

higher education \& training

Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE (VOCATIONAL)

PHYSICAL SCIENCE (Second Paper)
 NQF LEVEL 4

(10021004)

28 November 2018 (Y-Paper)
13:00-16:00

This question paper consists of 14 pages, 1 page consisting of physical constants tables and a formula sheet, 1 periodic table and 2 tables of standard reduction potentials.

TIME: 3 HOURS

MARKS: 150

INSTRUCTIONS AND INFORMATION

1. Answer ALL the questions.
2. Read ALL the questions carefully.
3. Number the answers according to the numbering system used in this question paper.
4. Write your EXAMINATION NUMBER in the space provided on the graph paper and hand it in with your ANSWER BOOK.
5. Cross out any work that you do not want to be marked.
6. Write with BLUE or BLACK ink only.
7. ALL final answers must be accurately approximated to TWO decimal places unless otherwise stated.
8. Write neatly and legibly.

SECTION A

QUESTION 1

Give ONE word/term for each of the following descriptions. Write only the word/term next to the question number (1.1-1.5) in the ANSWER BOOK.
1.1 The change in concentration per unit time.
1.2 A solution that conducts electricity through the movement of ions.
1.3 Type of polymer that can be liquefied and recycled repeatedly.
1.4 An atom, group of atoms or a chemical bond that gives a compound is characteristic properties.
1.5 An aqueous solution that has a fixed pH , even if small amounts of an acid or a base is added to it.

QUESTION 2

Choose a description from COLUMN B that matches a word/term in COLUMN A. Write only the letter ($\mathrm{A}-\mathrm{I}$) next to the question number (2.1-2.5) in the ANSWER BOOK.

QUESTION 3

Indicate whether the following statements are TRUE or FALSE. Choose the answer and write only 'True' or 'False' next to the question number (3.1-3.5) in the ANSWER BOOK.
3.1 Alpha particles are positively charged.
3.2 The addition of a catalyst reduces the heat of a reaction.
3.3 The hydrostatic pressure is independent of the depth of a liquid.
3.4 In the industrial process to manufacture ammonia, hydrogen is obtained from the atmosphere.
3.5 Viscosity is a measure of a fluid's resistance to flow.

$$
\begin{equation*}
(5 \times 2) \tag{10}
\end{equation*}
$$

QUESTION 4

Various options are given as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (4.1-4.5) in the ANSWER BOOK.
4.1 A nuclear reaction is represented as ${ }_{7}^{14} \mathrm{~N}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{8}^{17} \mathrm{O}+X$. What does X represent?

A
B
${ }_{-1}^{0} e$

C	${ }_{1}^{1} H$
D	${ }_{1}^{2} H$

4.2 $\quad 5 \mathrm{~g}$ of granulated zinc is added to a test tube containing an excess of $0,5 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \mathrm{HCl}$ solution.

Which ONE of the following will NOT affect the rate of this reaction?
A The use of powdered zinc
B The use of a hot $\mathrm{HC} \ell$ solution
C The addition of water to the reaction test tube
D The increase in the volume of $0,5 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \mathrm{HC} \ell$ solution
4.3 The cracking of a hydrocarbon is represented by the following equation:

$$
\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{X}+\mathrm{C}_{5} \mathrm{H}_{12}
$$

Which ONE of the following is the name of product X ?
A Prop-1-ene
B But-1-ene
C Propane
D Butane
4.4 Which ONE of the following is SUBSTITUTION REACTION?

A $\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
B $\quad \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$
D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}$
4.5 Which ONE of the following is the empirical formula of 1,2-dibromoethene?

A $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Br}_{2}$
B $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
C $\quad \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$
D $\mathrm{CH}_{2} \mathrm{Br}_{2}$

SECTION B

QUESTION 5

The sketch represents a circular pipe with a fluid flowing through the pipe.
In section X, which has a cross-sectional area of $0,5 \mathrm{~m}^{2}$, the flow rate of the fluid is $1,2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and the pressure is 150 kPa .

5.1 Name the instrument that is used to measure the flow rate in the pipe.
5.2 State TWO properties of an ideal fluid. (1×2)
5.3 Calculate the diameter of the pipe in section Y , if the flow rate there is $1,5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. (Area of circle $=\pi r^{2}$ and π is 3,14)
5.4 Compare the pressure in section Y with that in section X. Choose from GREATER THAN, LESS THAN or EQUAL TO 150 kPa ?

QUESTION 6

The boiling points of a number of organic compounds are tabulated below.

	ORGANIC COMPOUNDS	BOILING POINT in ${ }^{0} \mathrm{C}$
A	Butane	$-1,0$
B	Butan-1-ol	117,7
C	Butanoic acid	163,5

6.1 Define the term 'boiling point'.
6.2 Name the dominant inter molecular forces in:

6.2.1 Butane

6.2.2 Butan-1-ol
6.3 Write down TWO reasons why butanoic acid has the highest boiling point of the three compounds in the table.
6.4 Write a balanced chemical equation for the complete oxidation of butane.
6.5 Write down the structural formula for a positional isomer of butan-1-ol and NAME the compound.

QUESTION 7

7.1 A hydrogen peroxide solution dissociates slowly at room temperature according to the following equation:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{O}_{2}(\mathrm{~g})
$$

Bulelwa obtained the following results for the decomposition of hydrogen peroxide:

TIME (s)	$\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$ CONCENTRATION $\left(\mathbf{m o l} \cdot \mathbf{d m}^{\mathbf{- 3}}\right.$)
0	0,0200
200	0,0160
400	0,0131
600	0,0106
800	0,0086

Calculate the AVERAGE rate of decomposition (in mol $\cdot \mathrm{dm}^{-3} \cdot \mathrm{~s}^{-1}$) of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ in the first 400 s .
7.2 A suitable catalyst is added to the hydrogen peroxide solution.

Would you anticipate that the $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ concentration at 200 s will be GREATER THAN, LESS THAN or EQUAL TO that recorded by Bulelwa above? Explain the answer.
7.3 Bulelwa notices that the hydrogen peroxide solution heats up as it decomposes.

Sketch a rough graph of potential energy versus reaction time for the decomposition of hydrogen peroxide.
7.4 Calculate the mass of oxygen produced in the first 600 s if $50 \mathrm{~cm}^{3}$ of hydrogen peroxide decomposes in 600 s .

QUESTION 8

The industrial production of sulphuric acid involves the following reaction:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}<0
$$

8.1 Is this an EXOTHERMIC or ENDOTHERMIC reaction? Give a reason for the answer.
8.2 Name the principle that is applicable to systems in chemical equilibrium.
8.3 State the effect, INCREASE, DECREASE or NO EFFECT, that the increase in pressure will have on the following:
8.3.1 Quantity of $\mathrm{O}_{2(\mathrm{~g})}$
8.3.2 The equilibrium constant
8.3.3 Rate of the reverse reaction

$$
\begin{equation*}
(3 \times 2) \tag{6}
\end{equation*}
$$

8.4 6 moles of $\mathrm{SO}_{2}(\mathrm{~g})$ and 5 moles $\mathrm{O}_{2}(\mathrm{~g})$ and 2 moles of $\mathrm{SO}_{3}(\mathrm{~g})$ are placed in a $2 \mathrm{dm}^{3}$ flask and allowed to reach chemical equilibrium. At equilibrium it was found that the concentration of $\mathrm{SO}_{3}(\mathrm{~g})$ was $2 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$.

Calculate the equilibrium constant.

QUESTION 9

9.1 Write down the formula of two acids in the following reaction.

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{H}_{2} \mathrm{O}(\ell) \leftrightarrows \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \tag{2}
\end{equation*}
$$

9.2 A 3,5 g impure sample of anhydrous sodium carbonate was dissolved in $250 \mathrm{~cm}^{3}$ of distilled water in a volumetric flask.

In a titration, $18 \mathrm{~cm}^{3}$ of a $0,263 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ hydrochloric acid solution was required to reach the end point with $25 \mathrm{~cm}^{3}$ of this sodium carbonate solution.

The balanced equation for the reaction is:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HC} \ell(\mathrm{aq}) \rightarrow 2 \mathrm{NaC} \ell(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

The pH range of some indicators is tabulated below:

INDICATOR	pH RANGE
Methyl orange	$3,1-4,4$
Phenolphthalein	$8,2-10,0$
Bromothymol blue	$6,0-7,6$

9.2.1 From the list above, select a suitable indicator for this titration.
9.2.2 Give a reason for your choice of indicator in QUESTION 9.2.1
9.2.3 Calculate the quantity (in mole) of hydrochloric acid used to reach the end point. Work correct to FOUR decimal places.
9.2.4 Calculate the concentration of the sodium carbonate solution. Work correct to FOUR decimal places.
9.2.5 Determine the percentage purity of the sodium carbonate solution.

QUESTION 10

A fuel-cell is an electrochemical cell designed to replace the alkaline battery as a source of energy.

The sketch below illustrates a fuel-cell. In this cell hydrogen is regarded as the fuel.

The half-reactions that take place in this fuel cell are:
A $\quad 2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}$
B $\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}$
$E^{\ominus}=0,00 \mathrm{~V}$
10.1 Which reaction, A or B, occurs at the anode?
10.2 Write the balanced equation for the net cell reaction.
10.3 Calculate the potential difference provided if 10 of these fuel cells are connected in series.
10.4 Give one reason why this cell may be used when astronauts embark on long distance space travel.

QUESTION 11

A standard cell is constructed by connecting an unknown metal X to a cadmium halfcell as shown in the sketch below. Metal X is placed in a solution of its ions. Electrons flow through the external circuit from the cadmium electrode to metal X .

11.1 What energy conversion occurs in this voltaic cell?
11.2 Calculate the change in the mass of the cadmium electrode if 0,03 moles of electrons are transferred from cadmium to metal X.
11.3 If the initial voltmeter reading is $1,2 \mathrm{~V}$, NAME metal X . Use a relevant calculation to justify your answer.
11.4 As the cell delivers a current, state whether the following INCREASES, DECREASES or REMAINS CONSTANT:
11.4.1 The mass of metal X
11.4.2 The concentration of Cd^{2+} ions
11.4.3 The potential difference across the electrodes

$$
\begin{equation*}
(3 \times 2) \tag{6}
\end{equation*}
$$

QUESTION 12

12.1 In 1986 a massive nuclear accident took place at the nuclear power station at Chernobyl in the Ukraine. There was a huge release of radioactive isotopes into the atmosphere. Now, more than 30 years later, scientists are still monitoring the risk of cancer caused by the accident.
Two of the main risks are associated with the radioactive isotopes iodine-131, with a half-life of 8 days and caesium-137, with a half-life of 30 years.
12.1.1 Define the term 'radioactive'.
12.1.2 What are isotopes?
12.1.3 People are still kept out of the $4000 \mathrm{~km}^{2}$ area around the power station. Which ONE of the two radioactive isotopes noted above is the reason for the continued risk in the area?
12.1.4 Give a reason for your answer to QUESTION 12.1.3 using the concept of half-life.
12.1.5 In the weeks and months immediately after the accident contamination from radioactive isotopes in milk was a main risk. Suggest a route by which radioactive isotopes released into the atmosphere could end up in milk.
12.2 A doctor uses the radioactive isotope technetium-99 to find out if a patient's kidneys are working correctly. The doctor injects a small amount of technetium-99 into the patient's bloodstream. Technetium-99 emits gamma radiation. If the patient's kidneys are working correctly, the technetium-99 will pass from the bloodstream into the kidneys and then into the patient's urine.

Detectors are used to measure the radiation emitted from the kidneys. The level of radiation emitted from each kidney is recorded on a graph.

12.2.1 By looking at the graphs, select ONE of the following:

A Only the right kidney is working correctly.
B Only the left kidney is working correctly.
C Both kidneys are working correctly.
12.2.2 Explain the reason for your answer to QUESTION 12.2.1.

DATA FOR PHYSICAL SCIENCES

PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure/ Standaarddruk	p^{θ}	$1,013 \times 10^{5} \mathrm{~Pa}$
Molar gas volume at STP/ Molêre gasvolume by STD	V_{m}	$22,4 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$
Standard temperature/ Standaardtemperatuur	T^{θ}	273 K

TABLE 2: FORMULA SHEET/TABEL 2: FORMULEBLAD

$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$	$\mathrm{c}=\frac{\mathrm{n}}{\mathrm{~V}}$ OR $\mathrm{c}=\frac{\mathrm{m}}{\mathrm{MV}}$
$\begin{aligned} & \mathrm{q}=\mathrm{I} \Delta \mathrm{t} \\ & \mathrm{~W}=\mathrm{Vq} \end{aligned}$	$\mathrm{E}_{\text {cell }}^{\theta}=\mathrm{E}_{\text {cathode }}^{\theta}-\mathrm{E}_{\text {anode }}^{\theta}$ OR $\mathrm{E}_{\text {cell }}^{\theta}=\mathrm{E}_{\text {reduction }}^{\theta}-\mathrm{E}_{\text {oxidation }}^{\theta}$ OR $\mathrm{E}_{\text {cell }}^{\ominus}=\mathrm{E}_{\text {oxidisingagent }}^{\ominus}-\mathrm{E}_{\text {reducingagent }}^{\ominus}$

table 3: PERIODIC TABLE OF ELEMENTS/TABEL 3: PERIODIEKE TABEL

TABLE 4A: STANDARD REDUCTION POTENTIALS/STANDAARD REDUKSIEPOTENSIALE
Increasing oxidising ability/Toenemende oksiderende vermoë

Half reactions/Halfreaksies/		$E^{\theta}(\mathrm{V})$
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$	$\rightleftharpoons 2 \mathrm{~F}^{-}$	+2,87
$\mathrm{Co}^{3+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Co}^{2+}$	+ 1,81
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}$	+ 1,77
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	+ 1,51
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$	$\rightleftharpoons 2 \mathrm{Cl}^{-}$	+ 1,36
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-}$	$\rightleftharpoons 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	+ 1,33
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	$\rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}$	+ 1,23
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$	+ 1,23
$\mathrm{Pt}^{2+}+2 \mathrm{e}^{-}$	Pt	+ 1,20
$\mathrm{Br}_{2}(\ell)+2 \mathrm{e}^{-}$	$\rightleftharpoons 2 \mathrm{Br}^{-}$	+ 1,07
$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$	+ 0,96
$\mathrm{Hg}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Hg}(\ell)$	+ 0,85
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Ag}$	+ 0,80
$\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$	+ 0,80
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Fe}^{2+}$	+ 0,77
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\mathrm{H}_{2} \mathrm{O}_{2}$	+ 0,68
$\mathrm{I}_{2}+2 \mathrm{e}^{-}$	$\rightleftharpoons 21^{-}$	+ 0,54
$\mathrm{Cu}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cu}$	+0,52
$\mathrm{SO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	$\mathrm{S}+2 \mathrm{H}_{2} \mathrm{O}$	+ 0,45
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$	$\rightleftharpoons 4 \mathrm{OH}^{-}$	+ 0,40
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	Cu	+ 0,34
$\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$	+ 0,17
$\mathrm{Cu}^{2+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cu}^{+}$	+ 0,16
$\mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$	Sn^{2+}	+ 0,15
$\mathrm{S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	+0,14
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\mathrm{H}_{2}(\mathrm{~g})$	0,00
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Fe}$	-0,06
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Pb}$	-0,13
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Sn}$	-0,14
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Ni}$	- 0,27
$\mathrm{Co}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Co}$	- 0,28
$\mathrm{Cd}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cd}$	-0,40
$\mathrm{Cr}^{3+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cr}^{2+}$	- 0,41
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Fe}$	- 0,44
$\mathrm{Cr}^{3+}+3 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cr}$	-0,74
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Zn}$	-0,76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}$	-0,83
$\mathrm{Cr}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cr}$	- 0,91
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Mn}$	- 1,18
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Al}$	- 1,66
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Mg}$	- 2,36
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Na}$	- 2,71
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Ca}$	-2,87
$\mathrm{Sr}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Sr}$	-2,89
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Ba}$	- 2,90
$\mathrm{Cs}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cs}$	-2,92
$\mathrm{K}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{K}$	- 2,93
$\mathrm{Li}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Li}$	-3,05

TABLE 4B: STANDARD REDUCTION POTENTIALS/STANDAARD REDUKSIEPOTENSIALE

/oenemende oksiderende vermoë/ncreasing oxidising ability

Half reactions/Halfreaksies		$E^{\theta}(V)$
$\mathrm{Li}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Li}$	-3,05
$\mathrm{K}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{K}$	-2,93
$\mathrm{Cs}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cs}$	-2,92
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Ba}$	- 2,90
$\mathrm{Sr}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Sr}$	- 2,89
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Ca}$	- 2,87
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Na}$	- 2,71
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Mg}$	-2,36
$A \mathrm{l}^{3+}+3 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Al}$	- 1,66
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Mn}$	- 1,18
$\mathrm{Cr}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cr}$	- 0,91
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}$	-0,83
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Zn}$	-0,76
$\mathrm{Cr}^{3+}+3 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cr}$	-0,74
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	Fe	-0,44
$\mathrm{Cr}^{3+}+\mathrm{e}^{-}$	Cr^{2+}	$-0,41$
$\mathrm{Cd}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cd}$	-0,40
$\mathrm{Co}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Co}$	-0,28
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	$\stackrel{\mathrm{Ni}}{ }$	-0,27
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Sn}$	-0,14
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	Pb	-0,13
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-}$	Fe	-0,06
$\mathbf{2 H}{ }^{+}+2 \mathrm{e}^{-}$	$\stackrel{H_{2}(\mathrm{~g})}{ }$	0,00
$\mathrm{S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	+0,14
$\mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Sn}^{2+}$	+ 0,15
$\mathrm{Cu}^{2+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cu}^{+}$	+ 0,16
$\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \quad \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$	+ 0,17
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	$\Rightarrow \mathrm{Cu}$	+ 0,34
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$	$4 \mathrm{OH}^{-}$	+ 0,40
$\mathrm{SO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{S}+2 \mathrm{H}_{2} \mathrm{O}$	+ 0,45
$\mathrm{Cu}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Cu}$	+ 0,52
$\mathrm{I}_{2}+2 \mathrm{e}^{-}$	$\rightleftharpoons 21^{-}$	+ 0,54
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}$	+ 0,68
- $\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Fe}^{2+}$	+ 0,77
$\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$	+ 0,80
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Ag}$	+ 0,80
$\mathrm{Hg}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Hg}(\ell)$	+ 0,85
$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$	+ 0,96
$\mathrm{Br}_{2}(\ell)+2 \mathrm{e}^{-}$	$\rightleftharpoons 2 \mathrm{Br}^{-}$	+ 1,07
$\mathrm{Pt}^{2+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Pt}$	+ 1,20
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$	+ 1,23
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	$\rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}$	+ 1,23
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-}$	$\rightleftharpoons 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	+ 1,33
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$	$\Rightarrow 2 \mathrm{Cl}^{-}$	+ 1,36
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	+ 1,51
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}$	+ 1,77
$\mathrm{Co}^{3+}+\mathrm{e}^{-}$	$\rightleftharpoons \mathrm{Co}^{2+}$	+ 1,81
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$	$\stackrel{2}{ } \mathrm{~F}^{-}$	+ 2,87

Toenemende reduserende vermoë/ncreasing reducing ability

