

# higher education \& training 

Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

## MARKING GUIDELINE

## NATIONAL CERTIFICATE (VOCATIONAL)

PHYSICAL SCIENCE
(Second paper) NQF LEVEL 4

XX February 2020

This marking guideline consists of 8 pages.

## SECTION A

## QUESTION 1

1.1 Fusion
1.2 pH
1.3 Isotopes
1.4 Van der Waals/London/Dispersion forces
1.5 Activated complex

## QUESTION 2

2.1 B
2.2 H
2.3 E
2.4 F
2.5 A

## QUESTION 3

3.1 True
3.2 False
3.3 True
3.4 True
3.5 False

$$
(5 \times 2) \quad[10]
$$

## QUESTION 4

| 4.1 | D |
| :--- | :--- |
| 4.2 | A |
| 4.3 | B |
| 4.4 | C |
| 4.5 | B |

## SECTION B

## QUESTION 5

5.1 - Effect of the decrease in pressure with the increase in the speed of fluid in a horizontal pipe

- Reduction of fluid pressure that results when a fluid flows from a constricted section (or choke) of a pipe
- Increase in the velocity of a fluid as it travels through a restricted area
(Any $1 \times 2$ )
5.2 5.2.1 Measuring cylinder
5.2.2

$$
\begin{align*}
\text { density } & =\frac{\text { mass }}{\text { volume }} \checkmark  \tag{1}\\
& =\frac{0,045}{0,050} \checkmark \checkmark \\
& =0,9 \mathrm{~kg} \cdot \mathrm{~m}^{-3} \checkmark \tag{4}
\end{align*}
$$

5.2.3

$$
P=P a t m o s+\rho g h \checkmark
$$

$$
\begin{align*}
101692 \checkmark & =101300+(0,9)(9,8) \mathrm{h} \checkmark \\
\mathrm{~h} & =44,44 \mathrm{~m} \checkmark \tag{4}
\end{align*}
$$

## QUESTION 6

6.1 6.1.1 Boiling point (of carboxylic acids) increases with chain length.
6.1.2 Chain length (of carboxylic acid)
6.1.3 Propanoic acid
6.1.4 • A

- HCOOH
- Methanoic acid
6.1.5 - Smallest molecular mass/chain length
- Weakest intermolecular forces
- Least amount of energy required to break intermolecular force
- Largest amount of vapour particles
(Any $3 \times 1$ )
6.2 6.2.1 Organic compounds made up of carbon and hydrogen only
6.2.2 Butan-2-ol
6.2.3 Secondary
6.2.4 Bubble compound $C$ into bromine water. $\checkmark$ If bromine water decolourises $\checkmark$ then $C$ is unsaturated.
6.2.5 $\quad 2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$

Reactants $\checkmark$ Products $\checkmark \quad$ Balancing $\checkmark$
6.3 6.3.1 • Dehydrating agent

- Catalyst
(Any $1 \times 2$ )
6.3.2 Alcohol is flammable/lt will catch alight if a direct flame is used.
6.3.3



 .



(1 for each correct structural drawing)
6.3.4 • Food flavouring
- Perfume
(Any $1 \times 1$ )


## QUESTION 7

### 7.1 Slower

7.2 - Gradient less at $\mathrm{t}=4$ minute

- Surface area of calcium carbonate decreases
- Concentration of HCl decreased
(Any $1 \times 2$ )
7.3

$$
\begin{align*}
& \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \checkmark  \tag{2}\\
&=\frac{2,6}{44} \checkmark \\
&=0,0591 \mathrm{~mol} \checkmark \\
& \text { Mass of } \mathrm{CaCO}_{3} \text { used }=\mathrm{nM}=(0,0591)(100) \checkmark=5,91 \mathrm{~g} \checkmark
\end{align*}
$$

## OR

Mole mass ratio method:

## $\mathrm{CaCO}_{3}: \mathrm{CO}_{2}$

$1 \mathrm{~mol}: 1 \mathrm{~mol}$

$$
\begin{gather*}
100 \mathrm{~g}: 44 \mathrm{~g} \checkmark \checkmark \\
x: 2,6 \mathrm{~g} \checkmark \checkmark \\
44 \mathrm{x}= \\
(100)(2,6)  \tag{5}\\
x= \\
x, 91 \mathrm{~g} \checkmark
\end{gather*}
$$

7.4 - Add a catalyst. $\checkmark \checkmark$

- Use the same volume $\checkmark$ of a higher $\checkmark$ concentration of HCl.
- Use the same mass $\checkmark$ of powdered $\checkmark$ calcium carbonate.


## QUESTION 8

$8.1 \mathrm{M}\left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}\right)=2(14)+8(1)+1(12)+3(16)=96 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \checkmark$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \checkmark=\frac{11,52}{96} \checkmark=0,12 \mathrm{~mol} \checkmark$
8.2 Mole ratio: $\mathrm{NH}_{3}=0,24 \mathrm{~mol} \checkmark$

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}=0,12 \mathrm{~mol} \checkmark \\
& \mathrm{CO}_{2}=0,12 \mathrm{~mol}
\end{aligned}
$$

## OR

| Ratio | $\left.\mathbf{( N H}_{4}\right)_{2} \mathbf{C O}_{3(\text { s })}$ | $\mathbf{2 N H}_{\mathbf{3}}$ | $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ | $\mathbf{C O}_{\mathbf{2}}$ |
| :--- | :---: | :---: | :---: | :---: |
| Initial mol | 0,1375 | 0 | 0 | 0 |
| Change | $-0,12$ | $0,24 \checkmark$ | $0,12 \checkmark$ | $0,12 \checkmark$ |
| Equilibrium | 0,175 | 0,24 | 0,12 | 0,12 |
| Equilibrium con | - | 0,48 | 0,24 | 0,024 |

$8.3 \quad \mathrm{~K}_{\mathrm{c}}=\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{CO}_{2}\right] \checkmark$

$$
\begin{align*}
& =(0,48)^{2}(0,24)(0,24) \checkmark \\
& =0,01327 \checkmark \tag{3}
\end{align*}
$$

8.4 Decrease
8.5 According to Le Chatelier's principle, this amounts to a stress. $\checkmark$ The reaction that opposes the stress will be favoured thus the exothermic/forward reaction will be favoured. $\checkmark$ The equilibrium position shifts to the left./The concentration of products decreases. $\checkmark$
$8.6 \quad K_{\mathrm{c}}=\frac{1}{0,01327} \checkmark=75,358 \checkmark$

## OR

$$
\begin{equation*}
\mathrm{K}_{\mathrm{c}}=\frac{1}{\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{CO}_{2}\right]}=\frac{1}{(0,48)^{2}(0,24)(0,24)} \checkmark=75,352 \checkmark \tag{2}
\end{equation*}
$$

## QUESTION 9

9.1 Solution of accurately known concentration
9.2

$$
\begin{align*}
\mathrm{n} \text { (oxalic acid) } & =\mathrm{cv} \checkmark  \tag{2}\\
& =(0,4)(0,016) \checkmark \\
& =0,0064 \mathrm{~mol} \checkmark \quad \text { OR } \quad 6,4 \times 10^{-3} \mathrm{~mol} \tag{3}
\end{align*}
$$

9.3

$$
\begin{aligned}
c & =\frac{n}{v} \checkmark \\
& =\frac{0,0128}{0,01} \checkmark \checkmark \\
& =1,28 \mathrm{~mol} . \mathrm{dm}^{-3} \checkmark
\end{aligned}
$$

## OR

$$
\begin{align*}
\frac{C_{a} V_{a}}{C_{b} V_{b}} & =\frac{n_{a}}{n_{b}} \checkmark \\
\frac{(0,4)(0,016)}{C_{b}(0,01)} \checkmark & =\frac{1}{2} \checkmark \\
C_{b} & =1,28 \mathrm{~mol} . \mathrm{dm}^{-3} \checkmark \tag{4}
\end{align*}
$$

9.4 $n(\mathrm{OH}-)$ in mixture $\mathrm{Y}=\mathrm{cv} \checkmark$

$$
\begin{align*}
& =(1,28)(0,25) \checkmark \quad \text { (1 for equation once) } \\
& =0,32 \text { mol } \checkmark \\
\mathrm{n}(\mathrm{OH}-) \text { in } \mathrm{KOH} & =\mathrm{cv}=(1)(0,25) \checkmark=0,25 \mathrm{~mol} \checkmark \\
\mathrm{n}(\mathrm{OH}-) \text { in } \mathrm{NaOH} & =0,32-0,25=0,07 \mathrm{~mol} \checkmark \\
\text { mass of } \mathrm{X} & =\mathrm{nM}=0,07(40)=2,8 \mathrm{~g} \checkmark \tag{7}
\end{align*}
$$

## QUESTION 10

10.1 Cobalt electrode
10.2 Cobalt is a stronger reducing agent than silver.
10.3 $\mathrm{Co}+2 \mathrm{Ag}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Co}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Ag}$

Reactants $\checkmark \quad$ Products $\checkmark \quad$ Balancing $\checkmark$
10.4 - When the cell delivers a current the concentration of $\mathrm{Co}^{2+}$ (aq) increases in the cobalt half-cell.

- $\mathrm{NO}_{3}{ }^{-}$(aq) ions migrate from the salt bridge into the cobalt half-cell to neutralise the excess positive charge.
10.5

$$
\begin{aligned}
n & =\frac{m}{M} \checkmark \\
& =\frac{1,77}{59} \checkmark \\
& =0,03 \mathrm{~mol} \checkmark \\
\mathrm{Co} & \rightarrow \mathrm{Co}^{2+}+2 e^{-}
\end{aligned}
$$

1 mol Co produces 2 mol of electrons.
$0,03 \mathrm{~mol}$ Co produces $\times \mathrm{mol}$ electrons.
$X=(2)(0,03)=0,06 \mathrm{~mol} \checkmark$

## QUESTION 11

11.1 Sulphur dioxide/Sulphur-1V-oxide
11.2 Vanadium pentoxide
$11.3 \quad \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
11.4 Contact process
11.5 Haber process
11.6 Atmosphere
$11.7 \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

## QUESTION 12

12.1 It is a nuclear reaction in which large nuclei are split into smaller nuclei with
the simultaneous emission of energy.
12.2 - Fear of radiation leakage/nuclear meltdown

- Storage of spent nuclear fuel which is still radioactive
- Very expensive
(Any $1 \times 2$ )
(2)
12.3 $A=1 \checkmark$ and $X=$ hydrogen $\checkmark$
12.4 12.4.1 Decays $50 \%$ in 8,1 days - remainder is $1 / 2$ original

Decays $50 \%$ in 8,1 days - remainder is $1 / 4$ original Time taken is 16,2 days
12.4.2 Gamma radiation
12.4.3 Cannot be stopped by human tissue, but can be stopped by high-density metal such as lead.
12.4.4 Beta-decay will occur where a neutron is converted into a proton and electron and an antiparticle/neutrino is ejected.

