

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2022

AGRICULTURAL SCIENCES P1 MARKING GUIDELINE

MARKS: 150

This marking guideline consists of 9 pages.

SECTION A

QUESTION 1

1.1	1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9 1.1.10	B ✓ ✓ C ✓ ✓ C ✓ ✓ D ✓ ✓ B ✓ ✓ D ✓ ✓ A ✓ ✓ D ✓ ✓ A ✓ ✓ B ✓ ✓	(10 x 2)	(20)
1.2	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5	B only ✓ ✓ None ✓ ✓ Both A and B ✓ ✓ A only ✓ ✓ None ✓ ✓	(5 x 2)	(10)
1.3	1.3.1 1.3.2 1.3.3 1.3.4 1.3.5	Sucrose ✓ ✓ Catenate ✓ ✓ Nitrogen ✓ ✓ G-horizon ✓ ✓ Nitrification ✓ ✓	(5 x 2)	(10)
1.4	1.4.1 1.4.2 1.4.3 1.4.4 1.4.5	Ethanol ✓ Structure ✓ Cation adsorption ✓ Hygroscopic ✓ Denitrification ✓	(5 x 1)	(5)

TOTAL SECTION A: 45

(1)

SECTION B

QUESTION 2: BASIC AGRICULTURAL CHEMISTRY

2.1 Inorganic compounds

- 2.1.1 Identification of substances
 - (a) Substance B ✓
 - (b) Substance C ✓
 - (c) Substance A ✓ (3)
- 2.1.2 Indication of the role of water in SUBSTANCE A

It serves as a solvent. ✓ (1)

2.1.3 Structural formula of SUBSTANCE C

2.1.4 Justification of the components in SUBSTANCE A regarded as compound.

They are formed from the combination \checkmark of two different chemical elements. \checkmark (2)

2.2 Carbohydrates

2.2.1 Classification of the carbohydrate

Monosaccharide ✓ (1)

2.2.2 Chemical formula of a monosaccharide

 $C_6H_{12}O_6\checkmark\checkmark$

- 2.2.3 TWO important uses of monosaccharide
 - Provides energy ✓
 - Work as flavour and sweetener in the human diet ✓ (2)

2.3 **Fats**

2.3.1 Classification of fat in food

Food type A – Unsaturated fat ✓
Food type B – Saturated fat ✓
(2)

2.3.2 Identification of fat recommended to be included in a diet
Unsaturated fat ✓

2.3.3 TWO reasons

They are of plant origin ✓ and lower the blood cholesterol level ✓ (2)

2.3.4 Distinguishing between unsaturated and saturated fat

- Reaction at room temperature Unsaturated fat is liquid at room temperature ✓ and saturated fat is solid at room temperature. ✓

(2)

Bond between the carbon atoms – Unsaturated fat has one (b) or more double bonds between carbon atoms ✓ and saturated fat has a single bond between carbon atoms. ✓ (2)

2.4 **Protein**

2.4.1 **Building block of protein**

Amino acids ✓ (1)

2.4.2 Difference between simple and complex protein

> Simple proteins are proteins which when broken down yield only amino acids ✓

Complex proteins are simple proteins combined with some nonprotein material. ✓ (2)

2.4.3 Reason for giving protein to:

- Injured animals To repair damaged tissues ✓ (a) (1)
- **Newly born animals** To build up new cells and tissues/ (b) growth ✓ (1)

2.5 **Organic compounds**

2.5.1 Labelling

A – Propane ✓

B - C₃H₈ ✓

C – Hydroxyl/OH ✓

E – Ethanoic / acetic ✓ (6)

2.5.2 Identification of a compound that can be used in alcoholic beverages

> Ethanol ✓ (1)

2.5.3 ONE importance of a compound A for rural communities

> It is used for heating. ✓ (1) [35]

(1)

3.2.4

QUESTION 3: SOIL SCIENCE

• -				
3.1	Soil texture			
	3.1.1	Determining the texture (a) Clay ✓ (b) Clay loam ✓	(1) (1)	
	3.1.2	 Comparing clay and sand (a) Tillability – Clay soil is hard to till ✓ and sandy soil is easy to till. ✓ (b) Degree of plasticity – High plasticity in clay ✓ and low plasticity in sand. ✓ 	(2) (2)	
	3.1.3	 TWO reasons for a farmer to know the texture class To know the type of crop to cultivate ✓ To know when to cultivate and implement to use ✓ To be able to assess the efficacy of fertilisers ✓ To know the type of irrigation to use ✓ To understand how soil will react better to temperature changes ✓ (Any 2 x 1) 		
3.2	Soil water			
	3.2.1	Indication of the water movement demonstrated in the experiment Capillarity 🗸	(1)	
	3.2.2	Reason Water moves upward ✓	(1)	
	3.2.3	Identification of the soil samples A – Clay ✓ C – Loam ✓	(2)	

3.2.5 Method to reduce the water loss through percolation

Way in which the water can be lost in sample B

Controlling the amount of irrigation water ✓

Keeping soil under cover/mulching ✓

Percolation/seepage ✓

Ploughing in organic material ✓ (Any 1 x 1) (1)

3.3 Soil air/gas

3.3.1 Prediction of the results of the experiment

Container A – Seeds will germinate and grow ✓
Container B – No germination/growth will occur ✓
(2)

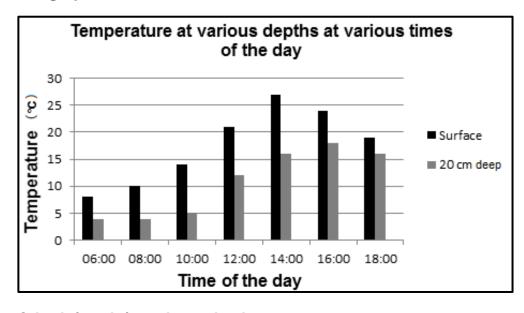
3.3.2 Explaining the reason for no germination in container B

Absence of oxygen ✓responsible for seed germination due to waterlogged soil conditions ✓ (2)

3.3.3 Name of a gas accumulated in container A

Carbon dioxide ✓ (1)

3.3.4 TWO reasons


- Respiration of plant roots ✓
- Respiration of soil organisms √

3.4 Soil temperature

3.4.1 **Deduction of the factor influencing soil temperature** Soil depth ✓

(1)

3.4.2 Bar graph

Criteria/rubric/marking guidelines

- Correct heading ✓
- X-axis: Correctly calibrated with label (time of the day) ✓
- Y-axis: Correctly calibrated with label (temperature) ✓
- Correct unit (°C) ✓
- Bar graph ✓
- Accuracy ✓

3.4.3 Explaining the trend of temperature in soil at 5 cm deep

There is a drastic increase of temperature during the day ✓ and it drops in the afternoon. ✓ (2)

3.5 Bulk density

3.5.1 Calculation of bulk density

Bulk density =
$$\frac{\text{Mass of dry soil (g)}}{\text{Volume of dry soil (cm}^3)} \checkmark$$

= $\frac{680 \text{ g}}{80 \text{ cm}^3} \checkmark$
= 8,5 g/cm³ \checkmark (3)

3.5.2 Commenting on the suitability of soil for deep rooted crops

Not suitable ✓

Reason

QUESTION 4: SOIL SCIENCE

4.1 Reproductive systems

4.1.1 Identification of soil profile

- (a) Soil profile C ✓
- (b) Soil profile D ✓
- (c) Soil profile B ✓ (3)

4.1.2 Name of the horizon

- (a) B horizon ✓
- (b) A horizon \checkmark
- (c) $C horizon \checkmark$ (3)

4.1.3 TWO possible diagnostic horizons that may occur in soil profile C

- Humic A ✓
- Vertic A ✓
- Melanic A ✓
- Orthic A ✓ (Any 2 x 1) (2)

4.2 Soil classification

4.2.1 Re-arrangement of steps in soil classification

- Demarcate master horizons ✓
- Identify diagnostic horizons ✓
- Establishing soil form ✓
- Series characteristics are identified ✓
- Determine soil series ✓ (5 x 1) (5)

4.2.2 TWO methods used in South Africa to classify the soil

- Soil form ✓
- Soil series/family ✓ (2)

4.3 Soil colloids

4.3.1 Identification of the type of colloid

Inorganic colloid ✓ (1)

4.3.2 Differentiation between inorganic and organic colloids with regard to shape

Inorganic colloids have a layered structure with flat platelets ✓
Organic colloids are structureless/ amorphous ✓
(2)

4.3.3 Condition of the colloid based on the cation adsorbed

Colloid A – Acidic ✓

Colloid B – Neutral/sweet ✓ (2)

4.3.4 TWO factors causing colloidal condition in A/acidity

- Carbon dioxide dissolving in water forming carbonic acid ✓
- Organic acids formed during decomposition process ✓
- Rain water/irrigation leaching basic ions ✓
- Fertilisation with ammonium sulphate ✓ (Any 2 x 1) (2)

TOTAL SECTION B: 105 GRAND TOTAL: 100