

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE (VOCATIONAL)

PHYSICAL SCIENCE (Second paper) NQF LEVEL 4

XX February 2020

This marking guideline consists of 8 pages.

Please turn over

-2-PHYSICAL SCIENCE L4 (Second paper)

SECTION A

1.1 1.2 1.3 1.4 1.5	Fusion pH Isotopes Van der Waals/London/Dispersion forces Activated complex	(5 × 1)	[5]
QUEST	ION 2		
2.1 2.2 2.3 2.4 2.5	B H E F A	(5 × 1)	[5]
QUEST	ION 3		
3.1 3.2 3.3 3.4 3.5	True False True False	(5 × 2)	[10]
QUEST	ION 4		
4.1 4.2 4.3 4.4 4 5	D A B C B		
4.0		(5 × 3)	[15]
		TOTAL SECTION A:	35

SECTION B

QUESTION 5

- 5.1 Effect of the decrease in pressure with the increase in the speed of fluid in a horizontal pipe
 - Reduction of fluid pressure that results when a fluid flows from a constricted section (or choke) of a pipe
 - Increase in the velocity of a fluid as it travels through a restricted area

(Any 1 × 2) (2)

(1)

- 5.2 5.2.1 Measuring cylinder
 - 5.2.2 density = $\frac{\text{mass}}{\text{volume}} \checkmark$

$$=\frac{0.045}{0.050}$$
 \checkmark \checkmark

$$= 0.9 \text{ kg.m}^{-3} \checkmark$$
 (4)

5.2.3
$$P = P_{atmos} + \rho g h \checkmark$$

101 692 \checkmark = 101 300 + (0,9)(9,8)h \checkmark

$$h = 44,44 \text{ m} \checkmark$$
 (4)

6.1	6.1.1	Boiling point (of carboxylic acids) increases with c	hain length.	(2)
	6.1.2	Chain length (of carboxylic acid)		(1)
	6.1.3	Propanoic acid		(2)
	6.1.4	AHCOOHMethanoic acid	(Any 1 × 1)	(1)
	6.1.5	 Smallest molecular mass/chain length Weakest intermolecular forces Least amount of energy required to break inte Largest amount of vapour particles 	ermolecular force (Any 3 × 1)	(3)

-4-PHYSICAL SCIENCE L4 (Second paper)

6.2	6.2.1	Organic compounds made up of carbon and hydrogen only	(2)
	6.2.2	Butan-2-ol	(2)
	6.2.3	Secondary	(1)
	6.2.4	Bubble compound C into bromine water. \checkmark If bromine water decolourises \checkmark then C is unsaturated.	(2)
	6.2.5	$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$	
		Reactants✓ Products✓ Balancing✓	(3)
6.3	6.3.1	 Dehydrating agent Catalyst (Any 1 × 2) 	(2)
	6.3.2	Alcohol is flammable/It will catch alight if a direct flame is used.	(2)
	6.3.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		н Н	
		(1 for each correct structural drawing)	(4)
	6.3.4	 Food flavouring Perfume (Any 1 × 1) 	(1) [28]
QUEST	ION 7		
7.1	Slower		(2)
7.2	GradSurfaConc	ient less at t = 4 minute ace area of calcium carbonate decreases centration of HCł decreased (Any 1 × 2)	(2)
7.3	$n = \frac{m}{M} \checkmark$ $= \frac{2.6}{44}$	✓	

Mass of CaCO₃ used = nM = (0,0591)(100) \checkmark = 5,91 g \checkmark

= 0,0591 mol√

-5-PHYSICAL SCIENCE L4 (Second paper)

OR

Mole mass ratio method:	
CaCO ₃ :CO ₂	
1 mol:1 mol	
100 g:44g✓✓	
x:2,6 g√√	
44x = (100)(2,6)	
x = 5,91 g√	(5)

7.4

Add a catalyst.✓✓

- Use the same volume ✓ of a higher ✓ concentration of HCℓ.
- Use the same mass \checkmark of powdered \checkmark calcium carbonate. (Any 1 × 2) (2)

[11]

(4)

(3)

(3)

(1)

QUESTION 8

8.1 M ((NH₄)₂CO₃) = 2(14) + 8(1) + 1(12) + 3(16) = 96 g.mol⁻¹
$$\checkmark$$

$$n = \frac{m}{M} \checkmark = \frac{11,52}{96} \checkmark = 0,12 \text{ mol} \checkmark$$

8.2 Mole ratio: $NH_3 = 0.24 \text{ mol}\checkmark$ $H_2O = 0.12 \text{ mol}\checkmark$ $CO_2 = 0.12 \text{ mol}\checkmark$

OR

Ratio	(NH4)2CO3 (s)	2NH ₃	H ₂ O	CO ₂
Initial mol	0,1375	0	0	0
Change	-0,12	0,24√	0,12√	0,12√
Equilibrium	0,175	0,24	0,12	0,12
Equilibrium con	-	0,48	0,24	0,024

8.3
$$K_{c} = [NH_{3}]^{2} [H_{2}O][CO_{2}] \checkmark$$
$$= (0.48)^{2} (0.24) (0.24) \checkmark$$
$$= 0.01327 \checkmark$$

- 8.4 Decrease
- 8.5 According to Le Chatelier's principle, this amounts to a stress. ✓ The reaction that opposes the stress will be favoured thus the exothermic/forward reaction will be favoured. ✓ The equilibrium position shifts to the left./The concentration of products decreases. ✓

(3)

8.6
$$K_c = \frac{1}{0,01327} \checkmark = 75,358 \checkmark$$

OR

$$K_{c} = \frac{1}{[NH_{3}]^{2}[H_{2}O][CO_{2}]} = \frac{1}{(0.48)^{2}(0.24)(0.24)} \checkmark = 75,352\checkmark$$
(2)
[16]

9.1 Solution of accurately known concentration (2)
9.2
$$n(\text{oxalic acid}) = cv^{\checkmark}$$

 $= (0,4)(0,016)^{\checkmark}$
 $= 0,0064 \text{ mol }^{\checkmark}$ **OR** $6,4 \times 10^{-3} \text{ mol}$ (3)
9.3 $c = \frac{n}{v} \checkmark$
 $= \frac{0.0128}{0.01} \checkmark \checkmark$
 $= 1,28 \text{ mol.dm}^{-3} \checkmark$
OR
 $\frac{C_a V_a}{C_b V_b} = \frac{n_a}{n_b} \checkmark$
 $\frac{(0,4)(0,016)}{C_b(0,01)} \checkmark = \frac{1}{2} \checkmark$
 $C_b = 1,28 \text{ mol.dm}^{-3} \checkmark$ (4)
9.4 $n(\text{OH-})$ in mixture $\Upsilon = cv^{\checkmark}$
 $= (1,28)(0,25)^{\checkmark}$ (1 for equation once)
 $= 0,32 \text{ mol}^{\checkmark}$
 $n(\text{OH-})$ in KOH $= cv = (1)(0,25)^{\checkmark} = 0,25 \text{ mol}^{\checkmark}$
 $n(\text{OH-})$ in NaOH $= 0,32 - 0,25 = 0,07 \text{ mol}^{\checkmark}$
 $mass of X = nM = 0,07(40) = 2,8g^{\checkmark}$ (7)

-7-PHYSICAL SCIENCE L4 (Second paper)

10.1	Cobalt electrode		
10.2	Cobalt is a stronger reducing agent than silver.		
10.3	$\text{Co} + 2\text{Ag}^+_{(aq)} \rightarrow \text{Co}^{2+}_{(aq)} + 2\text{Ag}$		
	Reactants✓ Products✓ Balancing✓		(3)
10.4	 When the cell delivers a current the concentration of Co²⁺ (aq) the cobalt half-cell. NO₃⁻ (aq) ions migrate from the salt bridge into the cobal neutralise the excess positive charge. 	increases in t half-cell to	(2)
10.5	$n = \frac{m}{M} \checkmark$		
	$=\frac{1,77}{59}$ \checkmark		
	= 0,03 mol✓		
	$Co \rightarrow Co^{2+} + 2e^{-}$		
	1 mol Co produces 2 mol of electrons. 0,03 mol Co produces × mol electrons.		
	X = (2)(0,03) = 0,06 mol√		(4) [12]
QUESTI	ION 11		
11.1 11.2 11.3 11.4 11.5 11.6 11.7	Sulphur dioxide/Sulphur-1V-oxide Vanadium pentoxide H ₂ S ₂ O ₇ Contact process Haber process Atmosphere (NH ₄) ₂ SO ₄		
		(7 × 1)	[7]

-8-PHYSICAL SCIENCE L4 (Second paper)

		TOTAL SECTION GRAND TOTA	B: 115 L: 150	
		and electron and an antiparticle/neutrino is ejected.	(2) [14]	
	12.4.4	Beta-decay will occur where a neutron is converted into a proto	on	
	12.4.3	Cannot be stopped by human tissue, but can be stopped high-density metal such as lead.	by (2)	
	12.4.2	Gamma radiation	(2)	
12.4	12.4.1	Decays 50% in 8,1 days – remainder is ½ original Decays 50% in 8,1 days – remainder is ¼ original Time taken is 16,2 days	(2)	
12.3	A = 1√ a	nd X = hydrogen√	(2)	
12.2	FearStoraVery	of radiation leakage/nuclear meltdown age of spent nuclear fuel which is still radioactive expensive (Any 1 ×	2) (2)	
12.1	lt is a nu the simul	is a nuclear reaction in which large nuclei are split into smaller nuclei with ne simultaneous emission of energy.		