \checkmark Rounded of to 911 for one ring. \checkmark 911 x 2 = 1 822 mm for the set of two rings. \checkmark

(7)

5.5 **T-joint sketch:**

5.4

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

6.1	Conse The so Pieces injury.	quences of aluminum on a grinding wheel: It material lodges in the pores of the wheel and expands. can dislodge when the wheel is revolving at a high-speed causing	(2)
6.2	Function	on of the following:	
	6.2.1	Angle grinder: ✓ To cut, grind or polish material. ✓	(2)
	6.2.2	Guillotine: To cut ✓ sheet metal. ✓	(2)
6.3	Types Manua Hydrau	of press machines: I press machine. ✓ Iic press machine. ✓	(2)
6.4	 Principles of arc welding equipment (inverters): Inverters use electronic circuits ✓ to convert AC to DC ✓ by inverting the sine wave signal. ✓ The steady arc that is produced by the DC power source ✓ ensures a neater weld bead with less spatter. ✓ 		(5)
6.5	Types A – Pyr B – Off- C – Ver	of rolling machines: amid rolls ✓ set pinch rolls ✓ tical rolls ✓	(3)
6.6	Purpos Plasma materia alumini	se of plasma cutter: a cutting is a process that cuts through electrically conductive als \checkmark by means of an accelerated jet of hot plasma e.g., steel, um, brass and copper. \checkmark	(2) [18]

QUESTION 7: FORCES (SPECIFIC)

7.1 **STRESS AND STRAIN**

7.1.1 Stress

Area =
$$\frac{\pi d^2}{4}$$
 $\checkmark \checkmark$
= $\frac{\pi \times (0,024)^2}{4}$ \checkmark
= 4,525 × 10⁻⁴ m² \checkmark

2

Stress =
$$\frac{Force}{Area}$$

=

$$=\frac{60 \times 10^{3}}{4,525 \times 10^{-4}} \qquad \checkmark$$

7.1.2 Strain

Strain =
$$\frac{\text{Change in length}}{\text{Original length}}$$
 $\checkmark \checkmark$
= $\frac{0.22 \times 10^{-3}}{212 \times 10^{-3}}$ \checkmark
= 1,038 × 10^{-3} \checkmark (4)

7.1.3 Young's modules

Young's modulus of Elasticity (E) =
$$\frac{\text{Stress}}{\text{Strain}}$$
 \checkmark
= $\frac{132,58 \times 10^6}{1,04 \times 10^{-3}}$ \checkmark
= 127,48 × 10⁹ \checkmark
= 127,48 GPa \checkmark (6)

7.1.4 Youngs' modulus on softer materials will decrease
$$\sqrt[4]{}$$
 or be lower than harder materials. $\sqrt[4]{}$ (4)

7.2 Reactions

Take reactions A and B

 $A \times 6 = (600 \times 4) + (400 \times 3) + (500 \times 2) \checkmark$ = 2 400 + 1 200 + 1 000 = 4 600/6 √ A = 766,67 N ✓ **B** x 6 = (500 x 4) + (400 x 3) + (600 x 2) ✓ = 2 000 + 1 200 + 1 200

(6)

6

 \checkmark

7.3 7.3.1 **STRAIN** Strain = $\frac{\text{Change in length}}{\text{Original length}}$ \checkmark

$$\text{Strain} = \frac{14.4 \times 10^{-3}}{80} \qquad \checkmark$$

$$= 1.8 \times 10^{-4}$$
 (3)

7.3.2 Young's modulus: $E = \frac{Stress}{Strain}$

$$E = \frac{16 \times 10^{6}}{1.8 \times 10^{-4}} \qquad \checkmark \qquad (3)$$

= 88,9 GPa

7.4 7.4.1 Sketch of shearing stress

7.4.2 Sketch of tensile stress

- C		
	$\checkmark\checkmark\checkmark$	(3)

7.5 Purpose of tensile test: It is used to determine ✓ the tensile strength of material. ✓ (2) 7.6 7.6.1 Hooke's law:

Strain is directly proportional \checkmark to the stress its deformation causes, \checkmark provided the limit of proportionality is not exceeded. \checkmark (3)

7.6.2 Safety factor:

It is the maximum number of times \checkmark with which the maximum stress is decreased, to obtain a safe stress. \checkmark (2) [45]

QUESTION 8: JOINING METHODS (INSPECTION OF WELDS) (SPECIFIC)

8.1 Welding processes for inspection:

- Is there fusion between the weld metal and the parent metal? \checkmark
- Is there an indentation, denoting undercutting along the line where the weld joins the parent metal (lines of fusion)? ✓
- Has penetration been obtained right through the joint, indicated by the weld metal appearing through the bottom of the V or U on a single V or Ujoint?
- Has the joint been built up on its upper side or has the weld a concave side on its face, denoting lack of metal and thus weakness? ✓ (4)

8.2 Uses of weld gauges:

- To check the angle of preparation. ✓
- To check the misalignment. ✓
- To check the fillet leg/excess weld metal. ✓
- To check the fillet throat.
- To check for undercutting.

8.3 **Incomplete penetration:**

- When the weld bead does not penetrate the full depth of the weld or into the root of the weld. ✓
- When two opposing weld beads do not inter-penetrate. \checkmark
- When the weld bead does not penetrate to the toe of a fillet weld, but only bridges across it. √
 (3)

8.4 'Presence of pits':

Porosity ✓

8.5 Sketch of undercutting:

8.6 Welding spatter:

It is little droplets of molten material, \checkmark that are generated at or near the welding arc. \checkmark (2)

8.7 Three welding flames:

- Neutral flame ✓
- Carburising flame ✓
- Oxidising flame \checkmark (3 x 1) (3)

(Any 3 x 1) (3)

(1)

(2)

<u>(EC/S</u>	EPTEMBER 2022) MECI	HANICAL TECHNOLOGY (WELDING AND METALWORK)	9
8.8	 Types of cracks: Heat affected zone Centre line cracks Crater cracks √ Transverse cracks 	e (HAZ) ✓ ✓ (Any 3 x 1)	(3)
8.9	 Types of destructive t Nick break test Guided bend test Free-bend test Machinability test 	tests: (Any 2 x 1)	(2) [23]
QUE	STION 9: JOINING MI	ETHODS (STRESSES AND DISTORTION) (SPECIFIC)	
9.1	Weld distortion: Weld distortion is the w welding arc/flame. ✓	varping of the base metal \checkmark caused by the heat from the	(2)
9.2	 Methods to reduce dia Do not overweld. Apply intermittent was Place welds near the Use as few passes a Use back-step weld Anticipate the shrink Plan the welding sea Use strong backs. 	stortion: elding. ✓ e neutral axis. ✓ as possible. ing. king forces. quence. (Any 3 x 1)	(3)
9.3	Difference between he Hot working is whe recrystallisation temper Cold working is whe recrystallisation temper	ot working and cold working: n deformation of steel \checkmark takes place above the rature of the steel. \checkmark en deformation of steel \checkmark takes place below the rature of the steel. \checkmark	(4)
9.4	Effect of electrode size The larger the welding required to weld and the	te: electrode diameter, \checkmark the higher the current \checkmark that is erefore the higher the welding temperature. \checkmark	(3)
9.5	 Factors for setting up Heat present in the Qualities of parent n Shape and size of w Number of successi Comparative weight Type of welding join 	o residual stress: weld. \checkmark netal, filler rod or electrode. \checkmark veld. \checkmark velds runs.to f weld metal and parent metal.t.(Any 3 x 1)	(3)
9.6	 Examples of distortio Pre-bending. √ Pre-setting the parts Pre-springing the parts 	n: s to be welded. ✓ arts to be welded. ✓	(3) [18]

(2)

QUESTION 10: MAINTENANCE (SPECIFIC)

10.1 **Responsibility of employer-maintenance:**

Employer should think about the hazards which can occur if:

- The tools break during use. ✓
- Machines starts up unexpectedly. ✓
- Contact is made with materials that are normally enclosed within the machine. (Any 2 x 1)

10.2 **Possible causes of malfunction:**

- Lack of lubrication or incorrect lubrication. ✓
- Overloading ✓
- Friction

(Any 2 x 1) (2)

10.3 Labels on punching and shearing machine:

(4) [8]

10

QUESTION 11: TERMINOLOGY (DEVELOPMENT)

11.1 11.1.1 Vertical height CE:
In triangle CED: Tan
$$\Theta = \frac{Opposite (CE)}{Adjacent (ED)} \checkmark$$

CE = Tan 75° x ED (205) \checkmark
= 765,07 mm \checkmark (3)
11.1.2 Main radius AD: Cos $\Theta = \frac{Adjacent (BD)}{Hypotoneuse (AD)} \checkmark$
AD $= \frac{450}{Cos 75°} \checkmark$
= 1 738,67 mm \checkmark (3)
11.1.3 Small radius AC:
In triangle CED: Cos 75° $= \frac{Adjacent (205)}{Hypotoneuse (CD)} \checkmark$
CD $= \frac{205}{Cos 75°} \checkmark$
= 792,06 mm \checkmark
BUT, AC = AD - CD
= 1 738,67 - 792,069 \checkmark
= 946,601 mm \checkmark (5)
11.1.4 Circumference = $\pi x Diameter$
 $= \pi x 900 \checkmark$
= 2 827,8 mm \checkmark (2)
11.2 11.2.1 $CD^2 = \sqrt{60^2} + 120^2 \checkmark$
 $= \sqrt{18 000}$
CD = 134,16 \checkmark (2)
11.2.2 $AD^2 = \sqrt{60^2} + 60^2 + 120^2 \checkmark$
 $= 21 600 \checkmark$
AD = 146,97 \checkmark (3)
11.2.3 $DB^2 = \sqrt{60^2} + 240^2 + 120^2 \checkmark$
 $= 75 600 \checkmark$
DB = 274,95 \checkmark (3)
[21]
TOTAL: 200