

VAAL UNIVERSITY OF TECHNOLOGY

## ENGINEERING & TECHNOLOGY

## Prospectus

First Published 2009 Second Edition 2010 Third Edition 2012 Fourth Edition 2013 Fifth Edition 2014 Sixth Edition 2015 Seventh Edition 2016 Eighth Edition 2018 Ninth Edition 2020 Eleventh Edition 2021 Twelfth Edition 2022

Copies of the Faculty Prospectus are obtainable from:

The Registrar Office: B004 Tel: +27 (16) 950 9930 Fax: +27 (16) 950 9775

NB:

Although the information contained in this Faculty Prospectus has been compiled as accurately as possible, the Council and the Senate of the Vaal University of Technology accept no responsibility for any errors or omissions.

## TABLE OF CONTENTS

| 1.   | WELCOME BY THE EXECUTIVE DEAN                               | 2 |
|------|-------------------------------------------------------------|---|
| 2.   | FACULTY: DEPARTMENT STRUCTURE AND QUALIFICATIONS            | 5 |
| 3.   | PROFESSIONAL BODY, PROGRAMME ACCREDITATION AND PROFESSIONAL |   |
|      | REGISTRATION                                                | 6 |
| 4.   | PURPOSE OF QUALIFICATIONS1                                  | 0 |
| 5.   | PHASING OUT OF NON-ALIGNED PROGRAMMES, CREDIT ACCUMULATION  |   |
|      | AND TRANSFER (CAT) 2                                        | 1 |
| 6.   | ADMISSION REQUIREMENTS: FET COLLEGES OR TVET COLLEGES 2     | 2 |
| 7.   | DEPARTMENT OF CHEMICAL AND METALLURGICAL ENGINEERING        | 5 |
| 7.1  | CHEMICAL ENGINEERING 2                                      | 5 |
| 7.2  | METALLURGICAL ENGINEERING                                   | 8 |
| 8.   | DEPARTMENT OF CIVIL ENGINEERING                             | 9 |
| 9.   | DEPARTMENT OF ELECTRICAL ENGINEERING                        | 2 |
| 9.1  | ELECTRICAL ENGINEERING: ELECTRONIC ENGINEERING              | 2 |
| 9.2  | ELECTRICAL ENGINEERING: POWER ENGINEERING                   | 6 |
| 9.3  | ELECTRICAL ENGINEERING: PROCESS CONTROL ENGINEERING         | 9 |
| 9.4  | ELECTRICAL ENGINEERING: COMPUTER SYSTEMS ENGINEERING        | 8 |
| 10.  | DEPARTMENT OF INDUSTRIAL ENGINEERING & OPERATIONS           |   |
|      | MANAGEMENT AND MECHANICAL ENGINEERING 11                    | 8 |
| 10.1 | INDUSTRIAL ENGINEERING AND OPERATIONS MANAGEMENT 11         | 8 |
| 10.2 | MECHANICAL ENGINEERING 13                                   | 7 |
| 11.  | SYLLABI 15                                                  | 1 |
| 11.1 | CHEMICAL ENGINEERING 15                                     | 1 |
| 11.2 | METALLURGICAL ENGINEERING16                                 | 5 |
| 11.3 | CIVIL ENGINEERING                                           | 0 |

| 11.4 | ELECTRICAL ENGINEERING: ELECTRONIC       | 193 |
|------|------------------------------------------|-----|
| 11.5 | ELECTRICAL ENGINEERING: POWER            | 215 |
| 11.6 | ELECTRICAL ENGINEERING: PROCESS CONTROL  | 230 |
| 11.7 | ELECTRICAL ENGINEERING: COMPUTER SYSTEMS | 251 |
| 11.8 | INDUSTRIAL AND OPERATIONS MANAGEMENT     | 273 |
| 11.9 | MECHANICAL ENGINEERING                   | 297 |

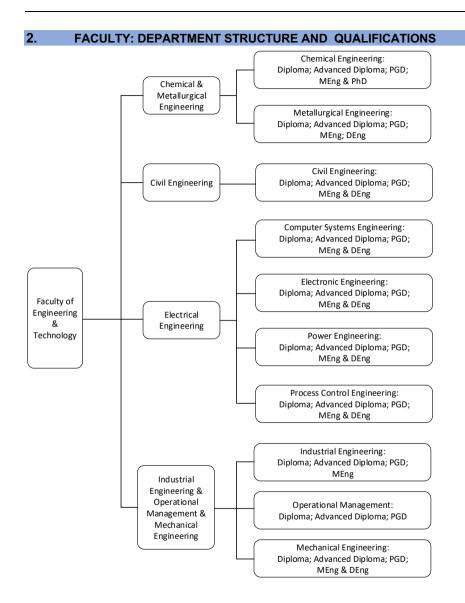
### 1. WELCOME BY THE EXECUTIVE DEAN

As the Dean of the Faculty of Engineering and Technology (FET), I welcome all new students to Vaal University of Technology (VUT). The VUT is the only university in the region of southern Gauteng in South Africa and the FET is at the forefront of training eligible South Africans towards becoming successful engineers and entrepreneurs. The faculty comprises of four (4) departments, namely

- Department of Chemical and Metallurgical Engineering
- Department of Civil Engineering
- Department of Electrical Engineering: Consist of Power Engineering, Electronic Engineering and Process Control and Computer Systems Engineering.
- Department of Industrial Engineering and Operations Management and Mechanical Engineering

There are two (2) departments at Secunda campus which are part of the programme offering in Vanderbijlpark campus under Department of Chemical and Metallurgical Engineering, and Department of Electrical Engineering. Please note that the Secunda campus will close down at the end of 2022 academic year and all engineering programmes will be offered only in Vanderbijlpark campus.

These departments have strong foundations in knowledge, driven for career practices. The programmes in the faculties are accredited by the Engineering Council of South Africa (ECSA) and our graduates are internationally recognised through their qualification when registered with ECSA.


The focus of the faculty is to meet the strategic goals and the objectives of the VUT emanating from its vision and mission. There is a clear mandate to provide quality teaching and learning; increase research productivity; promote innovation, commercialisation and community engagement; and improve financial sustainability. The pursuit of cutting-edge technology to address the challenging needs in our environment and within the community continues to be the objective of the FET.

As you participate in the teaching and learning activities, be diligent and make use of the resources provided to develop your skills. This will enhance your personal capacity required for a good practicing engineer. The current crisis created by Covid-19 has pushed the FET to adapt and change from the face-to-face contact teaching and learning to the 'new normal' of blended learning – online teaching and learning that is shared with contact practices. The VUT online teaching and learning platform, VUTela, will be used for teaching and learning correspondence with your lecturer and you will be informed of other platforms if necessary. Therefore, you are encouraged to learn how to use VUTela as quickly as possible because it will improve your delivery and performance in all correspondence with lecturers.

It is important to consider the essential personal values that will carry you throughout the course of your studies and contribute to your success. These include academic discipline; commitment to your studies; respect for others; attention to class attendance; attention to acceptable ethical behaviour; and willingness to complete tasks given by lecturers in order to meet deadlines. Your personal attributes and hardworking behaviour will create a lifelong character trait that will elevate you and keep you at the top of leadership in your academic-, social- and workplace environment. Programmes offered in each department are detailed in this Prospectus. In addition, it contains the staff composition and the structure of the curricula.

Once again, I welcome you to the Vaal University of Technology! Enjoy it!!!

Prof PO Osifo Executive Dean



## 3. PROFESSIONAL BODY, PROGRAMME ACCREDITATION AND PROFESSIONAL REGISTRATION

The Engineering Council of South Africa (ECSA) audit all the engineering programmes offered at the Vaal University of Technology every four years. ECSA awards an accreditation status to each programme that meets the standard for the award of the qualification. The standards are designed to meet the educational requirement towards registration as a Candidate or Professional Engineering Technician with ECSA and acceptance as a candidate to write the examinations for Certificated Engineers (for Diploma in Engineering Programmes) and the educational base required for registration as a Professional Engineering Technologist and/or Certificated Engineer with ECSA (for the Advanced Diploma in Engineering Programmes).

ECSA is a statutory body established in terms of the Engineering Profession Act, 2000 (Act No. 46 of 2000). ECSA's predecessor was established by the Engineering Profession of South Africa Act, 1990 (Act No. 114 of 1990). ECSA sees itself in partnership with the State and the engineering profession to promote a high level of education and training of practitioners in the engineering profession so as to facilitate full recognition of professionalism in the engineering profession, both locally and abroad. It enjoys full autonomy, although it is accountable to the State, the profession and the public for the fair and transparent administration of its business in the pursuit of its goals.

However, in pursuing its goal, ECSA has an implied responsibility to ensure that the interests of the profession (the practitioners) are also promoted. The interest of the public and the country can only be served properly if a profession is healthy and strong. For this reason, ECSA promotes the well-being of the voluntary societies which are active in engineering. Since the societies are the instruments through which the interests of the practitioners are served, a good balance between "public interests" (ECSA) and "own interests" (Societies) should be maintained.

#### 3.1 Statutory Functions of ECSA

In order to achieve the Act's main focus, ECSA is empowered to perform a variety of functions, such as:

- Setting and auditing of academic standards for purposes of registration through a process of accreditation of engineering programmes at universities and universities of technology;
- Setting and auditing of professional development standards through the provision of guidelines which set out ECSA's post-qualification requirements for registration in the four professional categories of registration, namely Professional Engineer, Professional Engineering Technologist, Professional Certificated Engineer and Professional Engineering Technician as well as for Specified Categories, such as Registered Lift Inspectors;
- Prescribing requirements for Continuing Professional Development and determining the period within which registered persons must apply for renewal of their registrations;
- Prescribing a Code of Conduct and Codes of Practice, and enforcing such conduct through an Investigating Committee and a Disciplinary Tribunal;
- Identification of work of an engineering nature that should be reserved for registered persons by the Council for the Built Environment (CBE), after consultation with the Competition Board;
- Advising the Council for the Built Environment (CBE) and Minister of Public Works on matters relating to the engineering profession and cognate matters;
- Recognition of professional associations, such as engineering associations, institutes/organisations and societies;
- Publication of a guideline tariff of fees for consulting work, in consultation with government, the profession and industry; and
- Doing such other things may be necessary for the proper performance of its functions in terms of the Act.

#### 3.2 HEQSF Alignment and Professional Registration with ECSA

Programmes offered in the Faculty of Engineering and Technology of Vaal University of Technology (VUT), Vanderbijlpark Campus are Higher Education Qualification Sub Framework (HEQSF) aligned qualifications, i.e. Diploma in Engineering and Advanced Diploma in Engineering. These programmes are a replacement of the old NATED 151 qualifications: National Diploma: Engineering and Baccalaureus Technologiae: Engineering that is not aligned to the HEQSF.

#### 3.2.1 Why the need to be HEQSF Aligned?

ECSA pegs the accreditation of the current and upcoming Engineering Programmes on the HEQSF educational requirements, as shown in Figure 1. In terms of a graduate's need to register professionally, his/her education must also be aligned to the HEQSF requirements as well as ECSAs requirements. Figure 2 depicts a Professional Registration Pathway as a Technologist, the route that is to be followed by a graduate from this programme. Figure 3 depicts the ECSA – HEQSF articulation route.

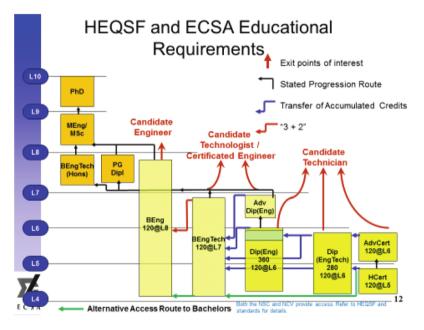



Figure 1: The HEQSF and ECSA educational requirements and progression (after ECSA) (2015)

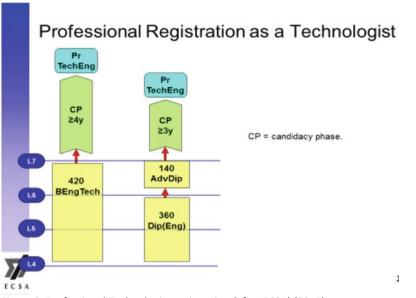



Figure 2: Professional Technologist registration (after ECSA) (2015)

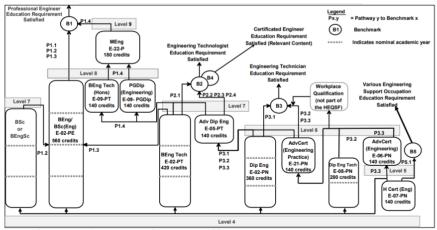



Figure 3: Graphical view of Engineering qualifications in HEQF (ECSA Doc Nr E-23-P)

The Candidacy Phase (CP) is a post-qualification practical experience period required for one to transcend from a candidate to full Professional status of registration in the respective category. More information and application forms can be obtained from the Faculty of Engineering & Technology or directly from:

| Engineering Council of South Africa (ECSA) | Tel:     | +27 11 607 9500 |
|--------------------------------------------|----------|-----------------|
| Private Bag X691                           | Fax:     | +27 11 622 9295 |
| BRUMA, 2026                                | Website: | www.ecsa.co.za  |

#### 4. PURPOSE OF QUALIFICATIONS

#### 4.1 Diploma in Engineering

The primary purpose of this vocationally-oriented diploma is to develop focused knowledge and skills as well as experience in a work-related context. The Diploma equips graduates with the knowledge base, theory, skills and methodology of one or more engineering disciplines as a foundation for further training and experience towards becoming a competent engineering technician.

Specifically, the qualification provides:

- A thorough grounding in mathematics and natural sciences specific to the field, engineering sciences, engineering design and the ability to apply established methods. Engineering knowledge is complemented by methods for understanding the impacts of engineering solutions on people and the environment;
- Preparation for a career in engineering itself and areas that potentially benefit from engineering skills, for achieving technical proficiency and to make a contribution to the economy and national development;
- The educational requirement towards registration as a Candidate or Professional Engineering Technician with the Engineering Council of South Africa and acceptance as a candidate to write the examinations for Certificated Engineers; and
- For graduates with an appropriate level of achievement, the ability to enter the upcoming Advanced Diploma in Engineering programme.

The candidate engineering technician (the graduate) completing this qualification will be able to demonstrate competence in the following twelve graduate attributes (GAs) as stipulated in the ECSA Qualification Standard for Diploma in Engineering: NQF Level 6 (ECSA Document E-02-PN or ECSA Document E-01-P).

#### Graduate Attribute 1: Problem-solving

Apply engineering principles to systematically diagnose and solve *well-defined* engineering problems.

#### Graduate Attribute 2: Application of scientific and engineering knowledge

Apply knowledge of mathematics, natural science and engineering sciences to applied engineering procedures, processes, systems and methodologies to solve *well-defined* engineering problems.

#### Graduate Attribute 3: Engineering design

Perform procedural design of components, systems, works, products or processes to meet requirements, normally within applicable standards, codes of practice and legislation.

#### Graduate Attribute 4: Investigations, experiments and data analysis

Conduct investigations of *well-defined* problems through locating and searching relevant codes and catalogues, conducting standard tests, experiments and measurements.

## Graduate Attribute 5: Engineering methods, skills and tools, including information technology

Use appropriate techniques, resources, and modern engineering tools, including information technology for the solution of *well-defined* engineering problems, with an awareness of the limitations, restrictions, premises, assumptions and constraints.

#### Graduate Attribute 6: Professional and technical communication

Communicate effectively, both orally and in writing, within an engineering context.

**Graduate Attribute 7: Sustainability and impact of engineering activity** Demonstrate knowledge and understanding of the impact of engineering activity on the society, economy, industrial and physical environment, and address issues by defined procedures.

#### Graduate Attribute 8: Individual, team and multidisciplinary working

Demonstrate knowledge and understanding of engineering management principles and apply these to one's own work as a member and leader in a technical team and to manage projects.

#### Graduate Attribute 9: Independent learning ability

Engage in independent and life-long learning through *well-developed* learning skills.

#### Graduate Attribute 10: Engineering professionalism

Understand and commit to professional ethics, responsibilities and norms of engineering technical practice.

#### Graduate Attribute 11: Engineering management

Demonstrate knowledge and understanding of engineering management principles.

#### Graduate Attribute 12: Workplace practices

Demonstrate an understanding of workplace practices to solve engineering problems consistent with academic learning achieved.

#### 4.1.1 Progression and Pathway

- As shown in Figures 1 & 2, completion of this 360-credit Diploma meets the minimum entry requirement for admission to an Advanced Diploma designed to support articulation to satisfy an engineering technologist education benchmark. This Diploma provides the base for the graduate to enter training and experience toward independent practice as an engineering technician and registration as a Professional Engineering Technician.
- This qualification lies in a HEQSF Vocational Pathway.

#### 4.2 Advanced Diploma in Engineering

This qualification is primarily industry oriented. The knowledge emphasises general principles and application or technology transfer. The qualification provides students with a sound knowledge base in a particular field or discipline and the ability to apply their knowledge and skills to particular career or professional contexts while equipping them to undertake more specialised and intensive learning. Programmes leading to this qualification tend to have a strong professional or career focus and holders of this qualification are normally prepared to enter a specific niche in the labour market.

Specifically, the purpose of educational programmes designed to meet this qualification is to build the necessary knowledge, understanding, abilities and skills required for further learning towards becoming a competent practising engineering technologist or certificated engineer.

This qualification provides:

• Preparation for careers in engineering itself and areas that potentially benefit from engineering skills, for achieving technological proficiency and to make a contribution to the economy and national development;

- The educational base required for registration as a Professional Engineering Technologist and/or Certificated Engineer with ECSA;
- Entry to NQF level 8 programmes, e.g. Honours, Post Graduate Diploma and B Eng programmes and then to proceed to master's programmes;
- For certificated engineers, this provides the education base for achieving proficiency in mining/factory plant and marine operations and occupational health and safety.

Engineering students completing this qualification will demonstrate competence in all the eleven Graduate Attributes (GAs) contained in the Qualification Standard for Advanced Diploma in Engineering: NQF Level 7 (ECSA Document E-05-PT or ECSA Document E-01-P). The GAs is stipulated below.

#### Graduate Attribute 1: Problem solving

Apply engineering principles to systematically diagnose and solve *broadly defined* engineering problems.

#### Graduate Attribute 2: Application of scientific and engineering knowledge

Apply knowledge of mathematics, natural science and engineering sciences to defined and applied engineering procedures, processes, systems and methodologies to solve *broadly defined* engineering problems.

#### Graduate Attribute 3: Engineering design

Perform procedural and non-procedural design of *broadly defined* components, systems, works, products or processes to meet desired needs normally within applicable standards, codes of practice and legislation.

#### Graduate Attribute 4: Investigations, experiments and data analysis

Conduct investigations of *broadly defined* problems through locating, searching and selecting relevant data from codes, databases and literature, designing and conducting experiments, analysing and interpreting results to provide valid conclusions.

# Graduate Attribute 5: Engineering methods, skills, tools, including information technology

Use appropriate techniques, resources, and modern engineering tools, including information technology, prediction and modelling, for the solution of *broadly defined* engineering problems, with an understanding of the limitations, restrictions, premises, assumptions and constraints.

#### Graduate Attribute 6: Professional and technical communication

Communicate effectively, both orally and in writing, with engineering audiences and the affected parties.

**Graduate Attribute 7: Sustainability and impact of engineering activity** Demonstrate knowledge and understanding of the impact of engineering activity on the society, economy, industrial and physical environment, and address issues by analysis and evaluation.

#### Graduate Attribute 8: Individual, team and multidisciplinary working

Demonstrate knowledge and understanding of engineering management principles and apply these to one's own work, as a member and leader in a team and to manage projects.

#### Graduate Attribute 9: Independent learning ability

Engage in independent and life-long learning through *well-developed* learning skills.

#### Graduate Attribute 10: Engineering professionalism

Comprehend and apply ethical principles and commit to professional ethics, responsibilities and norms of engineering technology practice.

#### Graduate Attribute 11: Engineering management

Demonstrate knowledge and understanding of engineering management principles.

## Differentiation of Professional Engineering Technologist and Professional Certificated Engineer

#### Professional Engineering Technologist:

- Professional Engineering Technologists are characterised by the ability to apply established and newly developed engineering technology to solve broadly defined problems, develop components, systems, services and processes;
- Professional Engineering Technologists provide leadership in the application of technology in safety, health, engineering and commercially effective operations and have *well-developed* interpersonal skills;
- Professional Engineering Technologists work independently and responsibly, applying judgement to decisions arising in the application of technology and health and safety considerations to problems and associated risks;
- Professional Engineering Technologists have a specialized understanding of engineering sciences underlying a deep knowledge of specific technologies together with financial, commercial, legal, social and economic, health, safety and environmental matters.

### Professional Certificated Engineer:

- Professional Certificated Engineers are characterised by the ability to apply established and newly developed engineering technology to solve *broadly defined* problems, develop components, systems, services and processes in specific areas where a legal appointment is required in terms of either the Occupational Health and Safety Act, the Mines Health and Safety Act, or the Merchant Shipping Act, e.g. factories, mines and marine environments;
- Professional Certificated Engineers provide leadership in safety, health, engineering and commercially effective operations and have *welldeveloped* managerial skills;
- They work independently and responsibly, applying judgement to decisions arising in the application of technology and health and safety considerations to problems and associated risks;
- Professional Certificated Engineers have a specialised understanding of engineering sciences underlying manufacturing, marine, mining, plant and operations, together with financial, commercial, legal, socio-economic, health, safety and environmental methodologies, procedures and best practices.

#### 4.2.1 Progression and Pathway

- As shown in Figures 1 & 2, completion of this 140-credit Advanced Diploma is the minimum entry requirement for admission to a Bachelor Honours Degree or Postgraduate Diploma. Entry into these qualifications is usually in the area of specialisation or in the discipline taken as a major in the Advanced Diploma, after completion of the Diploma in Engineering or equivalent. In addition, the graduate attributes are such that a graduate may also meet requirements for entry to a number of programmes including:
  - A candidacy programme toward registration as a Professional Engineering Technologist;
  - In certain disciplines, progression toward the Government Certificate of Competency;
  - With appropriate work experience, a Master of Business Administration or similar programme.
- This qualification lies on a HEQSF Professional Pathway

#### 4.3 Postgraduate Diploma

A postgraduate diploma is a postgraduate qualification characterised by the fact that it serves to strengthen and deepen the student's knowledge in a particular discipline or profession. This qualification typically follows a bachelor's degree, advanced diploma or relevant level 7 qualification and serves to consolidate and deepen the student's expertise in a particular discipline, and develop competence to solve complex problems, and lay the foundation for research capacity in the methodology and techniques of that discipline. This qualification demands a high level of theoretical engagement and intellectual independence as well as the ability to relate knowledge to a range of contexts in order to undertake professional or highly skilled work.

This qualification provides:

- Preparation for careers in engineering itself and areas that potentially benefit from engineering skills, for achieving technological proficiency and to make a contribution to the economy and national development;
- Entry to a cognate NQF level 9 Master's Degree, e.g. MSc/MEng; and

• Access to register as a professional engineer through a relevant master's degree Engineering students completing this qualification will demonstrate competence in all the twelve Graduate Attributes (GAs) contained in the Qualification Standard

for Postgraduate Diploma in Engineering: NQF Level 8 (ECSA Document E-09-PGDip or ECSA Document E-01-P). The GAs is stipulated below.

Note: General Range Statement: The competencies defined in the eleven graduate attributes may be demonstrated in a provider-based and/or simulated workplace context.

#### Graduate Attribute 1: Problem solving

Identify, formulate, analyse and solve *complex problems* creatively and innovatively.

#### Graduate Attribute 2: Application of scientific and engineering knowledge

Demonstrate competence to apply knowledge of mathematics, natural science and engineering sciences to the conceptualisation of engineering models and to solve *complex problems*.

#### **Graduate Attribute 3: Engineering design**

Demonstrate competence to perform creative, procedural and non-procedural design and syntheses of components, systems, engineering works, products or processes of a *complex* nature.

#### Graduate Attribute 4: Investigations, experiments and data analysis

Demonstrate competence to conduct investigations of *complex problems*, including engagement with the research literature and use of research methods, including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.

# Graduate Attribute 5: Engineering methods, skills, tools, including information technology

Demonstrate competence to use appropriate techniques, resources, and modern engineering tools, including information technology, prediction and modelling, for the solution of *complex problems*, with an understanding of the limitations, restrictions, premises, assumptions and constraints.

#### Graduate Attribute 6: Professional and technical communication

Demonstrate competence to communicate effectively, both orally and in writing, with engineering audiences and the community at large.

**Graduate Attribute 7: Sustainability and impact of engineering activity** Demonstrate knowledge and understanding of the impact of engineering activities on society, economy, industrial and physical environments.

#### Graduate Attribute 8: Individual, team and multidisciplinary working

Demonstrate competence to work effectively as an individual, in teams and in multidisciplinary environments.

#### Graduate Attribute 9: Independent learning ability

Demonstrate competence to engage in independent and life-long learning through well-developed learning skills.

#### Graduate Attribute 10: Engineering professionalism

Comprehend and apply ethical principles and commit to professional ethics, responsibilities and norms of engineering practice.

#### Graduate Attribute 11: Engineering management

Demonstrate knowledge and understanding of engineering management principles and economic decision-making.

#### 4.4 Master of Engineering

The purpose of the qualification Master of Engineering is to develop a researcher with advanced abilities in applying fundamental technological and engineering design, synthesis and related principles to solve problems of society at large. One of the main objectives of this process is to develop an advanced capability to do research independently. It also promotes a lifelong learning approach. The qualified student will be able to:

 Identify, assess, formulate, interpret, analyse and solve engineering research and development problems creatively and innovatively by applying relevant knowledge of, i.e. Mathematics, Basic Science and Engineering Sciences in the chosen field of research;

- Plan and manage engineering research projects, demonstrating fundamental knowledge, understanding and insight into the principles, methodologies and concepts that constitute socially responsible (to local and other communities) engineering research/development in the chosen field of research practice;
- Work effectively, individually or with others, as a member of a team, group, organisation and the community or in multi-disciplinary environments in the chosen field of research;
- Organise and manage him/herself and their activities responsibly, effectively, professionally and ethically, accept responsibility within their limits of competence, and exercise judgment based on knowledge and expertise pertaining to the field of research;
- Plan and conduct applicable levels of investigation, research and/or experiments by applying appropriate theories and methodologies, and perform data analysis and interpretation;
- Communicate effectively, both orally and in writing, with engineering and specifically research audiences and the community at large, in so far as they are affected by the research, using appropriate structure, style and graphical support;
- Use and assess appropriate research methods, skills, tools and information technology effectively and critically in engineering research/development practice, and show an understanding and a willingness to accept responsibility for the impact of engineering research/development activities on society and the environment;
- Perform procedural and non-procedural design and synthesis of components, systems, works, products or processes as a set of related systems, and assess their social, legal, health, safety and environmental impact and benefits, where applicable, in the chosen field of research;
- Employ various learning strategies and skills to master outcomes required for preparing him/herself to engage in continuous learning, to keep abreast of knowledge and skills required in the engineering field;
- Participate as a responsible citizen in the life of local, national and global communities by acting professionally and ethically in the chosen field of research;
- Demonstrate, where applicable, cultural and aesthetic sensitivity across a range of social contexts in the execution of engineering research and development activities;
- Explore, where applicable, education and career opportunities through engineering problem-solving, design, technical research and managerial skills;

• Organise and develop entrepreneurial opportunities through engineering, technical research development and/or managerial skills.

#### 4.5 Doctor of Engineering / PhD in Engineering

The purpose of the qualification Doctor of Engineering/PhD in Engineering is to develop a researcher with advanced abilities in applying fundamental engineering and technological sciences, design, synthesis and related principles independently to specific problems of society at large. One of the main objectives of this process is to develop an advanced capability to conduct fundamental engineering research of an original nature. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields.

The qualified student will be able to:

- Identify, assess, formulate, interpret, analyse and solve original engineering research / development problems creatively and innovatively by applying relevant advanced fundamental knowledge of i.e. Mathematics, Basic Science and Engineering Sciences in the chosen field of research;
- Plan and manage advanced engineering research projects, demonstrating fundamental knowledge, understanding and insight into the principles, methodologies and concepts that constitute socially responsible (to local and other communities) engineering research/development in the chosen field of research practice;
- Work effectively, individually or with others, as a member of a team, group, organisation and the community or in multi-disciplinary environments in the chosen field of research;
- Organise and manage him/herself activities responsibly, effectively, professionally and ethically, accept responsibility within his/her limits of competence, and exercise original judgment based on knowledge and expertise, pertaining to the field of research;
- Plan and conduct advanced investigations, research and/or experiments of an original nature by applying or developing appropriate theories and methodologies, and perform data analysis and interpretation;
- Communicate effectively, both orally and in writing, with specific research audiences and the community at large, in so far as they are affected by the research, using appropriate structure, style and graphical support;
- Use and assess appropriate advanced engineering research methods, skills, tools and information technology effectively and critically in research/development practice, and show an understanding and a willingness

to accept responsibility for the impact of engineering research/development activities on society and the environment;

- Perform procedural and non-procedural design and synthesis of components, systems, works, products or processes as a set of related systems and assess their social, legal, health, safety and environmental impact and benefits, where applicable, in the chosen field of research;
- Employ various learning strategies and skills to master outcomes required for preparing him/herself to engage in continuous learning, to keep abreast of knowledge and skills required in the engineering research/development field;
- Participate as a responsible citizen in the life of local, national and global communities by acting professionally and ethically in the chosen field of research;
- Demonstrate, where applicable, cultural and aesthetic sensitivity across a range of social contexts in the execution of engineering research/development activities;
- Explore, where applicable, education and career opportunities in advanced engineering research/development;
- Organise and develop, where applicable, entrepreneurial opportunities through engineering, technical research, development and/or managerial skills.

#### 5. PHASING OUT OF NON-ALIGNED PROGRAMMES, CREDIT ACCUMULATION AND TRANSFER (CAT)

| Non-aligned<br>programmes            | Last year of registration<br>of new intake                                                              | Comments                                                                   |
|--------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| National Diploma<br>(ND)             | 2016                                                                                                    | Replaced by Diploma in terms of the HEQSF*                                 |
| Baccalaureus<br>Technologiae (BTech) | 2019<br>Students are allowed until<br>2022 to complete<br>outstanding modules for<br>the qualification. | Replaced by the Advanced<br>Diploma in terms of the HEQSF*                 |
| Magister<br>Technologiae<br>(MTech)  | 2022                                                                                                    | Replaced by the relevant new master's qualification in terms of the HEQSF* |

#### Phased out programmes

#### \*A comprehensive system approved by the Minister of Higher Education and Training for the classification, registration, publication and articulation of quality-assured national qualifications

| Description of     | Commante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Description of     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| programme          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Non-aligned        | Students in possession of credits for an incomplete non-aligned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| National Diplomas  | diploma may be granted credits towards the relevant new                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| (ND) Credit        | diploma (CHE Policy on CAT 5.2.6). Students may be granted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Accumulation and   | credits for modules (not more than 50%) (CHE Policy on CAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Transfer (CAT)     | 5.2.5). Credits obtained from another institution can be transferred to a cognate VUT qualification ( <i>VUT CAT Policy</i> ). The granting of credits is undertaken by the relevant HoD, together with the module co-ordinator and a subject specialist. Factors such as nature of the qualification, the relationship between them, the nature, complexity, and extent of the curricula associated with the specific module to be recognised and the nature of the assessment used will be taken into consideration in the granting of credits ( <i>CHE Policy on CAT 5.2.5</i> ).                         |  |  |  |
| BTech articulation | Students in possession of a BTech qualification or an appropriate NQF level 8 qualification may be allowed to articulate into the new relevant master's qualification. The articulation is permitted within the constraining parameters set by the requirements of a specific curriculum (CHE CAT Policy 5.15). In addition, students must have a credit-bearing research component in the BTech or relevant NQF level 8 qualification (Senate approval 9 November 2018). Students who possess a BTech or relevant NQF level 8 qualification may be allowed to enrol for the relevant post-graduate diploma. |  |  |  |

#### Credit accumulation and transfer (CAT) and articulation

## 6. ADMISSION REQUIREMENTS: FET COLLEGES OR TVET COLLEGES

For applicants who obtained a qualification from Further Education and Training (FET) Colleges or Technical and Vocational Education and Training (TVET) Colleges:

#### Minimum statutory admission requirements - NC(V) level 4 Qualification:

Prospective candidates must meet the minimum statutory requirements for students in possession of an NC(V) 4 qualification, as laid out in the prescripts of the Government Gazette no. 32743 of 26 November 2006, to be eligible for admission to a diploma (Main stream/extended) i.e. 50% in three fundamental subjects, one of which must be English; and 50% in three compulsory vocational modules (see Table 1 below).

Candidates must note that, according to Section 37 (i) of the Higher Education Act (Act 101 of 1997), the decision to admit a student to higher education study is the right and responsibility of the higher education institution concerned. This implies that **individual institutions may set additional admission requirements for specific programmes.** 

#### Admission requirements for students with N3, N4, N5 and N6 qualifications:

The following admission requirements apply:

A candidate with a FET N3, N4, N5 or N6 certificate may qualify for admission to the first year of a diploma/extended diploma qualifications in the Faculty of Engineering and Technology, VUT.

- Based on his or her seven best subjects for N4/N5 or N5/N6 with a minimum of 50%.
- However, a candidate must meet the minimum admission requirements, including the language requirement (50%), on VUT scoring scale (see Table 2 below).
- A candidate with an N3, N4, N5 or N6 certificate does not qualify for any subject recognition.
- Subject recognition may be granted to FET students who have successfully completed their FET N6 diplomas. Such subject recognition will only be considered for first-year VUT diploma subjects and will only be based on FET N6 level diploma subjects completed successfully. These subjects must be passed at N4, N5 and N6 level with a score of 60% or above. The subject exemption must be decided by HOD and approved by the Dean of FET.
- Only students who have successfully completed FET N6 Diploma will be admitted into Diploma programmes of VUT.
- Programme prerequisites must be met before a candidate will be admitted to a specific programme of their choice if exemption is to be granted.

## Table 1: Admission requirements for prospective students with NC(V)-4 qualification.

| Chemical Engineering Ph<br>Civil Engineering En<br>Electrical Engineering: En<br>Electronic Power Ar |                                                                                                                           | programme | NC-V                                                                   |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------|
| Civil Engineering En<br>Electrical Engineering: En<br>Electronic Power Ar                            | athematics                                                                                                                | 4         | 3 = 40 – 49% (Not yet                                                  |
| Electrical Engineering: En<br>Electronic<br>Power Ar                                                 | nysical Sciences/                                                                                                         | 4         | competent)                                                             |
| Electronic     Power Ar                                                                              | ngineering Sciences                                                                                                       |           | 4 = 50 – 59% (Competent)                                               |
| Power An                                                                                             | nglish Language                                                                                                           | 4         | 5 = 60 – 69% (Competent)                                               |
|                                                                                                      |                                                                                                                           |           | 6 = 70 – 79% (Highly                                                   |
| Computer dis<br>Systems mi<br>Industrial Engineering co                                              | ny other three (3)<br>ocational subjects<br>levant to your<br>scipline with a<br>inimum<br>ompetence level of 3<br>0-59%) | 4         | competent)<br>7 = 80 – 89% (Outstanding<br>competent)<br>8 = 90 – 100% |
| Engineering To                                                                                       | otal                                                                                                                      | 24        |                                                                        |

## Table 2: VUT scoring scale for N qualifications

| Symbol achieved | N3 | N4/N5/N6 |
|-----------------|----|----------|
| Α               | 6  | 8        |
| В               | 5  | 7        |
| С               | 4  | 6        |
| D               | 3  | 5        |
| E               | 2  | 4        |

### 7. DEPARTMENT OF CHEMICAL AND METALLURGICAL ENGINEERING

## 7.1 CHEMICAL ENGINEERING

| Discipline Staff Details  |                       |                          |  |  |
|---------------------------|-----------------------|--------------------------|--|--|
| Surname, Initials & Title | Designation           | Highest<br>Qualification |  |  |
| Seodigeng, T (Dr)         | HoD                   | PhD                      |  |  |
| Visagie AM (Ms)           | Administrator         | AdvDip                   |  |  |
| Rutto, HL (Prof)          | Associate Professor   | PhD                      |  |  |
| Shoko, L (Dr)             | Senior Technologist   | PhD                      |  |  |
| Ngoy, E (Dr)              | Senior Lecturer       | PhD                      |  |  |
| Tshilenge, KJ (Dr)        | Senior Lecturer       | DTech                    |  |  |
| Brink, CJ (Mrs)           | Lecturer              | BEng                     |  |  |
| Dube, G (Mr)              | Lecturer              | MTech                    |  |  |
| Khoza, CN (Mr)            | Lecturer              | MEng                     |  |  |
| Lerotholi, L (Mrs)        | Lecturer              | MEng                     |  |  |
| Mabuza, M (Dr)            | Lecturer              | DTech                    |  |  |
| Modiba, E (Mr)            | Lecturer              | MTech                    |  |  |
| Nyembe N (Mr)             | Lecturer              | MTech                    |  |  |
| Mathebula, G (Mr)         | Laboratory Technician | BTech                    |  |  |
| Mbedzi, R (Mr)            | Laboratory Technician | MTech                    |  |  |
| Muthubi, SS (Ms)          | Laboratory Technician | BTech                    |  |  |

### 7.1.1 Diploma in Chemical Engineering (DI0800)

#### 7.1.1.1 Programme Structure

Three (3) year full-time qualification:

- Two and a half years (Five semesters S1 to S5) at the Vaal University of Technology
- One semester (6 months) Workplace Based Learning (WBL)

### 7.1.1.2 Purpose of the Diploma in Chemical Engineering

The generic purpose of the qualification is spelled out in paragraph 4.1 and must be read in conjunction with the following.

The purpose of the qualification Diploma in Chemical Engineering is to develop the necessary knowledge, unde3 a competent practicing Chemical Engineering Technician. It is intended to subsequently empower candidate Engineering Technicians to demonstrate that they are capable of applying their acquired knowledge, understanding, skills, attitudes and values in the work environments in South Africa. It is designed also to add value to the qualifying student in terms of enrichment of the person, status and recognition.

The qualified technician may find himself / herself as a member of an engineering team which may consist of engineers, scientists, artisans, process personnel, technologists and technicians from other disciplines. Functions may include the commissioning and maintenance of chemical plants, process control, design and development, optimising of chemical processes, quality control over the products of the manufacturing processes, feasibility studies and a variety of tasks related to the chemical process industry.

| NSC                   | Compulsory Subjects                 | Minimum for the | Notes         |
|-----------------------|-------------------------------------|-----------------|---------------|
|                       |                                     | Diploma         |               |
|                       |                                     | programme       |               |
|                       | Mathematics                         | 4               | 3 = 40 - 49%  |
| National              | Physical Science                    | 4               | 4 = 50 - 59%  |
| Senior<br>Certificate | English Language                    | 4               | 5 = 60 - 69%  |
|                       | Any other subjects                  |                 | 6 = 70 - 79%  |
|                       | with a minimum level                |                 | 7 = 80 - 89%  |
|                       | of 3, excluding Life<br>Orientation | 12              | 8 = 90 - 100% |
|                       | Total                               | 24*             |               |

### 7.1.1.3 Admission Requirements: Diploma in Chemical Engineering

#### Please note:

- The prospective student's results must meet the statutory and programme admission requirement.
- Bonus points will only be used for selection purposes. In case of a tie and all other scores remaining the same use the actual percentages to differentiate.
- \*Admission requirements for any of the 3-year Diploma programmes in Engineering is a National Senior Certificate with a minimum of 28 and above APS points, with a minimum of 4 for Mathematics, Physical Science and English.
- \*Admission requirements for any of the 4-year extended Diploma programmes in Engineering is a National Senior Certificate with a minimum of 24 – 27 maximum APS points, with a minimum of 4 for Mathematics, Physical Science and English. Students that need more information regarding Extended programmes should liaise with their respective HODs and/or the faculty manager. The main purpose of extended programmes is to widen access and reinforce/improve success.
- All other grade 12 or equivalent certificates will be evaluated against/according to statutory and programme requirements.
- International qualifications: All international qualifications will be evaluated by the International Office based on the Swedish scale and SAQA equivalence.
- Transfers: Applications from students to transfer from other institutions will be dealt with in terms of the Recognition of Prior Learning and CAT policies of VUT.

#### 7.1.1.4 Career Opportunities

A profession in the field of Chemical Engineering offers a challenging and exciting career in both the private and public sectors. There is a continuous demand for trained manpower in the field of Chemical Engineering. Job designations may vary from production foremen, area superintendents, line managers and various others within several branches of heavy, light and general types of industries where the services and expertise of such persons are required.

The qualified technician may find himself / herself as a member of an engineering team which may consist of engineers, scientists, artisans, process personnel, technologists and technicians from other disciplines. Functions may include the commissioning and maintenance of chemical plants, process control, design and development, optimising of chemical processes, quality control over the products of the manufacturing processes, feasibility studies and a variety of tasks related to the chemical process industry.

| 7.1.1.5 | Curriculum | Diploma | in Chemical | Engineering | (3 year programme | ) |
|---------|------------|---------|-------------|-------------|-------------------|---|
|---------|------------|---------|-------------|-------------|-------------------|---|

| MODULE CODE | NAME OF MODULE | CREDITS |
|-------------|----------------|---------|
|-------------|----------------|---------|

|            | SEMESTER 1                             |    |  |  |  |
|------------|----------------------------------------|----|--|--|--|
| HKCOX1A    | Applied Communication Skills 1.1       | 8  |  |  |  |
| AAECH1A    | Engineering Chemistry 1                | 10 |  |  |  |
| EEESK1A    | Engineering Skills 1                   | 5  |  |  |  |
| ASICT1A    | ICT Skills 1                           | 10 |  |  |  |
| AMMAT1A    | Mathematics 1                          | 10 |  |  |  |
| APHYS1A    | Physics 1                              | 10 |  |  |  |
| EESIN1A    | Social Intelligence 1                  | 3  |  |  |  |
|            | SEMESTER 2                             |    |  |  |  |
| ΗΚϹΟΥ2Α    | Applied Communication Skills 1.2       | 8  |  |  |  |
| AAECH2A    | Engineering Chemistry 2                | 10 |  |  |  |
| EMEDR1A    | Engineering Drawing 1                  | 10 |  |  |  |
| EHITC1A    | Introduction to Chemical Engineering 1 | 12 |  |  |  |
| AMMAT2A    | Mathematics 2                          | 10 |  |  |  |
| APHYT2A    | Physics 2 (Theory)                     | 5  |  |  |  |
| ΑΡΗΥΡ2Α    | Physics 2 (Practical)                  | 5  |  |  |  |
| EHSPA1A    | Safety Principles and Law 1            | 5  |  |  |  |
|            | SEMESTER 3                             |    |  |  |  |
| HKCOX2A    | Applied Communication Skills 2.1       | 8  |  |  |  |
| BHMAN1A    | Management 1                           | 10 |  |  |  |
| EHCPI1A    | Chemical Process Industries 1          | 12 |  |  |  |
| AAECH3A    | Engineering Chemistry 3                | 10 |  |  |  |
| EHMEB2A    | Material and Energy Balance 2          | 12 |  |  |  |
| AMMAT3A    | Mathematics 3                          | 10 |  |  |  |
| EHMPO1A    | Mechanical Operation 1                 | 12 |  |  |  |
| SEMESTER 4 |                                        |    |  |  |  |
| HKCOY2A    | Applied Communication Skills 2.2       | 8  |  |  |  |
| EHCOA2A    | Computing Applications 2               | 7  |  |  |  |
| EHCEL1A    | Chemical Engineering Laboratory 1      | 12 |  |  |  |

|            | 1                                 |    |  |
|------------|-----------------------------------|----|--|
| EHCET2A    | Chemical Eng. Thermodynamics 1    | 12 |  |
| EHHMT2A    | Heat and Mass Transfer 1          | 12 |  |
| EHPCO2A    | Process Control 1                 | 12 |  |
| EHPFD2A    | Process Fluid Dynamics 1          | 12 |  |
| SEMESTER 5 |                                   |    |  |
| EHATH3A    | Applied Thermodynamics 2          | 12 |  |
| EHCPR3A    | Chemical Process Design           | 12 |  |
| EHENE1A    | Environmental Engineering 1       | 12 |  |
| EHRTE3A    | Reactor Technology 1              | 12 |  |
| EHSEP3A    | Separation Processes 1            | 12 |  |
| EHCEL2A    | Chemical Engineering Laboratory 2 | 12 |  |
| SEMESTER 6 |                                   |    |  |
| EHEXL1A    | Workplace Based Learning 1        | 60 |  |

# Curriculum: Diploma in Chemical Engineering (4 year Extended programme) – DE0801

The purpose of the Extended Diploma programme is to assist students who enter the University with APS score of 24 - 27 by giving them more time to reach the level of competency similar to those who enter with higher APS scores. The programme extends the 3-year programme into 4 years by spreading the first year of study over 2 years with the inclusion of foundational modules as well as mainstream programme modules. The foundation modules in the first year of study will help students to improve their competency in Maths, Physics, Chemistry and Drawing. In the second year of study, the students will augment their foundation knowledge of Maths, Physics, Chemistry and Drawing to reach the level of the mainstream programme. Students are required to pass all modules in both years of the foundation phase to be able to proceed to the next year of study.

| MODULE | NAME OF MODULE | ТҮРЕ | CREDITS |       |
|--------|----------------|------|---------|-------|
| CODE   |                |      | Regular | Found |

| YEAR 1 - SEMESTER 1 |                                  |                |    |    |
|---------------------|----------------------------------|----------------|----|----|
|                     |                                  |                |    |    |
| AAXCH1A             | Foundation Chemistry 1           | Foundation     |    | 10 |
| AMXMA1A             | Foundation Mathematics 1         | Foundation     |    | 10 |
| APXPH1A             | Foundation Physics 1             | Foundation     |    | 10 |
| ASICT1A             | ICT Skills 1                     | Regular        | 10 |    |
| EEESK1A             | Engineering Skills 1             | Regular        | 5  |    |
| EESIN1A             | Social Intelligence 1            | Regular        | 3  |    |
| HKCOX1A             | Applied Communication Skills 1.1 | Regular        | 8  |    |
|                     | YEAR 1 - SEMES                   | TER 2          |    |    |
| AAXCH2A             | Foundation Chemistry 2           | Foundation     |    | 10 |
| AMXMA2A             | Foundation Mathematics 2         | Foundation     |    | 10 |
| APXPH2A             | Foundation Physics 2             | Foundation     |    | 10 |
| EMXDR1A             | Foundation Drawing 1             | Foundation     |    | 10 |
| EHSPA1A             | Safety Principles and Law 1      | Regular        | 5  |    |
| HKCOY1A             | Applied Communication Skills 1.2 | Regular        | 8  |    |
|                     | YEAR 2 - SEMES                   | FER 1          |    |    |
| AAECH1B             | Engineering Chemistry 1          | Regular (Augm) | 10 |    |
| AMMAT1B             | Mathematics 1                    | Regular (Augm) | 10 |    |
| APHYS1B             | Physics 1                        | Regular (Augm) | 10 |    |
| EHITC1B             | Intro to Chemical Engineering 1  | Regular (Augm) | 12 |    |
| EMEDR1B             | Engineering Drawing 1            | Regular (Augm) | 10 |    |

! "#\$%&' () \*+\$#, (-&("&#. \$&",%/#&#O(&1\$2%/3&#. \$&/#45\$-#&O,+&' (-#,-4\$&#(&1\$2%&6&2-5&73& "(++(O,-8&#. \$&%\$84+2%) (54+\$/9

## 7.1.1.6 Workplace Based Learning (WBL)

In order to qualify for the Diploma in Chemical Engineering, a minimum six-month period of suitable work integrated learning (WIL) in addition to the prescribed theoretical University training must be successfully completed. Work integrated learning refers to that component of co-operative education that can only be

conducted by the employer in the workplace. This training provides the student with an opportunity to apply and develop the academic knowledge he/she received at the university to relevant problem situations in industry and exposure to typical organizational culture, human relations and working conditions.

With suitable guidance and supervision, the student is taught the responsibility to work independently and to develop an awareness of the ethics and requirements of industry. Work integrated learning may be done after completion of the total theoretical part of the Diploma, after S5 of uninterrupted theoretical training at the University. This will give the student sufficient theoretical knowledge to benefit from the training, especially as they progress through the more advanced module matter of S5 courses. To ensure the effectiveness of the work integrated learning, employer and University must co-operate as partners. The student will enrol for the module Chemical Engineering Practice at the University. The employer will act as an examiner and must award a mark for the work integrated learning. To pass the student must obtain 50%, and to pass with distinction 75%. The University acts as a moderator for the module.

The student must have a mentor, who will certify that the student has completed the work required satisfactorily. During work integrated learning, the student must submit three-monthly progress reports (10 pages minimum) that contain enough information so that the training received can be evaluated. This report must be approved by the student's mentor before being submitted to the Department of Chemical Engineering, Vaal University of Technology. On completion of the training period, the student must submit Semester report and Project (20 pages minimum). All reports should be ring-bounded otherwise it will not be accepted for marking.

#### 7.1.2 Advanced Diploma in Chemical Engineering (AD0800)

This qualification is offered at Vanderbijlpark only.

#### 7.1.2.1 Programme Structure

One-year full-time qualification.

### 7.1.2.2 Purpose of the Advanced Diploma in Chemical Engineering

The generic purpose of the qualification is spelled out in paragraph 4.2 and must be read in conjunction with the following. The purpose of this qualification is to equip students with advanced technical skills and competencies to work in industry as a professional technologist or to progress to do higher academic qualifications. The knowledge emphasises general principles and application or technology transfer. The qualification provides students with a solid foundation in Chemical Engineering and the ability to apply their knowledge and skills in the area of Chemical Engineering, while equipping them to undertake more specialised and intensive learning. This programme leads to a qualification that has a strong professional and career focus and holders of this qualification are prepared to enter the chemical and process industry.

Specifically, the programme design is to meet the industry and community requirements, therefore the qualification's purpose is to build the necessary knowledge, understanding, abilities and skills for further learning towards becoming a competent practicing engineering technologist. This qualification provides:

- Preparation for careers in chemical engineering, for achieving technical proficiency and to make a contribution to the economy and national development;
- 2. The educational base required for registration as a Professional Engineering Technologist with ECSA.
- Entry to NQF level 8 programmes e.g. Bachelor's, Honours and Postgraduate Diploma Programmes and then to proceed to master's Programmes (NQF level 9).

Engineering students completing this qualification will demonstrate competence in all the Exit Level Outcomes (ELO's)/Graduate Attributes contained in this standard.

#### 7.1.2.3 Admission Requirements: Advanced Diploma in Chemical Engineering

A Diploma in Chemical Engineering (NQF level 6, 360 credits) or equivalent qualification.

All other equivalent qualifications will be considered on a case-by-case basis.

#### 7.1.2.4 Curriculum: Advanced Diploma in Chemical Engineering

| MODULE CODE  | NAME OF MODULE | CREDITS |
|--------------|----------------|---------|
| Year Modules |                |         |

| EHAPD4A | Advanced Process Design                            | 30 |
|---------|----------------------------------------------------|----|
| EHRMP4A | Research Methodology and Project                   | 28 |
|         | Semester 1                                         |    |
| EHAEM4A | Advanced Engineering Mathematics                   | 12 |
| EHARE4A | Advanced Reaction Engineering                      | 12 |
| EHFLM4A | Advanced Fluid Mechanics                           | 12 |
| EHHMX4A | Advanced Heat, Mass Transfer and Separation: Mod 1 | 10 |
|         | Semester 2                                         |    |
| EHHMY4A | Advanced Heat, Mass Transfer and Separation: Mod 2 | 11 |
| EHMAN4A | Engineering Management                             | 7  |
| EHCEL4A | Chemical Engineering Laboratory                    | 8  |
| EHAPC4A | Advanced Process Control                           | 12 |

### 7.1.3 Postgraduate Diploma in Chemical Engineering (PG0800)

This qualification is offered at Vanderbijlpark only.

#### 7.1.3.1 Programme Structure

One-year, full-time qualification.

### 7.1.3.2 Purpose of the Postgraduate Diploma in Chemical Engineering

The purpose of this qualification is to strengthen and deepen students' knowledge in the chemical engineering discipline with advanced technical skills and competencies to work in industry as a professional technologist and/or to progress to do higher academic qualifications. The knowledge emphasises consolidation and deepening of discipline specific expertise and developing competence to solve complex problems as well as to lay strong foundation for research capacity in the methodology and techniques in the chemical engineering discipline. The qualification provides students with a high level of theoretical engagement and solid intellectual independence as well as the ability to apply their knowledge and skills to undertake professional and highly-skilled work in the area of Chemical Engineering and related and/or specialised disciplines. This programme leads to a qualification that has a strong professional and career focus and holders of this qualification are prepared to enter the chemical and process industry.

Specifically, the programme design is to meet the industry and community requirements, therefore the qualification purpose is to build necessary knowledge content areas – specifically mathematical and natural sciences, discipline-specific advanced engineering sciences, and engineering design and synthesis have been developed meet or exceed the requirements of an NQF level 8 qualification. This qualification provides:

- Preparation for careers in chemical engineering, for achieving technical proficiency and to make a contribution to the economy and national development;
- 2. Entry to NQF level 9 programmes e.g. Master's Degree Programmes such as MSc and MEng.
- 3. Access to register as a profession engineer through a relevant master's degree.

Engineering students completing this qualification will demonstrate competence in all the twelve (12) Graduate Attributes (GAs) contained in the Qualification Standard for Postgraduate Diploma in Engineering: NQF Level 8 (ECSA Document E-09-PGDip or ECSA Document E-01-P).

#### 7.1.3.3 Admission Requirements

Advanced Diploma in Chemical Engineering and equivalent qualification (on NQF level 7, minimum 120 credits) such as BTech in Chemical Engineering.

All other equivalent qualifications will be considered on a case-by-case basis.

| MODULE<br>CODE | NAME OF MODULE                                        | Core/<br>Fundamental/<br>Elective | CREDITS |
|----------------|-------------------------------------------------------|-----------------------------------|---------|
| SEMESTER 1     |                                                       |                                   |         |
| EHPRM5A        | Research Project (Chemical Engineering)<br>*Full Year | Core                              | 40      |
| EHPEEX5A       | Environmental Engineering I (Chemical Eng)            | Core                              | 15      |
| EHPPDX5A       | Chemical Process Design I (Chemical Eng)              | Core                              | 15      |
|                | Elective Group YI**                                   | Elective                          | 10      |
| SEMESTER 2     |                                                       |                                   |         |

#### 7.1.3.4 Curriculum: Postgraduate Diploma in Chemical Engineering

| EHPEEY5A | Environmental Engineering II (Chemical<br>Eng) | Core     | 15 |
|----------|------------------------------------------------|----------|----|
| EHPPDY5A | Chemical Process Design II (Chemical Eng)      | Core     | 15 |
|          | Elective Group YII***                          | Elective | 10 |

\*Research Project (Chemical Engineering) (Full year)

\*\* Elective Group YI \*(Elective group Y = A or B)

```
*** Elective Group YII *(Elective group Y = A or B)
```

#### **Module Elective Groups**

The learners will first select a group among petroleum, mineral processing and bioprocessing. Elective YI and YII may not come from different groups. The elective group of modules to be offered will depend on admission numbers per group (Minimum of 20 students).

| MODULE<br>CODE   | NAME OF MODULE               | Core/<br>Fundamental/<br>Elective | CREDITS |
|------------------|------------------------------|-----------------------------------|---------|
| Elective Group A |                              |                                   |         |
| EHPBEX5A         | Bioprocess Engineering I     | Elective                          | 10      |
| EHPBEY5A         | Bioprocess Engineering II    | Elective                          | 10      |
| Elective Group B |                              |                                   |         |
| EHPPEX5A         | Petrochemical Engineering I  | Elective                          | 10      |
| EHPPEY5A         | Petrochemical Engineering II | Elective                          | 10      |

#### 7.1.4 Master of Engineering (MEng) in Chemical Engineering (MP0800)

This qualification is offered at the Vanderbijlpark campus only.

#### 7.1.4.1 Programme Structure

At least 1 year full-time research, concluded with a Master Dissertation.

#### 7.1.4.2 Purpose of the MEng in Chemical Engineering

The purpose of this qualification is to develop a student into a researcher, able to conduct independent research with minimum guidance in a chosen field of Chemical Engineering. The outcomes of the research will contribute to knowledge production in the specialisation field. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.4.)

#### 7.1.4.3 Admission Requirements

BEng degree in Chemical Engineering or equivalent level 8 qualification including PGD in Chemical Engineering. Proof of successful completion of a Vaal University of Technology approved course in Research Methodology is required.

Ad hoc cases will be treated on merit.

#### 7.1.4.4 Assessment

The department follows the assessment strategy of formal written examination. The year mark is compiled from a series of not less than three tests and / or a practical mark. The year mark for admittance to the formal examination is 50%. Weights for calculating the year mark as well as the final mark will be reflected in the Learning Guide. All tests, assignments and practical work done during a particular semester, will help learners learn and understand the work.

Some modules follow the assessment strategies of Continuous Assessment (CASS). All marks obtained during the semester will make up the learner's final mark. Each Learning Guide will indicate which tests and activities will contribute according to a pre-determined weight, to the final mark.

#### 7.1.5 Doctor of Philosophy (PhD) in Chemical Engineering (708001)

#### 7.1.5.1 Duration of Programme

At least two years full-time research, concluded with a Doctoral Thesis.

#### 7.1.5.2 Admission Requirements

MEng (Chemical Engineering) or equivalent. Ad hoc cases will be treated on merit.

## 7.1.6 Enquiries

Enquiries may be addressed to: **HoD: Chemical and Metallurgical Engineering** Faculty of Engineering & Technology Vaal University of Technology Private Bag X021 VANDERBIJLPARK, 1900

| Website | : | www.vut.ac.za       |
|---------|---|---------------------|
|         |   | rethav@vut.ac.za    |
| e-mail  | : | tumisangs@vut.ac.za |
| Fax     | : | +27 16 950 9796     |
| Tel     | : | +27 16 950 9655     |

or

## Postgraduate Office

| Ms N K | okoali |                              |
|--------|--------|------------------------------|
| Tel    | :      | +27 16 950 9288              |
| e-mail | :      | <u>nomathembak@vut.ac.za</u> |

Mr S Motsie

| Tel    | : | +27 16 950 7639             |
|--------|---|-----------------------------|
| e-mail | : | <u>sehlabakam@vut.ac.za</u> |

## 7.2 METALLURGICAL ENGINEERING

| Discipline Staff Details  |                      |                          |  |  |
|---------------------------|----------------------|--------------------------|--|--|
| Surname, Initials & Title | Designation          | Highest<br>Qualification |  |  |
| Seodigeng, T (Dr)         | HoD                  | PhD                      |  |  |
| Visagie, R (Ms)           | Administrator        | AdvDip                   |  |  |
| Mendonidis, P (Prof)      | Associate Professor  | PhD                      |  |  |
| Otunniyi, I (Prof)        | Associate Professor  | PhD                      |  |  |
| Matizamhuka, W (Dr)       | Senior Lecturer      | PhD                      |  |  |
| Baloyi, N (Mrs)           | Lecturer             | MTech                    |  |  |
| Kohitlhetse, I (Mr)       | Lecturer             | MTech                    |  |  |
| Lepule, M (Ms)            | Lecturer             | MTech                    |  |  |
| Maramba, B (Mr)           | Lecturer             | MSc                      |  |  |
| Motsetse, K (Ms)          | Lecturer             | MTech                    |  |  |
| Baloyi, MF (Ms)           | Technician           | NDip                     |  |  |
| Jeli, N (Mr)              | Technician           | BTech                    |  |  |
| Nemavhola, K. (Ms)        | Technician           | MTech                    |  |  |
| Ayo,T (Mr)                | Laboratory Assistant | BSc                      |  |  |
| Van der Schyff, A (Ms)    | WIL Coordinator      | MTech                    |  |  |

## 7.2.1 Diploma in Metallurgical Engineering (DI0850)

#### 7.2.1.1 Programme Structure

Three-year full-time qualification.

Five semesters, S1 to S5 at the Vaal University of Technology.

One semester Workplace Based Learning (WBL).

## 7.2.1.2 Purpose of the Diploma in Metallurgical Engineering

The generic purpose of the qualification is spelled out in paragraph 4.1 and must be read in conjunction with the following:

The purpose of the qualification Diploma in Metallurgical Engineering is to develop the necessary knowledge, understanding and skills required for the student's further learning towards becoming a competent practicing Metallurgical Engineering Technician. It is intended to subsequently empower candidate Engineering Technicians to demonstrate that they are capable of applying their acquired knowledge, understanding, skills, attitudes and values in the work environments in South Africa. It is designed also to add value to the qualifying student in terms of enrichment of the person, status and recognition.

| NSC                | Compulsory Subjects                  | Minimum for the | Notes         |
|--------------------|--------------------------------------|-----------------|---------------|
|                    |                                      | Diploma         |               |
|                    |                                      | programme       |               |
|                    | Mathematics                          | 4               | 3 = 40 - 49%  |
| National<br>Senior | Physical Science<br>English Language | 4<br>4          | 4 = 50 - 59%  |
| Certificate        |                                      | -               | 5 = 60 - 69%  |
|                    | Any other subjects                   |                 | 6 = 70 - 79%  |
|                    | with a minimum level                 |                 | 7 = 80 - 89%  |
|                    | of 3, excluding Life<br>Orientation  | 12              | 8 = 90 - 100% |
|                    | Total                                | 24*             |               |

#### 7.2.1.3 Admission Requirements

#### Please note:

- The prospective student's results must meet the statutory and programme admission requirement.
- Bonus points will only be used for selection purposes. In case of a tie and all other scores remaining the same use the actual percentages to differentiate.
- \*Admission requirements for any of the 3-year Diploma programmes in Engineering is a National Senior Certificate with a minimum of 28 and above APS points, with a minimum of 4 for Mathematics, Physical Science and English.
- \*Admission requirements for any of the 4-year extended Diploma programmes in Engineering is a National Senior Certificate with a minimum of 24 – 27 maximum APS points, with a minimum of 4 for Mathematics, Physical Science and English. Students that need more information regarding Extended programmes should liaise with their respective HODs and/or the faculty manager. The main purpose of extended programmes is to widen access and reinforce/improve success.

- All other grade 12 or equivalent certificates will be evaluated against/according to statutory and programme requirements.
- International qualifications: All international qualifications will be evaluated by the International Office based on the Swedish scale and SAQA equivalence.
- Transfers: Applications from students to transfer from other institutions will be dealt with in terms of the Recognition of Prior Learning and CAT policies of VUT.

## 7.2.1.4 Career Opportunities

Many opportunities exist at primary producers of both ferrous and non-ferrous metals as well as in the manufacturing industry. Metallurgical Engineering Technicians may be involved in developing new processes / procedures in the extraction / manufacturing industry as well as optimising / improving existing processes; ensuring the quality of products during the different stages of the process and testing and inspection of the final material / product.

| MODULE CODE | NAME OF MODULE                   | CREDITS |
|-------------|----------------------------------|---------|
|             | SEMESTER 1                       |         |
| AMMAT1A     | Mathematics 1                    | 10      |
| AAECH1A     | Engineering Chemistry 1          | 10      |
| APHYS1A     | Physics 1                        | 10      |
| EESIN1A     | Social Intelligence 1            | 3       |
| EEESK1A     | Engineering Skills 1             | 5       |
| ASICT1A     | ICT Skills 1                     | 10      |
| HKCOX1A     | Applied Communication Skills 1.1 | 8       |
|             | SEMESTER 2                       |         |
| AMMAT2A     | Mathematics 2                    | 10      |
| EMEDR1A     | Engineering Drawing 1            | 10      |
| APHYS2A     | Physics 2                        | 10      |
| AAECH2A     | Engineering Chemistry 2          | 10      |
| EYSPA1A     | Safety Principles and Law 1      | 5       |
| EYCOA2A     | Computing Applications 2         | 7       |

## 7.2.1.5 Curriculum: Diploma in Metallurgical Engineering

| HKCOY1A | Applied Communication Skills 1.2 | 8  |  |
|---------|----------------------------------|----|--|
|         | SEMESTER 3                       |    |  |
| EYPTH1A | Process Thermodynamics 1         | 10 |  |
| EYEME1A | Extractive Metallurgy 1          | 10 |  |
| EYPME1A | Physical Metallurgy 1            | 10 |  |
| EYMPR1A | Mineral Processing 1             | 10 |  |
| EYMAM1A | Manufacturing Metallurgy 1       | 10 |  |
| EYEGE1A | Engineering Geology 1            | 10 |  |
| HKCOX2A | Applied Communication Skills 2.1 | 8  |  |
|         | SEMESTER 4                       |    |  |
| EYHYD2A | Hydrometallurgy 2                | 10 |  |
| EYPYR2A | Pyrometallurgy 2                 | 10 |  |
| EYPME2A | Physical Metallurgy 2            | 10 |  |
| EYMPR2A | Mineral Processing 2             | 10 |  |
| EYMAM2A | Manufacturing Metallurgy 2       | 10 |  |
| EBQCO2A | Quality Control 2                | 10 |  |
| HKCOY2A | Applied Communication Skills 2.2 | 8  |  |
|         | SEMESTER 5                       |    |  |
| EYHYD3A | Hydrometallurgy 3                | 10 |  |
| EYPYR3A | Pyrometallurgy 3                 | 10 |  |
| EYPME3A | Physical Metallurgy 3            | 10 |  |
| EYMPR3A | Mineral Processing 3             | 10 |  |
| EYMAM3A | Manufacturing Metallurgy 3       | 10 |  |
| BHMAN1A | Management 1                     | 10 |  |
| EYENC1A | Environmental Geochemistry 1     | 8  |  |
|         | SEMESTER 6                       |    |  |
| EYWBL1A | Workplace Based Learning 1       | 60 |  |

## Curriculum: Diploma in Metallurgical Engineering (4 year Extended programme) - DE0851

The purpose of the Extended Diploma programme is to assist students who enter the University with APS score of 24 - 27 by giving them more time to reach the level of competency similar to those who enter with higher APS scores. The programme extends the 3-year programme into 4 years by spreading the first year of study over 2 years with the inclusion of foundational modules as well as mainstream programme modules. The foundation modules in the first year of study will help students to improve their competency in Maths, Physics, Chemistry and Drawing. In the second year of study, the students will augment their foundation knowledge of Maths, Physics, Chemistry and Drawing to reach the level of the mainstream programme. Students are required to pass all modules in both years of the foundation phase to be able to proceed to the next year of study.

| MODULE  | NAME OF MODULE                   | ТҮРЕ           | CREDITS |       |
|---------|----------------------------------|----------------|---------|-------|
| CODE    |                                  |                | Regular | Found |
|         | YEAR 1 - SEMEST                  | 'ER 1          |         |       |
| AAXCH1A | Foundation Chemistry 1           | Foundation     |         | 10    |
| AMXMA1A | Foundation Mathematics 1         | Foundation     |         | 10    |
| APXPH1A | Foundation Physics 1             | Foundation     |         | 10    |
| ASICT1A | ICT Skills 1                     | Regular        | 10      |       |
| EEESK1A | Engineering Skills 1             | Regular        | 5       |       |
| EESIN1A | Social Intelligence 1            | Regular        | 3       |       |
| HKCOX1A | Applied Communication Skills 1.1 | Regular        | 8       |       |
|         | YEAR 1 - SEMEST                  | 'ER 2          |         |       |
| AAXCH2A | Foundation Chemistry 2           | Foundation     |         | 10    |
| AMXMA2A | Foundation Mathematics 2         | Foundation     |         | 10    |
| APXPH2A | Foundation Physics 2             | Foundation     |         | 10    |
| EMXDR1A | Foundation Drawing 1             | Foundation     |         | 10    |
| EYCOA2A | Computing Applications 2         | Regular        | 7       |       |
| EYSPA1A | Safety Principles and Law 1      | Regular        | 5       |       |
| НКСОҮ1А | Applied Communication Skills 1.2 | Regular        | 8       |       |
|         | YEAR 2 - SEMEST                  | ER 1           |         |       |
| AAECH1B | Engineering Chemistry 1          | Regular (Augm) | 10      |       |

| AMMAT1B | Mathematics 1           | Regular (Augm) | 10 |  |
|---------|-------------------------|----------------|----|--|
| APHYS1B | Physics 1               | Regular (Augm) | 10 |  |
|         | YEAR 2 - SEMESTER 2     |                |    |  |
| AAECH2A | Engineering Chemistry 2 | Regular        | 10 |  |
| AMMAT2A | Mathematics 2           | Regular        | 10 |  |
| ΑΡΗΥΡ2Α | Physics 2 – Practical   | Regular        | 5  |  |
| ΑΡΗΥΤ2Α | Physics 2 - Theory      | Regular        | 5  |  |
| EMEDR1B | Engineering Drawing 1   | Regular (Augm) | 10 |  |

! "#\$%&' () \*+\$#, (-&("&#. \$&",%/#&#O(&1\$2%/3&#. \$&/#45\$-#&O,+&' (-#,-4\$&#(&1\$2%&6&2-5&73& "(++(O,-8&#. \$&%\$84+2%) (54+\$/9

## 7.2.1.6 Workplace Based Learning

The Diploma in Metallurgical Engineering has a formal six months workplace-based learning component that is coordinated by the Department of Metallurgical Engineering.

## 7.2.2 Advanced Diploma in Metallurgical Engineering (AD0850)

## 7.2.2.1 Admission Requirements

A Diploma in Metallurgical Engineering (NQF level 6, 360 credits) or the old National Diploma: Engineering Metallurgy.

## 7.2.2.2 Programme Duration

It is one-year full-time programme.

## 7.2.2.3 Purpose of the Qualification

The generic purpose of the qualification is spelled out in paragraph 4.2 and must be read in conjunction with the following. The purpose of the qualification Advanced Diploma in Metallurgical Engineering is to develop the necessary knowledge, understanding and skills required for the student's further learning towards becoming a competent practicing Metallurgical Engineering Technologist.

It is intended to subsequently empower candidate Engineering Technologist to demonstrate that they are capable of applying their acquired knowledge,

understanding, skills, attitudes and values in the work environments in South Africa. It is designed also to add value to the qualifying student in terms of enrichment of the person, status and recognition.

| MODULE CODE                   | NAME OF MODULE                             | CREDITS |  |
|-------------------------------|--------------------------------------------|---------|--|
|                               | SEMESTER 1                                 |         |  |
| AMMAT3A                       | Engineering Mathematics                    | 10      |  |
|                               | SEMESTER 2                                 |         |  |
| EBQCO3A                       | Quality Control                            | 10      |  |
| SEMESTER 1 & 2 (Year Modules) |                                            |         |  |
| EYHYD4A                       | Hydrometallurgy                            | 20      |  |
| EYPYR4A                       | Pyrometallurgy                             | 20      |  |
| EYPME4A                       | Physical Metallurgy                        | 20      |  |
| EYMIP4A                       | Mineral Processing                         | 20      |  |
| EYMAM4A                       | Manufacturing Metallurgy                   | 20      |  |
| EYPRO2A                       | Metallurgical Research Methods and Project | 20      |  |

| 7.2.2.4 | Curriculum: Advanced | Diploma in | Metallurgical | Engineering |
|---------|----------------------|------------|---------------|-------------|
|---------|----------------------|------------|---------------|-------------|

#### 7.2.2.5 Career Opportunities

A successful candidate can pursue a career as a technologist in one of the following specialisation fields: Physical Metallurgy or Extractive Metallurgy.

7.2.3 Postgraduate Diploma in Metallurgical Engineering (PG0850)

#### 7.2.3.1 Admission Requirements:

Admission requires a 120 credit Advanced Diploma (NQF level 7) in Metallurgical Engineering.

#### 7.2.3.2 Duration of Programme:

This is a one-year full-time programme.

#### 7.2.3.3 Curriculum: Postgraduate Diploma in Metallurgical Engineering

#### PHYSICAL METALLURGY OPTION

| MODULE CODE | NAME OF MODULE                       | CREDITS |
|-------------|--------------------------------------|---------|
|             | SEMESTER 1                           |         |
| EYPTH2A     | Process Thermodynamics               | 10      |
| EYMKR5A     | Corrosion Engineering                | 10      |
|             | SEMESTER 2                           |         |
| EYHMT5A     | Heat and Mass Transfer               | 10      |
|             | SEMESTER 1 & 2 (Year Modules)        |         |
| EYMAS5A     | Advanced Modelling and Simulation    | 20      |
| EYPRO5A     | Physical Metallurgy Research Project | 30      |
| EYPME5A     | Physical Metallurgy                  | 20      |
| EYMAM5A     | Manufacturing Metallurgy             | 20      |
| EYMAE5A     | Materials Engineering                | 20      |

#### **EXTRACTIVE METALLURGY OPTION**

| MODULE<br>CODE | NAME OF MODULE                         | CREDITS |
|----------------|----------------------------------------|---------|
|                | SEMESTER 1                             |         |
| EYPTH2A        | Process Thermodynamics                 | 10      |
| EYMKR5A        | Corrosion Engineering                  | 10      |
| SEMESTER 2     |                                        |         |
| EYHMT5A        | Heat and Mass Transfer                 | 10      |
|                | SEMESTER 1 & 2 (Year Modules)          |         |
| EYMAS5A        | Advanced Modelling and Simulation      | 20      |
| EYPRO5A        | Extractive Metallurgy Research Project | 30      |
| EYMIP5A        | Mineral Processing                     | 20      |
| EYHYD5A        | Hydrometallurgy                        | 20      |
| EYPYR5A        | Pyrometallurgy                         | 20      |

# 7.2.4 Master of Engineering in Metallurgical Engineering (MEng (Metallurgical Engineering)) (MP0850)

#### 7.2.4.1 Admission Requirements

A BEng Degree or equivalent NQF level 8 qualification including the Postgraduate Diploma.

#### 7.2.4.2 Duration of Programme

The equivalent of one-year, full-time study.

## 6.2.4.3 Programme Structure

This instructional programme comprises of a dissertation only.

## 7.2.4.4 Purpose of the Master of Engineering in Metallurgical Engineering

The purpose of this qualification is to develop a student into a researcher, able to conduct independent research with minimum guidance in a chosen field of Metallurgical Engineering. The outcomes of the research will contribute to knowledge production in the specialisation field. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.4.)

## 7.2.5 Doctor of Engineering in Metallurgical Engineering (DEng (Metallurgical Engineering)) (DP0850)

#### 7.2.5.1 Admission Requirements

A MEng Degree or equivalent NQF level 9 qualification.

#### 7.2.5.2 Duration of Programme

The equivalent of two-year, full-time study.

## 7.2.5.3 Programme Structure

This instructional programme comprises of a dissertation only.

## 7.2.5.4 Purpose of the DEng (Metallurgical Engineering)

The purpose of the qualification is to prove that the candidate is able to conduct independent research with minimum guidance in a chosen field of Metallurgical Engineering. The outcomes of the research will contribute to knowledge production in the specialisation field. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.5.)

#### 7.2.5.5 Assessment

The thesis will be examined by two external and one internal examiner who are subject specialists. Only distinction work will qualify.

#### 7.3 Assessment

The department follows the assessment strategy of formal written exams. The year mark is compiled from a series of not less than three tests and / or a practical mark. The year mark for admittance to the formal examination is 50%. Weights for calculating the year mark as well as the final mark will be reflected in the Learning Guide. All tests, assignments and practical work done during a particular semester, will help learners learn and understand the work.

Some modules follow the assessment strategies of Continuous Assessment (CASS). All marks obtained during the semester will make up the learner's final mark. Each module's Learning Guide will indicate which tests and activities will contribute, according to a pre-determined weight, to the final mark.

#### 7.4 Enquiries

Enquiries may be addressed to:

HoD: Chemical and Metallurgical Engineering Faculty of Engineering & Technology Vaal University of Technology Private Bag X021

VANDERBIJLPARK, 1900

#### HoD

| Tel    | : | +27 16 950 9655     |
|--------|---|---------------------|
| Fax    | : | +27 16 950 9796     |
| e-mail | : | tumisangs@vut.ac.za |

## rethav@vut.ac.za

## **Discipline Coordinator: Metallurgical Engineering**

| Tel       | : | +27 16 950 9165  |
|-----------|---|------------------|
| Fax       | : | +27 16 950 9796  |
| e-mail    | : | peter@vut.ac.za  |
|           |   | rethav@vut.ac.za |
| Website : |   | www.vut.ac.za    |

or

## Postgraduate Office

| Ms N K | okoali |                              |
|--------|--------|------------------------------|
| Tel    | :      | +27 16 950 9288              |
| e-mail | :      | <u>nomathembak@vut.ac.za</u> |

#### Mr S Motsie

| Tel    | : | +27 16 950 7639             |
|--------|---|-----------------------------|
| e-mail | : | <u>sehlabakam@vut.ac.za</u> |

## 8. DEPARTMENT OF CIVIL ENGINEERING

| 8.1 Departmental Staff Details |                       |                              |  |
|--------------------------------|-----------------------|------------------------------|--|
| Surname, Initials & Title      | Designation           | <b>Highest Qualification</b> |  |
| Ochieng', GM (Prof)            | HoD                   | DTech: Eng: Civil            |  |
| Tlakeli, RN (Ms)               | Administrator         | PGDHE                        |  |
| Barnard, APA (Mr)              | Senior Lecturer       | BEng (Hons)                  |  |
| Orando, M (Dr)                 | Senior Lecturer       | PhD                          |  |
| Rwanga, S (Dr)                 | Senior Lecturer       | DTech:Eng:Civil              |  |
| Acheampong, E (Mr)             | Lecturer              | MSc (Bldng & Const)          |  |
| Beer, M (Mrs)                  | Lecturer              | MSc (Civil Eng)              |  |
| Gaborone, K (Mr)               | Lecturer              | BSc (Hons) Eng               |  |
| Lamola, M (Mr)                 | Lecturer              | BTech:Eng:Civil              |  |
| Mukalay, J (Ms)                | Lecturer              | BEng (Civil)                 |  |
| Onyango, F (Mr)                | Lecturer              | MTech:Eng:Civil              |  |
| Chapinduka, M (Ms)             | Laboratory Technician | BTech: Eng: Civil            |  |
| Modise, GS (Mrs)               | Laboratory Technician | BTech: Eng: Civil            |  |
| Phakathi, S (Mr)               | Laboratory Technician | BTech: ICT                   |  |
| Smit M (Mr)                    | Laboratory Technician | BTech: Eng: Civil            |  |

## 8.2 Diploma in Civil Engineering (DI0810)

#### 8.2.1 Programme Structure

**HEQSF Specification:** The qualification Diploma in Civil Engineering is HEQSF aligned and bears the following HEQSF specifications:

| HEQSF Qualification Type      | Diploma               |
|-------------------------------|-----------------------|
| Variant                       | Vocationally oriented |
| NQF Exit Level                | 6                     |
| Minimum Total Credits         | 360                   |
| Minimum Credits at Exit Level | 120                   |

**Duration:** This is a three-year course and consists of five semesters' university attendance (39 modules) and one semester Workplace Based Learning in industry which should be done after completion of the total theoretical part of the Diploma i.e. after the fifth semester (S5) of uninterrupted theoretical training at the University. Each semester consists of approximately sixteen weeks of theoretical studies; each week consisting of lectures, tutorials and in some module's practical work done in laboratories or on site.

## 8.2.2 Purpose of the Qualification

The generic purpose of the qualification is spelled out in paragraph 4.1 and must be read in conjunction with the following:

The purpose of the qualification Diploma in Engineering: Civil Engineering is to develop focused knowledge and skills as well as experience in a work-related context. The Diploma in Engineering: Civil Engineering equips graduates with the knowledge base, theory, skills and methodology of Civil Engineering as a foundation for further training and experience towards becoming a competent Civil engineering technician. This foundation is achieved through a thorough grounding in mathematics and natural sciences specific to the field of Civil Engineering, engineering sciences, engineering design and the ability to apply established methods. Engineering knowledge is complemented by methods for understanding of the impacts of engineering solutions on people and the environment.

## 8.2.3 Fields of Study

Fields of study includes but is not limited to transportation, water, structural, geotechnical, construction management and urban engineering.

## 8.2.4 Career Opportunities

Civil Engineering Technicians could be involved with construction projects such as reinforced concrete, structural steel, timber and masonry structures, roads, bridges, dams, canals, pipelines, water purification, sewage treatment, airports, railways, harbours, housing and services.

There is ample opportunity to attain job satisfaction and attractive financial rewards. Some past students from this department have senior positions at consulting engineering firms, construction companies, government bodies, local authorities and industry.

The following selections of careers are available:

Design Draughtsman, Project Official, Site Agent, Municipal Technician, Engineering Surveyor, Quantity Technician, Designer, Laboratory Technician, Contract Manager, Project Planner, Estimator, Quality Controller or a Geotechnician.

| NSC                | Compulsory Subjects                  | Minimum for the | Notes         |
|--------------------|--------------------------------------|-----------------|---------------|
|                    |                                      | Diploma         |               |
|                    |                                      | programme       |               |
|                    | Mathematics                          | 4               | 3 = 40 - 49%  |
| National<br>Senior | Physical Science<br>English Language | 4               | 4 = 50 - 59%  |
| Certificate        |                                      | -               | 5 = 60 - 69%  |
|                    | Any other modules                    |                 | 6 = 70 - 79%  |
|                    | with a minimum level                 |                 | 7 = 80 - 89%  |
|                    | of 3, excluding Life<br>Orientation  | 12              | 8 = 90 - 100% |
|                    | Total                                | 24*             |               |

| 8.2.5 | Admission Requirements: Diploma in Civil Engineering   |
|-------|--------------------------------------------------------|
| 0.2.5 | Autilission Requirements: Diploma in ervir Engineering |

#### Please note:

- The prospective student's results must meet the statutory and programme admission requirement.
- Bonus points will only be used for selection purposes. In case of a tie and all other scores remaining the same use the actual percentages to differentiate.

- \*Admission requirements for any of the 3-year Diploma programmes in Engineering is a National Senior Certificate with a minimum of 28 and above APS points, with a minimum of 4 for Mathematics, Physical Science and English.
- \*Admission requirements for any of the 4-year extended Diploma programmes in Engineering is a National Senior Certificate with a minimum of 24 – 27 maximum APS points, with a minimum of 4 for Mathematics, Physical Science and English. Students that need more information regarding Extended programmes should liaise with their respective HODs and/or the faculty manager. The main purpose of extended programmes is to widen access and reinforce/improve success.
- All other grade 12 or equivalent certificates will be evaluated against/according to statutory and programme requirements.
- International qualifications: All international qualifications will be evaluated by the International Office based on the Swedish scale and SAQA equivalence.
- Transfers: Applications from students to transfer from other institutions will be dealt with in terms of the Recognition of Prior Learning and CAT policies of VUT.

#### 8.2.6 Assessment

In the five-semester duration that the student undertakes the theoretical component of the qualification, the student's progress is evaluated by means of tests and the presentation of projects and practical reports. At the end of each semester, final examinations are written over a two-week period on all the work done during the semester.

**NB**: It is critical for the learner's success to note that: The exit level modules are evaluated by means of a learner having to show competence in the graduate attribute(s) (GAs) associated with the relevant exit level modules. The exit level modules associated with particular GAs shall be made known to the learner in advance by the Lecturer concerned and the respective rules governing the measure of achievement or none achievement of competence and the consequences thereof shall also be communicated to the learner with further instructions also included in the learner guides and the assessment documents

## 8.2.7 Standard for the award of the qualification

The purpose and level of the qualification will have been achieved when the student has demonstrated:

 The knowledge defined in the Table below (knowledge area characteristics and credits – Diploma in Civil Engineering); and • The skills and applied competence defined in section 4.1 (GAs for Diploma: Engineering).

Table: Knowledge area characteristics and credits (Diploma in Engineering: Civil Engineering)

| Knowledge area                       | Credits |
|--------------------------------------|---------|
| Mathematical Sciences                | 36      |
| Natural Sciences                     | 52      |
| Engineering Sciences                 | 127     |
| Design and Synthesis                 | 28      |
| Computing and Information Technology | 29      |
| Complementary Studies                | 65      |
| Work Integrated Learning             | 60      |
| Total                                | 397     |

#### 8.2.8 Achievement of Competence in Assessed Graduate Attributes

The Department of Civil Engineering at VUT applies a 4-point Likert scale to assess the achievement level of a given Graduate Attribute. The 4-point Likert scale is defined in bands/range of percentage score in the assessed graduate attribute as shown in Table below:

Table: 4-point Likert scale Levels of Graduate Attribute (GA) Acquisition

| Level | Intuitive<br>Label | Band/Range<br>% Score | Achievement statement                 |
|-------|--------------------|-----------------------|---------------------------------------|
| 1     | Emergent           | 0% - 24%              | Not Achieved<br>(Does not meet GA)    |
| 2     | Basic              | 25% - 49%             | Partially Achieved (Does not meet GA) |
| 3     | Adequate           | 50% - 74%             | Achieved (Meet GA)                    |
| 4     | Superior           | 75% - 100%            | Fully Achieved<br>(Meet GA)           |

Levels 1-2 correspond to levels of pre-acquisition. *At level 3, mastery and/or acquisition of an attribute is deemed acceptable in a university setting*. Level 4 designate a level of excellence that may go beyond what is expected in a university setting and may not be reached by all students (Ipperciel & ElAtia, 2014).

## 8.2.9 Presentation of Evidence of Assessment of Graduate Attributes

For transparency and clarity in assessment outcomes, the evidence of assessment of GAs is presented as per the following template prescribed by ECSA.

| Table: Presenting Evide | nce of Assessment of GAs |
|-------------------------|--------------------------|
|-------------------------|--------------------------|

| ECSA Graduate Attribute                                                                                                                           |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| e.g. <b>GA1: Problem Solving</b><br>Apply engineering principles to systematically<br>diagnose and solve <i>well-defined</i> engineering problems | Assessment Details |
| Where is the attribute assessed?                                                                                                                  |                    |
| How is this attribute assessed?                                                                                                                   |                    |
| What is satisfactory performance/achievement?                                                                                                     |                    |
| What is the consequence of unsatisfactory performance/non-achievement?                                                                            |                    |

#### 8.2.10 Curriculum: Diploma in Civil Engineering

| MODULE CODE | NAME OF MODULE                   | CREDITS |
|-------------|----------------------------------|---------|
|             | SEMESTER 1                       |         |
| HKCOX1A     | Applied Communication Skills 1.1 | 8       |
| ASICT1A     | ICT Skills 1                     | 10      |
| AAECH1A     | Engineering Chemistry 1          | 10      |
| EEESK1A     | Engineering Skills 1             | 5       |
| AMMAT1A     | Mathematics 1                    | 10      |
| APHYS1A     | Physics 1                        | 10      |
| EESIN1A     | Social Intelligence 1            | 3       |

| SEMESTER 2 |                                                  |    |  |
|------------|--------------------------------------------------|----|--|
| ΗΚϹΟΥΊΑ    | Applied Communication Skills 1.2                 | 8  |  |
| ECAME1A    | Applied Mechanics 1                              | 10 |  |
| ECCOA2A    | Computing Applications 2                         | 7  |  |
| AAECH2A    | Engineering Chemistry 2                          | 10 |  |
| ECEDR1A    | Engineering Drawing 1                            | 10 |  |
| AMMAT2A    | Mathematics 2                                    | 10 |  |
| ΑΡΗΥΡ2Α    | Physics 2 – Practical                            | 5  |  |
| ΑΡΗΥΤ2Α    | Physics 2 - Theory                               | 5  |  |
| ECSPA1A    | Safety Principles and Law 1                      | 5  |  |
|            | SEMESTER 3                                       |    |  |
| HKCOX2A    | Applied Communication Skills 2.1                 | 8  |  |
| ECCOS1A    | Construction Methods 1                           | 10 |  |
| ECCOM1A    | Construction Materials 1                         | 5  |  |
| ECEDR2A    | Engineering Drawing 2                            | 10 |  |
| EYEGE1A    | Engineering Geology 1                            | 10 |  |
| ECESU1A    | Engineering Surveying 1                          | 10 |  |
| ECSME1A    | Soil Mechanics 1                                 | 5  |  |
| ECST2A     | Theory of Structures 2                           | 10 |  |
|            | SEMESTER 4                                       |    |  |
| HKCOY2A    | Applied Communication Skills 2.2                 | 8  |  |
| ECCEM1A    | Civil Engineering Management 1                   | 10 |  |
| ECCOM2A    | Construction Materials 2                         | 5  |  |
| ECEOS2A    | Elements of Structural Steel and Timber Design 2 | 10 |  |
| ECESU2A    | Engineering Surveying 2                          | 10 |  |
| ECSAN3A    | Structural Analysis 3                            | 10 |  |
| ECTEN1A    | Transportation Engineering 1                     | 10 |  |
| ECWEN1A    | Water Engineering 1                              | 10 |  |

| SEMESTER 5 |                                                  |    |  |
|------------|--------------------------------------------------|----|--|
| ECCEM2A    | Civil Engineering Management 2                   | 10 |  |
| ECDOC1A    | Documentation 1                                  | 10 |  |
| ECEOR3A    | Elements of Reinforced Concrete Masonry Design 3 | 10 |  |
| ECFMC2A    | Fluid Mechanics 2 (Civil)                        | 10 |  |
| ECSME2A    | Soil Mechanics 2                                 | 10 |  |
| ECSAN4A    | Structural Analysis 4                            | 10 |  |
| ECTEN2A    | Transportation Engineering 2                     | 10 |  |
| SEMESTER 6 |                                                  |    |  |
| ECEXL1A    | Workplace Based Learning 1                       | 60 |  |

## Curriculum: Diploma in Civil Engineering (4 year Extended programme) – DE0811

The purpose of the Extended Diploma programme is to assist students who enter the University with APS score of 24 - 27 by giving them more time to reach the level of competency similar to those who enter with higher APS scores. The programme extends the 3-year programme into 4 years by spreading the first year of study over 2 years with the inclusion of foundational modules as well as mainstream programme modules. The foundation modules in the first year of study will help students to improve their competency in Maths, Physics, Chemistry and Drawing. In the second year of study, the students will augment their foundation knowledge of Maths, Physics, Chemistry and Drawing to reach the level of the mainstream programme. Students are required to pass all modules in both years of the foundation phase to be able to proceed to the next year of study.

| MODULE  | NAME OF MODULE           | ТҮРЕ       | CREDITS |       |
|---------|--------------------------|------------|---------|-------|
| CODE    |                          |            | Regular | Found |
|         | YEAR 1 - SEMEST          | ER 1       |         |       |
| AAXCH1A | Foundation Chemistry 1   | Foundation |         | 10    |
| AMXMA1A | Foundation Mathematics 1 | Foundation |         | 10    |
| APXPH1A | Foundation Physics 1     | Foundation |         | 10    |
| ASICT1A | ICT Skills 1             | Regular    | 10      |       |
| EEESK1A | Engineering Skills 1     | Regular    | 5       |       |

| EESIN1A | Social Intelligence 1                    | Regular        | 3  |    |
|---------|------------------------------------------|----------------|----|----|
| HKCOX1A | Applied Communication Skills 1.1 Regular |                | 8  |    |
|         | YEAR 1 - SEMEST                          | 'ER 2          |    |    |
| AAXCH2A | Foundation Chemistry 2                   | Foundation     |    | 10 |
| AMXMA2A | Foundation Mathematics 2                 | Foundation     |    | 10 |
| APXPH2A | Foundation Physics 2                     | Foundation     |    | 10 |
| EMXDR1A | Foundation Drawing 1                     | Foundation     |    | 10 |
| ECCOA2A | Computing Applications 2                 | Regular        | 7  |    |
| ECSPA1A | Safety Principles and Law 1              | Regular        | 5  |    |
| НКСОҮ1А | Applied Communication Skills 1.2         | Regular        | 8  |    |
|         | YEAR 2 - SEMEST                          | ER 1           |    |    |
| AAECH1B | Engineering Chemistry 1                  | Regular (Augm) | 10 |    |
| AMMAT1B | Mathematics 1                            | Regular (Augm) | 10 |    |
| APHYS1B | Physics 1                                | Regular (Augm) | 10 |    |
| EMEDR1B | Engineering Drawing 1                    | Regular (Augm) | 10 |    |
|         | YEAR 2 - SEMEST                          | ER 2           |    |    |
| AAECH2A | Engineering Chemistry 2                  | Regular        | 10 |    |
| AMMAT2A | Mathematics 2                            | Regular        | 10 |    |
| ΑΡΗΥΡ2Α | Physics 2 – Practical                    | Regular        | 5  |    |
| ΑΡΗΥΤ2Α | Physics 2 - Theory                       | Regular        | 5  |    |
| ECAME1B | Applied Mechanics 1                      | Regular (Augm) | 10 |    |

! "#\$%&' () \*+\$#, (-&("&#. \$&",%/#&#O(&1\$2%/3&#. \$&/#45\$-#&O,+&' (-#,-4\$&#(&1\$2%&6&2-5&73& "(++(O,-8&#. \$&%\$84+2%) (54+\$/9

## 8.2.11 Workplace Based Learning (WBL)

In order to qualify for the Diploma in Civil Engineering, a minimum six-month period of suitable work integrated learning (WIL) in addition to the prescribed theoretical University training must be successfully completed. Work integrated learning refers to that component of co-operative education that can only be

conducted by the employer in the workplace. This training provides the student with an opportunity to apply and develop the academic knowledge he/she received at the university to relevant problem situations in industry and exposure to typical organizational culture, human relations and working conditions. With suitable guidance and supervision, the student is taught the responsibility to work independently and to develop an awareness of the ethics and requirements of industry. Work integrated learning may be done after completion of the total theoretical part of the Diploma, after S5 of uninterrupted theoretical training at the University. This will give the student enough theoretical knowledge to benefit from the training, especially as they progress through the more advanced module matter of S5 courses.

To ensure the effectiveness of the work integrated learning, employer and University must co-operate as partners. The student will enrol for the module Civil Engineering Practice at the University. The employer will act as an examiner and must indicate the level of achievement of competence of the student in line with Graduate Attribute number 11 (Workplace Practice) for the qualification Diploma in Engineering. The assessment of the level of GA acquisition shall be in line with the following typifying exemplified associated competency indicators:

- i. Orientation to the working environment is described in terms of company structure and conventions, rules, policies, working hours, dress codes and reporting lines.
- ii. Labour practices used in the workplace are described in accordance with relevant legislation.
- iii. Workplace safety is described in terms of the application of relevant safety, health and environmental legislation.
- iv. General administration procedures are described in terms of how they operate and the key purpose.
- Work activities are conducted in a manner suited to the work context.
   *Range*: Work activities include assisting, contributing, observing and applying at least four of the specific practices below:
  - Engineering processes, skills and tools, including measurement;
  - Investigations, experiments and data analysis;
  - Problem solving techniques;
  - Application of scientific and engineering knowledge;
  - Engineering planning and design;

- Professional and technical communication;
- Individual and teamwork; or
- The impact of engineering activity on health, safety and the environment.
- vi. Knowledge and understanding gained from the work-integrated learning period is reported in a prescribed format, using appropriate language and style.

To pass the student must obtain a minimum of Level 3 (adequate achievement: 50% - 74% Range Score as stipulated in the 4-Point Likert Scale in the previous Table provided in the section under **Assessment**), and to pass with distinction  $\ge 75\%$  (Level 4). The University acts as a moderator for the module.

The student must have a mentor, who will certify that the student has completed the work required satisfactorily.

During work integrated learning, the student must submit three-monthly progress reports (10 pages minimum) that contain sufficient information so that the training received can be evaluated. This report must be approved by the student's mentor before being submitted to the Department of Civil Engineering, Vaal University of Technology.

On completion of the training period, the student must submit Semester report and Project (20 pages minimum). All reports should be ring-bounded otherwise it will not be accepted for marking.

#### 8.3 Advanced Diploma in Civil Engineering (AD0810)

#### 8.3.1 Programme Structure

**HEQSF Specification:** The qualification Advanced Diploma in Civil Engineering is HEQSF aligned and bears the following HEQSF specifications:

| HEQSF Qualification Type      | Advanced Diploma        |
|-------------------------------|-------------------------|
| Variant                       | Professionally oriented |
| NQF Exit Level                | 7                       |
| Minimum Total Credits         | 140                     |
| Minimum Credits at Exit Level | 120                     |

#### Qualification title: Advanced Diploma in Civil Engineering

**Duration:** This is a one-year full-time course and consists of two semesters' university attendance (13 modules) that includes two (2) modules on Civil Engineering Research Methods and Project.

Each semester consists of approximately sixteen weeks of theoretical studies; each week consisting of lectures, tutorials and in some module's practical work done in laboratories or on site.

## 8.3.2 Purpose of the Qualification

The generic purpose of the qualification is spelled out in paragraph 4.2 and must be read in conjunction with the following:

This qualification is primarily industry oriented. The knowledge emphasises general principles and application or technology transfer. The qualification provides students with a sound knowledge base in the field of Civil Engineering and it's respective disciplines e.g. Structural, Water, Transportation, Environmental, and Urban Engineering and the ability to apply their knowledge and skills to becoming a competent Professional Civil Engineering Technologist, while equipping them to undertake more specialised and intensive learning. Programmes leading to this qualification tend to have a strong professional or career focus and holders of this qualification are normally prepared to enter a specific niche in the labour market.

Specifically, the purpose of educational programmes designed to meet this qualification are to build the necessary knowledge, understanding, abilities and skills required for further learning towards becoming a competent practicing civil engineering technologist. This qualification provides:

- Preparation for careers in civil engineering and areas that potentially benefit from engineering skills, for achieving technical proficiency and to contribute to the economy and national development;
- The educational base required for registration as a Professional Civil Engineering Technologist with ECSA.
- Entry to NQF level 8 programmes e.g. Honours, Post Graduate Diploma and B Eng Programmes and then to proceed to Masters Programmes.

Civil engineering students completing this qualification will demonstrate competence in all the Graduate Attributes (Exit Level Outcomes) contained in this standard.

## 8.3.3 Fields of Study

Fields of study includes but is not limited to transportation, water, structural, geotechnical, construction management and urban engineering.

## 8.3.4 Career Opportunities

Professional Civil Engineering Technologists could be involved with construction projects such as reinforced concrete, structural steel, timber and masonry structures, roads, bridges, dams, canals, pipelines, water purification, sewage treatment, airports, railways, harbours, housing and services.

There is ample opportunity to attain job satisfaction and attractive financial rewards. Some past students from this department have senior positions at consulting engineering firms, construction companies, government bodies, local authorities and industry.

The following selections of careers are available:

Design Draughtsperson, Project Official, Site Agent, Municipal Technologist, Engineering Surveyor, Designer, Senior Laboratory Technologist, Contract Manager, Project Planner, Estimator, Quality Controller or a Geo-technologist.

## 8.3.5 Admission Requirements: Advanced Diploma in Civil Engineering

A student with relevant qualification on NQF level 6 (min 360 credits) can enter this Advanced Diploma in Civil Engineering on NQF level 7 (minimum 120 credits, ECSA 140 credits) or a relevant qualification (e.g. Bachelors in Civil Engineering).

## 8.3.6 Assessment

In the two (2) semester duration that the student undertakes the theoretical component of the qualification, the student's progress is evaluated by means of tests and the presentation of projects and practical reports. At the end of each semester, final examinations are written over a two-week period on all the work done during the semester. The Research Methodology and Research Project will be assessed by means of Continuous Assessment (CASS) strategy through project proposal writing and presentation, presentation of project work and portfolio of evidence for the project undertaken.

**NB:** It is critical for the learner's success to note that: All subjects/modules presented at this level are exit level modules and shall be evaluated by means of a learner having to show competence in ALL the ten (10) graduate attribute(s) (GAs)

associated with the relevant exit level modules. The exit level modules associated with particular GAs shall be made known to the learner in advance by the Lecturer concerned and the respective rules governing the measure of achievement or none achievement of competence and the consequences thereof shall also be communicated to the learner with further instructions also included in the learner guides and the assessment documents.

## 8.3.7 Standard for the award of the qualification

The purpose and level of the qualification will have been achieved when the student has demonstrated:

- The knowledge defined in the Table below (knowledge area characteristics and credits Advanced Diploma in Civil Engineering); and
- The skills and applied competence defined in paragraph 4.2 (GAs for Advanced Diploma in Civil Engineering).

Table: Knowledge area characteristics and credits (Advanced Diploma in Civil Engineering)

| Knowledge area                       | Credits |
|--------------------------------------|---------|
| Mathematical Sciences                | 18      |
| Natural Sciences                     | 15      |
| Engineering Sciences                 | 30      |
| Engineering Design and Synthesis     | 26      |
| Computing and Information Technology | 18      |
| Complementary Studies                | 33      |
| Total                                | 140     |

## 8.3.8 Achievement of Competence in Assessed Graduate Attributes

The Department of Civil Engineering at VUT applies a 4-point Likert scale to assess the achievement level of a given Graduate Attribute. The 4-point Likert scale is defined in bands/range of percentage score in the assessed graduate attribute as shown in Table below:

Table: 4-point Likert scale Levels of Graduate Attribute (GA) Acquisition

| Level | Intuitive<br>Label | Band/Range<br>Score | % | Achievement statement |  |
|-------|--------------------|---------------------|---|-----------------------|--|
|-------|--------------------|---------------------|---|-----------------------|--|

| 1 | Emergent | 0% - 24%   | Not Achieved<br>(Does not meet GA)       |
|---|----------|------------|------------------------------------------|
| 2 | Basic    | 25% - 49%  | Partially Achieved<br>(Does not meet GA) |
| 3 | Adequate | 50% - 74%  | Achieved (Meet GA)                       |
| 4 | Superior | 75% - 100% | Fully Achieved (Meet GA)                 |

Levels 1-2 correspond to levels of pre-acquisition. At level 3, mastery and/or acquisition of an attribute is deemed acceptable in a university setting. Level 4 designate a level of excellence that may go beyond what is expected in a university setting and may not be reached by all students (Ipperciel & ElAtia, 2014).

#### 8.3.9 Presentation of Evidence of Assessment of Graduate Attributes

For transparency and clarity in assessment outcomes, the evidence of assessment of GAs is presented as per the following template prescribed by ECSA:

 ECSA Graduate Attribute

 e.g. GA1: Problem Solving

 Apply engineering principles to systematically

 diagnose and solve broadly defined engineering

 problems

 Where is the attribute assessed?

 How is this attribute assessed?

 What is satisfactory performance/achievement?

 What is the consequence of unsatisfactory

 performance/non-achievement?

Table: Presenting Evidence of Assessment of GAs

#### 8.3.10 Curriculum: Advanced Diploma in Civil Engineering

| MODULE CODE | NAME OF MODULE                   | CREDITS |
|-------------|----------------------------------|---------|
|             | SEMESTER 1                       |         |
| ECMAT4A     | Civil Engineering Materials      | 10      |
| ECHTE4A     | Highway and Traffic Engineering  | 10      |
| ECSTR4A     | Structural Analysis              | 10      |
| ECWWE4A     | Water and Wastewater Engineering | 10      |

| ECENS4A | Environmental Studies                         | 10 |
|---------|-----------------------------------------------|----|
| ECREM4A |                                               |    |
|         | Civil Engineering Research Methodology        | 15 |
|         | SEMESTER 2                                    |    |
| ECEDE4A | Earthworks Design                             | 10 |
| ECSRD4A | Steel and Reinforced Concrete Design          | 10 |
| ECRWE4A | Railway Engineering                           | 10 |
| ECRED4A | Reticulation Design                           | 10 |
| FCBDC4A | Business Development in the Civil Engineering | 10 |
| LCBDC4A | Environment                                   | 10 |
| ECMTT4A | Management Tools and Techniques               | 10 |
| ECREP4A | Civil Engineering Research Project            | 15 |

## 8.4 Postgraduate Diploma in Civil Engineering (PG0810)

#### 8.4.1 Programme Structure

**HEQSF and NQF Specification:** The qualification Postgraduate Diploma in Civil Engineering is HEQSF aligned and bears the following HEQSF specifications:

| HEQSF Qualification Type      | Postgraduate Diploma    |
|-------------------------------|-------------------------|
| Variant                       | Professionally-oriented |
| NQF Exit Level                | 8                       |
| Minimum Total Credits         | 140                     |
| Minimum Credits at Exit Level | 120                     |

## Qualification title: Postgraduate Diploma (PGD) in Civil Engineering

**Duration:** This is a one-year full-time programme (or a minimum two years parttime programme). Consists of two semesters' university attendance (8 modules) that includes two (2) modules on Civil Engineering Research Project. Each semester consists of approximately sixteen weeks of theoretical studies; each week consisting of lectures, tutorials and in some module's practical work done in laboratories or on site.

## 8.4.2 Purpose of the Qualification

The Postgraduate Diploma in Civil Engineering is a postgraduate qualification, exhibiting the characteristics that it prepares students for industry and research. This qualification typically follows a Bachelor's Degree, Advanced Diploma or relevant NQF level 7 qualifications and serves to consolidate and deepen the student's expertise in the field of Civil Engineering and to develop research capacity in the methodology and techniques of Civil Engineering disciplines.

This qualification demands a high level of theoretical engagement and intellectual independence. It also requires the student to have the ability to relate knowledge to a range of contexts in order to undertake professional or highly-skilled work.

This qualification provides:

- 1. Preparation for a career in civil engineering itself and areas that potentially benefit from civil engineering skills, for achieving technological proficiency and to make a contribution to the economy and national development; and
- 2. Entry to NQF level 9 Master's Degree programmes in civil engineering e.g. MSc/MEng
- 3. Pathway for registration as a Candidate Engineer

Civil Engineering students completing this qualification will demonstrate competence in all the graduate attributes contained in the ECSA Document for the Qualification Standard for Postgraduate Diploma in Engineering Technology: NQF Level 8 (Document No.: E-09-PGDip).

## 8.4.3 Fields of Study

Fields of study include transportation, water, structural, geotechnical, project and construction management and environmental engineering.

## 8.4.4 Career Opportunities

Postgraduate Diploma in Civil Engineering prepares candidates with a stronger and deeper knowledge in the disciplines of civil engineering. The graduates could be involved in research to solve complex civil engineering problems. The structure of the programme is such that the candidates acquire competencies that meet the educational requirements for registration in the category candidate engineer. As a

researcher or engineer, the graduates could be involved at a higher level, with construction projects such as reinforced concrete, structural steel, timber and masonry structures, roads, bridges, dams, canals, pipelines, water purification, sewage treatment, airports, railways, harbours, housing and services, and environmental engineering related works.

## 8.4.5 Admission Requirements: PGD in Civil Engineering

A student with relevant qualification on NQF level 7 (min 120 credits) typically a Bachelor's Degree, Advanced Diploma or relevant NQF level 7 qualifications can enter this Postgraduate Diploma in Civil Engineering on NQF level 8 (minimum 120 credits, ECSA 140 credits).

## 8.4.6 Assessment

In the two (2) semester duration that the student undertakes the theoretical component of the qualification, the student's progress is evaluated by means of tests and the presentation of projects and practical reports. At the end of each semester, final examinations are written over a two-week period on all the work done during the semester. The Research Projects will be assessed by means of Continuous Assessment (CASS) strategy through project proposal writing and presentation, presentation of project work and portfolio of evidence for the project undertaken.

**NB:** It is critical for the learner's success to note that: All subjects/modules presented at this level are exit level modules and shall be evaluated by means of a learner having to show competence in ALL the twelve (12) graduate attribute(s) (GAs) associated with the relevant exit level modules. The exit level modules associated with particular GAs shall be made known to the learner in advance by the Lecturer concerned and the respective rules governing the measure of achievement or none achievement of competence and the consequences thereof shall also be communicated to the learner with further instructions also included in the learner guides and the assessment documents.

## 8.4.7 Standard for the award of the qualification

The qualification may be awarded when the qualification standard has been met or exceeded. The measure of this achievement is when the student has demonstrated:

- The knowledge defined in the Table below (knowledge area characteristics and credits Postgraduate Diploma in Engineering: Civil Engineering); and
- The skills and applied competence defined in the ECSA Document for the Qualification Standard for Postgraduate Diploma in Engineering Technology: NQF Level 8 (Document No.: E-09-PGDip) – Graduate Attributes for postgraduate Diploma in Engineering Technology..

Table: Knowledge area characteristics and credits (Postgraduate Diploma in Civil Engineering)

| Knowledge area                             | Credits |
|--------------------------------------------|---------|
| Mathematical Sciences                      | 7       |
| Natural Sciences                           | 14      |
| Engineering Sciences                       | 42      |
| Engineering Design & Synthesis             | 28      |
| Computing and IT                           | 7       |
| Complementary Studies                      | 7       |
| Available for re-allocation in above areas | 35      |
| Total                                      | 140     |

#### 8.4.8 Achievement of Competence in Assessed Graduate Attributes

The Department of Civil Engineering at VUT applies a 4-point Likert scale to assess the achievement level of a given Graduate Attribute. The 4-point Likert scale is defined in bands/range of percentage score in the assessed graduate attribute as shown in Table below:

| Level | Intuitive<br>Label | Band/Range %<br>Score | Achievement statement                    |
|-------|--------------------|-----------------------|------------------------------------------|
| 1     | Emergent           | 0% - 24%              | Not Achieved<br>(Does not meet GA)       |
| 2     | Basic              | 25% - 49%             | Partially Achieved<br>(Does not meet GA) |
| 3     | Adequate           | 50% - 74%             | Achieved (Meet GA)                       |
| 4     | Superior           | 75% - 100%            | Fully Achieved (Meet GA)                 |

Table: 4-point Likert scale Levels of Graduate Attribute (GA) Acquisition

Levels 1-2 correspond to levels of pre-acquisition. At level 3, mastery and/or acquisition of an attribute is deemed acceptable in a university setting. Level 4 designate a level of excellence that may go beyond what is expected in a university setting and may not be reached by all students (Ipperciel & ElAtia, 2014).

## 8.4.9 Presentation of Evidence of Assessment of Graduate Attributes

For transparency and clarity in assessment outcomes, the evidence of assessment of GAs is presented as per the following template prescribed by ECSA:

| ECSA Graduate Attribute                                                             |                    |
|-------------------------------------------------------------------------------------|--------------------|
| e.g. GA1: Problem Solving                                                           |                    |
| Identify, formulate, analyse and solve complex problems creatively and innovatively | Assessment Details |
| Where is the attribute assessed?                                                    |                    |
| How is this attribute assessed?                                                     |                    |
| What is satisfactory performance/achievement?                                       |                    |
| What is the consequence of unsatisfactory performance/non-achievement?              |                    |

Table: Presenting Evidence of Assessment of GAs

## 8.4.10 Curriculum: Postgraduate Diploma in Civil Engineering

| MODULE CODE                                 | NAME OF MODULE                                   | CREDITS |  |
|---------------------------------------------|--------------------------------------------------|---------|--|
| SEMESTER 1                                  |                                                  |         |  |
| ECEEN5A                                     | Environmental Engineering                        | 10      |  |
| ECGTE5A                                     | Geotechnical Engineering                         | 20      |  |
| ECPMC5A Project and Construction Management |                                                  | 10      |  |
| ECRPX5A                                     | Research Project in Civil Engineering (Module 1) | 15      |  |
| SEMESTER 2                                  |                                                  |         |  |
| ECSTE5A Structural Engineering              |                                                  | 20      |  |
| ECTEN5A Transportation Engineering 2        |                                                  | 20      |  |
| ECWEN5A                                     | Water Engineering                                | 20      |  |

| 1 |         |                                                  | i I |  |
|---|---------|--------------------------------------------------|-----|--|
|   | ECRPY5A | Research Project in Civil Engineering (Module 2) | 25  |  |

#### 8.5 Master of Engineering (MEng) in Civil Engineering (MP0810)

#### 8.5.1 Purpose of the MEng in Civil Engineering

The purpose of this qualification is to develop a student into a researcher, able to conduct independent research with minimum guidance in a chosen field of Civil Engineering. The outcomes of the research will contribute to knowledge production in the specialisation field. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.4)

#### 8.5.2 Admission Requirements

A BEng degree or equivalent level 8 qualification including the Postgraduate Diploma in Civil Engineering.

Proof of successful completion of a Vaal University of Technology approved course in Research Methodology.

Ad hoc cases will be treated on merit.

#### 8.5.3 Duration of Programme

The equivalent of one-year full-time study.

#### 8.5.4 Programme Structure

This instructional programme comprises of a thesis only.

#### 8.5.5 Assessment

The Masters Dissertation/thesis is assessed both internally and externally. An average mark is calculated from the allocations made by both the internal and

external examiners. A pass mark of 50% is required for the qualification to be awarded.

#### 8.6 Doctor of Engineering in Civil Engineering (DP0810)

#### 8.6.1 Purpose of the DEng in Civil Engineering

The purpose of the qualification is to develop a researcher who will make a significant and original contribution to knowledge in a specialised area of civil engineering and technology. To develop a researcher in civil engineering with advanced abilities, to independently apply civil engineering design, synthesis, and related principles, to specific problems of society at large.

One of the main objectives in this process is to develop an advanced capability to conduct engineering research of an original nature. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.5.)

#### 8.6.2 Admission Requirements

Master of Engineering in Civil Engineering or equivalent level 9 qualification.

Ad hoc cases will be treated on merit.

#### 8.6.3 Duration of Programme

At least two years full-time research, concluded with a Doctoral Thesis.

#### 8.6.4 Assessment

The Doctoral Thesis is assessed both internally and externally. No marks awarded. The thesis is assessed as either a Pass or Fail. The Doctorate is awarded when all examiners prescribe a Pass for the thesis.

#### 8.7 Enquiries

Enquiries may be addressed to:

#### **HoD: Civil Engineering**

Faculty of Engineering & Technology

Vaal University of Technology Private Bag X021 VANDERBIJLPARK, 1900

| Tel     | : | +27 16 950 9241    |
|---------|---|--------------------|
| Fax     | : | +27 16 950 9957    |
| e-mail  | : | georgeo@vut.ac.za  |
|         |   | rosaliat@vut.ac.za |
| Website | : | www.vut.ac.za      |

or

## Postgraduate Office

| Ms N K | okoali |                              |
|--------|--------|------------------------------|
| Tel    | :      | +27 16 950 9288              |
| e-mail | :      | <u>nomathembak@vut.ac.za</u> |

## Mr S Motsie

| Tel    | : | +27 16 950 7639             |
|--------|---|-----------------------------|
| e-mail | : | <u>sehlabakam@vut.ac.za</u> |

## 9. DEPARTMENT OF ELECTRICAL ENGINEERING

## 9.1 ELECTRICAL ENGINEERING: ELECTRONIC ENGINEERING

| Surname, Initials & Title | Designation                                 | Highest<br>Qualification |  |
|---------------------------|---------------------------------------------|--------------------------|--|
| Langa, HM (Dr)            | HoD                                         | DPhil Eng                |  |
| Cronjé, DJ (Mr)           | Discipline Coordinator                      | MSc                      |  |
| Mwale RZ (Ms)             | Administrator                               | PG Dip (HE)              |  |
| Dicks, DA (Prof)          | Director: EDSU                              | DTech                    |  |
| Bekker, WJ (Prof)         | Head: Research Centre<br>Alternative Energy | PhD                      |  |
| Joubert, MJ (Mr)          | Senior Lecturer                             | MDip Tech                |  |
| Sutherland, G (Dr)        | Senior Lecturer                             | PhD                      |  |
| Viljoen, M (Mr)           | Senior Lecturer                             | MTech                    |  |
| Vacant                    | Senior Lecturer                             |                          |  |
| Vacant                    | Senior Lecturer                             |                          |  |
| Jacobs, SJ (Mr)           | Lecturer                                    | BTech                    |  |
| Kotsi, NL (Mr)            | Lecturer                                    | NHD                      |  |
| Mokautu, EMP (Mr)         | Lecturer                                    | MSc                      |  |
| Moletsane, FM (Mr)        | Lecturer                                    | BTech                    |  |
| Mugwabana, M (Mr)         | Lecturer                                    | BTech                    |  |
| Schoeman, RM (Mr)         | Lecturer                                    | MTech                    |  |
| Viljoen, E (Mr)           | Lecturer                                    | BTech                    |  |
| Vacant                    | Lecturer                                    |                          |  |
| Vacant                    | Lecturer                                    |                          |  |

#### Discipline Staff Details (Electronic Engineering)

| Vacant             | Lecturer             |                 |
|--------------------|----------------------|-----------------|
| Greeff, R (Mr)     | Technician           | BTech           |
| Mawelele, T (Mr)   | Technician           | BTech           |
| Akinwunmi, AT (Mr) | Technologist         | MTech           |
| Thomas, JJP (Mr)   | Laboratory Assistant | Snr Certificate |

#### 9.1.1 Diploma in Electrical Engineering: Electronic (DI0823)

#### 9.1.1.1 Programme Structure

Three years full-time qualification, min 360 credits, NQF level 6. Sixty credits are allocated to Work Integrated Learning (WIL). WIL can take various forms including simulated learning, work-directed theoretical learning, problem-based learning, project-based learning and Workplace Based Learning. The Workplace Based Learning will take place in Industry.

### 9.1.1.2 Purpose of the Diploma in Electrical Engineering: Electronic

The generic purpose of the qualification is spelled out in paragraph 4.1 and must be read in conjunction with the following: The purpose of the qualification Diploma in Electrical Engineering: Electronic is to develop the necessary knowledge, understanding and skills required for the student's further learning towards becoming a competent practicing Electronic Engineering Technician. It is intended to subsequently empower candidate Engineering Technicians to demonstrate that they are capable of applying their acquired knowledge, understanding, skills, attitudes, and values in the work environment in South Africa. It is designed also to add value to the qualifying student in terms of enrichment of the person, status, and recognition.

| NSC                               | Compulsory Subjects                                 | Minimum for the<br>Diploma<br>programme | Notes                                                        |
|-----------------------------------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|
| National<br>Senior<br>Certificate | Mathematics<br>Physical Science<br>English Language | 4<br>4<br>4                             | 3 = 40 - 49%<br>4 = 50 - 59%<br>5 = 60 - 69%<br>6 = 70 - 79% |

| 9.1.1.3 | Admission | Requirements |
|---------|-----------|--------------|
|---------|-----------|--------------|

| Any other subjects<br>with a minimum level<br>of 3, excluding Life |     | 7 = 80 - 89%<br>8 = 90 - 100% |
|--------------------------------------------------------------------|-----|-------------------------------|
| Orientation                                                        | 12  |                               |
| Total                                                              | 24* |                               |

#### Please note:

- The prospective student's results must meet the statutory and programme admission requirement.
- Bonus points will only be used for selection purposes. In case of a tie and all other scores remaining the same use the actual percentages to differentiate.
- \*Admission requirements for any of the 3-year Diploma programmes in Engineering is a National Senior Certificate with a minimum of 28 and above APS points, with a minimum of 4 for Mathematics, Physical Science and English.
- \*Admission requirements for any of the 4-year extended Diploma programmes in Engineering is a National Senior Certificate with a minimum of 24 – 27 maximum APS points, with a minimum of 4 for Mathematics, Physical Science and English. Students that need more information regarding Extended programmes should liaise with their respective HODs and/or the faculty manager. The main purpose of extended programmes is to widen access and reinforce/improve success.
- All other grade 12 or equivalent certificates will be evaluated against/according to statutory and programme requirements.
- International qualifications: All international qualifications will be evaluated by the International Office based on the Swedish scale and SAQA equivalence.
- Transfers: Applications from students to transfer from other institutions will be dealt with in terms of the Recognition of Prior Learning and CAT policies of VUT.

## 9.1.1.4 Career Opportunities

A successful candidate can pursue a career as a technician in one of the following specialisation fields: Electronic design and development; Electronic maintenance; Electronic communication design and development.

| MODULE CODE | NAME OF MODULE                   | CREDITS |  |  |
|-------------|----------------------------------|---------|--|--|
| SEMESTER 1  |                                  |         |  |  |
| HKCOX1A     | Applied Communication Skills 1.1 | 8       |  |  |
| EEESK1A     | Engineering Skills 1             | 5       |  |  |
| EPEEN1A     | Electrical Engineering 1         | 10      |  |  |

#### 9.1.1.5 Curriculum: Diploma in Electrical Engineering: Electronic

| ASICT1A | ICT Skills 1                     | 10 |
|---------|----------------------------------|----|
| AMMAT1A | Mathematics 1                    | 10 |
| APHYS1A | Physics 1                        | 10 |
| EESIN1A | Social Intelligence 1            | 3  |
|         | ADDITIONAL MODULE                |    |
| AAECH1A | Engineering Chemistry 1          | 10 |
|         | SEMESTER 2                       |    |
| HKCOY1A | Applied Communication Skills 1.2 | 8  |
| EECOA2A | Computing Applications 2         | 7  |
| EIDSY1A | Digital Systems 1                | 10 |
| EPEEN2A | Electrical Engineering 2         | 10 |
| AMMAT2A | Mathematics 2                    | 10 |
| EEELE1A | Electronics 1                    | 10 |
| EEWPR1A | Project 1 (WIL - Electronic)     | 7  |
| EESPA1A | Safety Principles And Law 1      | 5  |
|         | ADDITIONAL MODULE                |    |
| EIPRI1A | Process Instrumentation 1        | 10 |
| APHYT2A | Physics 2 (Theory)               | 5  |
| APHYP2A | Physics 2 (Practical)            | 5  |
|         | SEMESTER 3                       |    |
| HKCOX2A | Applied Communication Skills 2.1 | 8  |
| EIDSY2A | Digital Systems 2                | 10 |
| EEELE2A | Electronics 2                    | 10 |
| EEWPR2A | Project 2 (WIL - Electronic)     | 7  |
| EECAD1A | Electrical CAD 1                 | 10 |
| AMMAT3A | Mathematics 3                    | 10 |
| EEECO2A | Electronic Communication 2       | 10 |
|         | ADDITIONAL MODULE                |    |
| EIENP1A | Engineering Programming 1        | 10 |
| BHMAN1A | Management 1                     | 10 |
| EINET1A | Networks 1                       | 10 |

| SEMESTER 4    |                                    |    |  |  |
|---------------|------------------------------------|----|--|--|
| НКСОҮ2А       | Applied Communication Skills 2.2   | 8  |  |  |
| EEELE3A       | Electronics 3                      | 10 |  |  |
| EEWPR3A       | /PR3A Project 3 (WIL - Electronic) |    |  |  |
| EEDCO2A       | Digital Communication 2            | 10 |  |  |
| EECAD2A       | Electrical CAD 2                   | 10 |  |  |
| EEMET3A       | Measurement Technology 3           | 10 |  |  |
| EEPEL3A       | Power Electronics 3                | 10 |  |  |
|               | CHOICE MODULE                      |    |  |  |
| EICSY2A       | Control Systems 2                  | 10 |  |  |
| EIENP2A       | Engineering Programming 2          | 10 |  |  |
| EIPRI2A       | Process Instrumentation 2          | 10 |  |  |
| EIDCS1A       | Digital Control Systems 1          | 10 |  |  |
|               | SEMESTER 5                         |    |  |  |
| EEOEL3A       | Opto-Electronics 3                 | 10 |  |  |
| EEWPR4A       | Project 4 (WIL - Electronic)       | 8  |  |  |
| EEMIC3A       | Microwave Communication 3          | 10 |  |  |
| EERAD3A       | Radio Engineering 3                | 10 |  |  |
| EETXR3A       | Transmission 3 (Radio Frequency)   | 10 |  |  |
|               | ADDITIONAL MODULE                  |    |  |  |
| EEPEL4A       | Power Electronics 4                | 10 |  |  |
| EIENP3A       | Engineering Programming 3          | 10 |  |  |
| SEMESTER 6    |                                    |    |  |  |
| WBL Placement |                                    |    |  |  |
| EEEXL1A       | Experiential Learning 1            | 14 |  |  |
| EEEXL2A       | Experiential Learning 2            | 16 |  |  |
| EEPRJ4A       | Engineering Project 4              | 30 |  |  |

Curriculum: Diploma in Electrical Engineering: Electronic (4 year Extended programme) – DE0863

The purpose of the Extended Diploma programme is to assist students who enter the University with APS score of 24 - 27 by giving them more time to reach the level of competency similar to those who enter with higher APS scores. The programme extends the 3-year programme into 4 years by spreading the first year of study over 2 years with the inclusion of foundational modules as well as mainstream programme modules. The foundation modules in the first year of study will help students to improve their competency in Maths, Physics and Chemistry. In the second year of study, the students will augment their foundation knowledge of Maths, Physics and Chemistry to reach the level of the mainstream programme. Students are required to pass all modules in both years of the foundation phase to be able to proceed to the next year of study.

| MODULE  | NAME OF MODULE                             | CREE                          | DITS    |       |  |  |  |
|---------|--------------------------------------------|-------------------------------|---------|-------|--|--|--|
| CODE    |                                            |                               | Regular | Found |  |  |  |
|         | YEAR 1 - SEMESTER 1                        |                               |         |       |  |  |  |
| AAXCH1A | Foundation Chemistry 1                     | Foundation                    |         | 10    |  |  |  |
| AMXMA1A | Foundation Mathematics 1                   | Foundation                    |         | 10    |  |  |  |
| APXPH1A | Foundation Physics 1                       | Foundation                    |         | 10    |  |  |  |
| ASICT1A | ICT Skills 1                               | Regular                       | 10      |       |  |  |  |
| EEESK1A | Engineering Skills 1                       | Regular                       | 5       |       |  |  |  |
| EESIN1A | Social Intelligence 1                      | Social Intelligence 1 Regular |         |       |  |  |  |
| HKCOX1A | Applied Communication Skills 1.1 Regular   |                               | 8       |       |  |  |  |
|         | YEAR 1 - SEMES                             | TER 2                         |         |       |  |  |  |
| AAXCH2A | Foundation Chemistry 2                     | Foundation                    |         | 10    |  |  |  |
| AMXMA2A | Foundation Mathematics 2                   | Foundation                    |         | 10    |  |  |  |
| APXPH2A | Foundation Physics 2                       | Foundation                    |         | 10    |  |  |  |
| EECOA2A | Computing Applications 2                   | Regular                       | 7       |       |  |  |  |
| EESPA1A | Safety Principles and Law 1                | Regular                       | 5       |       |  |  |  |
| EEWPR1A | Project 1 Regular                          |                               | 7       |       |  |  |  |
| HKCOY1A | Applied Communication Skills 1.2 Regular 8 |                               | 8       |       |  |  |  |
|         | YEAR 2 - SEMES                             | TER 1                         |         |       |  |  |  |
| AMMAT1B | Mathematics 1                              | Regular (Augm)                | 10      |       |  |  |  |

| APHYS1B | Physics 1                | Regular (Augm) | 10 |  |
|---------|--------------------------|----------------|----|--|
| EPEEN1A | Electrical Engineering 1 | Regular        | 10 |  |

! "#\$%&' () \*+\$#, (-&("&#. \$&",%/#&#O(&1\$2%/3&#. \$&/#45\$-#&O,+&' (-#,-4\$&#(&1\$2%&6&2-5&73& "(++(O,-8&#. \$&%\$84+2%) (54+\$/9

## 9.1.2 Advanced Diploma (AdvDip) in Electrical Engineering: Electronic Engineering (AD0823)

### 9.1.2.1 Admission Requirements

For admission into the AdvDip in Electrical Engineering: Electronic Engineering (NQF level 7, min 120 credits) all applicants must have a Diploma in Electrical Engineering: Electronic Engineering (NQF level 6, min 360 credits) or equivalent. Apart from the prescribed qualification, a specified period of relevant postqualification practical experience is a prerequisite for registration.

**9.1.2.2** Duration of Programme: One-year, full-time qualification.

| 9.1.2.3 | Curriculum: | Advanced | Diploma | in | Electrical | Engineering: | Electronic |
|---------|-------------|----------|---------|----|------------|--------------|------------|
| Enginee | ring        |          |         |    |            |              |            |

| MODULE CODE | NAME OF MODULE                              | CREDITS |  |  |
|-------------|---------------------------------------------|---------|--|--|
|             | SEMESTER 1                                  |         |  |  |
|             | COMPULSARY                                  |         |  |  |
| EEPRO4A     | Electrical Engineering Project (Electronic) | 25      |  |  |
| EEREM4A     | Engineering Research Methods (Electronic)   | 15      |  |  |
|             | ELECTIVES                                   |         |  |  |
| EEAEL4A     | Electronics                                 | 20      |  |  |
| EERAD4A     | Radio Engineering                           | 20      |  |  |
| EIDSP4A     | Digital Signal Processing                   | 20      |  |  |
| EISPC4A     | Signal Processing                           | 20      |  |  |
|             | SEMESTER 2                                  |         |  |  |
|             | COMPULSARY                                  |         |  |  |

| AMAEM4A | Advanced Engineering Mathematics | 15 |
|---------|----------------------------------|----|
| BHEMN4A | Engineering Management           | 10 |
|         | ELECTIVES                        |    |
| EEAMI4A | Microwave Engineering            | 20 |
| EEAOE4A | Opto-Electronics                 | 20 |
| EESAT4A | Satellite Communication          | 20 |
| EICIA4A | Circuit Analysis                 | 20 |
| EIDCS4A | Digital Control Systems          | 20 |

# 9.1.3 Postgraduate Diploma (PGDip) in Electrical Engineering: Electronic Engineering (PG0823)

### 9.1.3.1 Programme Structure

It is a one-year, full-time qualification. The Postgraduate Diploma in Electrical Engineering: Electronic Engineering is a postgraduate qualification at NQF level 8 (Min 120 credits at level 8). The qualification is characterised by the fact that it prepares students for industry and research. This qualification typically follows a Bachelor's Degree, Advanced Diploma in Electrical Engineering: Electronic Engineering or relevant NQF level 7 qualification and serves to consolidate and deepen the student's expertise in Electrical Engineering: Electronic Engineering and to develop research capacity in the methodology and techniques of Electrical Engineering: Electronic Engineering: Electronic Engineering.

### 9.1.3.2 Purpose of the PGDip in Electrical Engineering: Electronic Engineering

The Postgraduate Diploma in Electrical Engineering: Electronic Engineering is aligned with the DHET's HEQFS – sub framework document and SAQA requirements. To cope with the changing needs, developing markets and new technologies, this programme focuses on equipping students with a sound knowledge base in Electrical Engineering: Electronic Engineering and the ability to develop new knowledge and skills in this field. This qualification demands a high level of theoretical engagement and intellectual independence.

Through benchmarking with national and international higher education institutions as well as consultation with relevant stakeholders it has become clear that a research component needs to be an integral component of the qualification.

This qualification provides:

1. Preparation for careers in Electrical Engineering: Electronic Engineering itself and areas that potentially benefit from Electronic Engineering skills, for achieving technological proficiency and to contribute to the economy and national development; and

2. Entry to NQF level 9 Masters programmes e.g. MSc/MEng.

Engineering students completing this qualification will demonstrate competence in all the required Exit Level Outcomes contained in this qualification. This programme compares favourably with honours level (NQF level 8) studies at local and international universities. Inputs were received from the advisory committee/board and other stakeholders in the discipline, therefore meeting the needs of industry.

Students completing this qualification will have an advantage in the discipline of Electrical Engineering: Electronic Engineering in that they will be prepared to conduct industry relevant research. VUT students meet the needs of the surrounding community. The Vaal Triangle and surrounding areas has many enterprises that employ graduates from VUT.

### 9.1.3.3 Admission Requirements

Students who have completed the Advanced Diploma in Electrical Engineering: Electronic Engineering automatically qualify for entry into this Postgraduate Diploma in Electrical Engineering: Electronic Engineering. Students who have completed another relevant qualification are subjected to an RPL process. A relevant qualification is one that is deemed to provide the necessary background by way of content and outcome for continued study at the Post Graduate Diploma level. Within the faculty an internal RPL processes is followed for relevant qualifications, which adheres to institutional (VUT's) RPL policy.

| MODULE CODE            | NAME OF MODULE                  | CREDITS |  |
|------------------------|---------------------------------|---------|--|
| COMPULSORY MODULES     |                                 |         |  |
|                        | Engineering Research Project    | 30      |  |
| Research Statistics    |                                 | 15      |  |
| MINUMUM OF 3 ELECTIVES |                                 |         |  |
|                        | Advanced Measurement Technology | 25      |  |

### 9.1.3.4 Curriculum: PGDip in Electrical Engineering: Electronic Engineering

| Alternative Energy Feasibility | 25 |
|--------------------------------|----|
| Energy Management              | 25 |
| Microwave Design               | 25 |
| Energy Efficiency Management   | 25 |

## 9.1.4 Master of Engineering in Electrical Engineering: Electronic Engineering (MP0820)

This qualification is offered at the Vanderbijlpark campus only.

#### 9.1.4.1 Programme Structure

At least one-year, full-time research, concluded with a master's dissertation.

### 9.1.4.2 Purpose of the MEng in Electrical Engineering: Electronic Engineering

The purpose of this qualification is to develop a student into a researcher, able to conduct independent research with minimum guidance in a chosen field of Electrical Engineering: Electronic Engineering. The outcomes of the research will contribute to knowledge production in the specialisation field. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.4).

#### 9.1.4.3 Admission Requirements

A BEng degree or equivalent level 8 qualification including the Postgraduate Diploma. Proof of successful completion of a Vaal University of Technology approved course in Research Methodology. Ad hoc cases will be treated on merit.

### 9.1.5 Master of Engineering in Energy Efficiency (MEng (Energy Efficiency)) – MP0823

The MEng (Energy Efficiency) was developed under the guidance and with the support of the PEESA project (<u>http://peesa.usz.edu.pl</u>)

### 9.1.5.1 Admission Requirements

An appropriate BEng or equivalent level 8 qualification, including a Postgraduate Diploma.

## 9.1.5.2 Duration of Programme

One-year full-time or two years part time.

| 9.1.5.3 | Curriculum: | MEng | (Energy | Efficiency) |
|---------|-------------|------|---------|-------------|
|---------|-------------|------|---------|-------------|

| Module                                                       | Module Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Energy Accounting &<br>Economics<br>(EEACC6A)<br>Credits: 20 | <ul> <li>Building energy use and economic analysis and life cycle costing</li> <li>Building envelopes and insulation</li> <li>Energy auditing</li> <li>Audit instruments</li> <li>Codes standards and protocols</li> <li>Energy purchasing</li> <li>Energy accounting and benchmarking</li> <li>Energy rates structures</li> </ul>                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                              | <ul> <li>Electrical systems and electricity management</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Process Energy<br>Management<br>(EPPEM6A)<br>Credits: 25     | <ul> <li>Fan systems</li> <li>Pumps and pump systems</li> <li>Air systems components management.</li> <li>Heating, ventilating and air conditioning</li> <li>Understanding and managing boilers: <ul> <li>Operation</li> <li>Boiler components</li> <li>Boiler controls and gauges</li> <li>Boiler fuels</li> <li>Heat balance for boilers</li> <li>Boiler efficiency and improvements</li> </ul> </li> <li>Steam distribution systems: <ul> <li>Introduction</li> <li>Steam distribution components</li> <li>Tracer lines</li> <li>Waste heat recovery</li> <li>Improving the hot water distribution system</li> <li>Cogeneration</li> </ul> </li> </ul> |  |  |
| Electrical Systems<br>(EPESS6A)<br>Credits: 20               | <ul> <li>Rate structures</li> <li>Electrical systems</li> <li>Electric motors and drives</li> <li>Tariffs and structures</li> <li>Electrical protection systems</li> <li>Energy systems maintenance</li> <li>Control systems and computers <ul> <li>Need for controls</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                              |  |  |

|                                                           | <ul> <li>Types of controls<br/>Manual systems</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           | Basic automatic controls                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                           | Web based building automation systems                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Renewable Energy<br>(EERNE6A)<br>Credits: 25              | <ul> <li>Renewable energy sources and water management:         <ul> <li>Wind generation</li> <li>Water energy systems</li> <li>Geothermal energy</li> <li>Solar energy</li> <li>Thermal energy storage</li> <li>Hydrogen and Fuel Cells</li> </ul> </li> <li>Distributed generation (DG)         <ul> <li>Economics of DG</li> <li>Technologies</li> </ul> </li> </ul>                                                                                      |
|                                                           | <ul> <li>Analysing your own facility for DG application</li> <li>A case study</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     |
| Research Project<br>(EERPE6A)<br>(EPRPE6A)<br>Credits: 90 | <ul> <li>Research Project relating to energy sources and/or<br/>water management systems pertaining to:         <ul> <li>Wind generation systems and optimization</li> <li>Water energy systems and optimization</li> <li>Geothermal energy systems and optimization</li> <li>Solar energy systems and optimization</li> <li>Thermal energy storage systems and optimization</li> <li>Hydrogen and Fuel Cell systems and optimization</li> </ul> </li> </ul> |

#### 9.1.5.4 Enquiries (MEng Energy Efficiency):

Prof WJ Bekker Tel: (016) 950-9410 E-mail: bekkerj@vut.ac.za

## 9.1.6 Doctor of Engineering (DEng) in Electrical Engineering: Electronic Engineering (DP0820)

#### 9.1.6.1 Programme Structure

At least two years full-time research, concluded with a Doctoral Thesis.

This qualification is offered at the Vanderbijlpark campus only.

#### 9.1.6.2 Purpose of the DEng in Electrical Engineering: Electronic Engineering

The purpose of the qualification is to develop a researcher who will make a significant and original contribution to knowledge in a specialised area of electrical engineering and technology. To develop a researcher in Electrical Engineering: Electronic Engineering with advanced abilities, to independently apply electrical engineering design, synthesis, and related principles, to specific problems of society at large. One of the main objectives in this process is to develop an advanced capability to conduct engineering research of an original nature. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.5).

#### 9.1.6.3 Admission Requirements

MEng in Electrical Engineering: Electronic Engineering Ad hoc cases will be treated on merit.

#### 9.1.7 Assessment

The department follows the assessment strategy of formal written exams. The year mark is compiled from a series of not less than three tests and / or a practical mark. The year mark for admittance to the formal examination is 50%. Weights for calculating the year mark as well as the final mark will be reflected in the Learning Guide. All tests, assignments and practical work done during a particular semester, will help learners learn and understand the work.

Some modules follow the assessment strategies of Continuous Assessment (CASS). All marks obtained during the semester will make up the learner's final mark. Each module's Learning Guide will indicate which tests and activities will contribute according to a pre-determined weight, to the final mark.

#### 9.1.8 Enquiries

Enquiries may be addressed to:

#### **HoD: Electrical Engineering**

Faculty of Engineering & Technology Vaal University of Technology Private Bag X021

## VANDERBIJLPARK, 1900

## **HoD: Electrical Engineering**

| Tel    | : | +27 16 950 9929     |
|--------|---|---------------------|
| Fax    | : | +27 16 950 9795     |
| e-mail | : | hendrickl@vut.ac.za |
|        |   | refilwem1@vut.ac.za |

## **Discipline Coordinator: Electronic Engineering**

| Tel     | : | +27 16 950 9416     |
|---------|---|---------------------|
| Fax     | : | +27 16 950 9796     |
| e-mail  | : | dawiec@vut.ac.za    |
|         |   | refilwem1@vut.ac.za |
| Website | : | www.vut.ac.za       |

or

## Postgraduate Office

| Ms N K | okoali |                              |
|--------|--------|------------------------------|
| Tel    | :      | +27 16 950 9288              |
| e-mail | :      | <u>nomathembak@vut.ac.za</u> |

#### Mr S Motsie

| Tel    | : | +27 16 950 7639             |
|--------|---|-----------------------------|
| e-mail | : | <u>sehlabakam@vut.ac.za</u> |

## 9.2 ELECTRICAL ENGINEERING: POWER ENGINEERING

| Discipline Staff Details (Power Engineering) |                      |                          |  |
|----------------------------------------------|----------------------|--------------------------|--|
| Surname, Initials & Title                    | Designation          | Highest<br>Qualification |  |
| Langa, HM (Dr)                               | HoD                  | DPhil Eng                |  |
| Mwale RZ (Ms)                                | Administrator        | PG Dip (HE)              |  |
| Joubert, T (Ms)                              | Senior Lecturer      | MTech                    |  |
| Oosthuysen, NJ (Mr)                          | Senior Lecturer (C)  | MDip Tech                |  |
| Adeniyi AO (Mr)                              | Lecturer             | MTech                    |  |
| Momubaghan, PU (Mr)                          | Lecturer             | BSc                      |  |
| Pulutsoane, MGE (Mr)                         | Lecturer             | BTech                    |  |
| Thekiso, MQ (Mr)                             | Lecturer             | BTech                    |  |
| Kaaiye, S (Mr)                               | Junior Lecturer      | MSc Eng                  |  |
| Makhalima, AT (Mr)                           | Junior Lecturer      | BTech                    |  |
| Motloung, DP (Mr)                            | Junior Lecturer      | ND                       |  |
| Sebueng, S (Mr)                              | Junior Lecturer      | BTech                    |  |
| Shittu, AM (Mr)                              | Junior Lecturer      | BSc                      |  |
| Adaurhere RE                                 | Technician           | MPhil                    |  |
| Djeumen, JS (Mr)                             | Technician           | MTech                    |  |
| Ralebona, ER (Mr)                            | Technician           | BTech                    |  |
| Kyere, IK (Mr)                               | Technologist         | MTech                    |  |
| Hlongwana A (Mr)                             | Lab Technician       | BTech                    |  |
| Ntshangase M (Mr)                            | Lab Technician       | BTech                    |  |
| Mtambo, BA (Mr)                              | Laboratory Assistant | Sr Certificate           |  |

#### 9.2.1 Diploma in Electrical Engineering: Power (DI0824)

#### 9.2.1.1 Programme Structure

Three years full-time qualification, min 360 credits, NQF level 6. Sixty credits are allocated to Workplace Based Learning (WBL). WBL is the last section of the qualification to be completed in Industry. Students to be placed in Industry with approved companies, monitored and assessed by University staff.

#### 9.2.1.2 Purpose of the Diploma in Electrical Engineering: Power

The generic purpose of the qualification is spelled out in paragraph 4.1 and must be read in conjunction with the following.

The purpose of the qualification Diploma in Electrical Engineering: Power is to develop the necessary knowledge, understanding and skills required for the student's further learning towards becoming a competent practicing Power Engineering Technician. It is intended to subsequently empower candidate Power Engineering Technicians to demonstrate that they are capable of applying their acquired knowledge, understanding, skills, attitudes and values in the work environments in South Africa. It is designed also to add value to the qualifying student in terms of enrichment of the person, status and recognition.

| NSC                | Compulsory Subjects                  | Minimum for the<br>Diploma | Notes         |
|--------------------|--------------------------------------|----------------------------|---------------|
|                    |                                      | programme                  |               |
|                    | Mathematics                          | 4                          | 3 = 40 - 49%  |
| National<br>Senior | Physical Science<br>English Language | 4<br>4                     | 4 = 50 - 59%  |
| Certificate        |                                      |                            | 5 = 60 - 69%  |
|                    | Any other subjects                   |                            | 6 = 70 - 79%  |
|                    | with a minimum level                 |                            | 7 = 80 - 89%  |
|                    | of 3, excluding Life<br>Orientation) | 12                         | 8 = 90 - 100% |
|                    | Total                                | 24*                        |               |

#### 9.2.1.3 Admission Requirements

#### Please note:

 The prospective student's results must meet the statutory and programme admission requirement.

- Bonus points will only be used for selection purposes. In case of a tie and all other scores remaining the same use the actual percentages to differentiate.
- \*Admission requirements for any of the 3-year Diploma programmes in Engineering is a National Senior Certificate with a minimum of 28 and above APS points, with a minimum of 4 for Mathematics, Physical Science and English.
- \*Admission requirements for any of the 4-year extended Diploma programmes in Engineering is a National Senior Certificate with a minimum of 24 – 27 maximum APS points, with a minimum of 4 for Mathematics, Physical Science and English. Students that need more information regarding Extended programmes should liaise with their respective HODs and/or the faculty manager. The main purpose of extended programmes is to widen access and reinforce/improve success.
- All other grade 12 or equivalent certificates will be evaluated against/according to statutory and programme requirements.
- International qualifications: All international qualifications will be evaluated by the International Office based on the Swedish scale and SAQA equivalence.
- Transfers: Applications from students to transfer from other institutions will be dealt with in terms of the Recognition of Prior Learning and CAT policies of VUT.

### 9.2.1.4 Career Opportunities

A successful candidate can pursue a career as a Power Engineering technician in one of the following specialisation fields: Electrical machines; generation of electricity; electrical transmission and distribution, electrical protection, alternative energy and energy management. The specialisation fields above each offer careers in design and development and maintenance.

| MODULE CODE | NAME OF MODULE                   | CREDITS |  |  |  |
|-------------|----------------------------------|---------|--|--|--|
|             | SEMESTER 1                       |         |  |  |  |
| HKCOX1A     | Applied Communication Skills 1.1 | 8       |  |  |  |
| EEESK1A     | Engineering Skills 1             | 5       |  |  |  |
| EPEEN1A     | Electrical Engineering 1         | 10      |  |  |  |
| ASICT1A     | ICT Skills 1                     |         |  |  |  |
| AMMAT1A     | Mathematics 1                    |         |  |  |  |
| APHYS1A     | Physics 1                        | 10      |  |  |  |
| EESIN1A     | Social Intelligence 1            | 3       |  |  |  |
| SEMESTER 2  |                                  |         |  |  |  |

### 9.2.1.5 Curriculum: Diploma in Electrical Engineering: Power

| HKCOY1A | Applied Communication Skills 1.2 | 8  |  |
|---------|----------------------------------|----|--|
| EPCOA2A | Computing Applications 2 7       |    |  |
| EIDSY1A | Digital Systems 1                |    |  |
| EPEEN2A | Electrical Engineering 2         | 10 |  |
| EEELE1A | Electronics 1                    | 10 |  |
| AMMAT2A | Mathematics 2                    | 10 |  |
| EESPA1A | Safety Principles And Law 1      | 5  |  |
|         | CHOICE MODULES (CHOOSE 1)        |    |  |
| EMEDR1A | Engineering Drawing 1            | 10 |  |
| APHYT2A | Physics 2 Theory                 | 5  |  |
| APHYP2A | Physics 2 Practical              | 5  |  |
|         | SEMESTER 3                       |    |  |
| HKCOX2A | Applied Communication Skills 2.1 | 8  |  |
| EPEEN3A | Electrical Engineering 3         |    |  |
| EPEMA2A | Electrical Machines 2            |    |  |
| EPSYS2A | Power Systems 2                  |    |  |
| AMMAT3A | Mathematics 3                    |    |  |
| EEELE2A | Electronics 2                    | 10 |  |
|         | CHOICE MODULE (CHOOSE 1)         |    |  |
| EIDSY2A | Digital Systems 2                | 10 |  |
| BHMAN1A | Management 1                     | 10 |  |
| EIPRI1A | Process Instruments 1            | 10 |  |
| EMMEC1A | Mechanics 1                      | 10 |  |
|         | SEMESTER 4                       |    |  |
| HKCOY2A | Applied Communication Skills 2.2 |    |  |
| EPSYS3A | Power Systems 3                  | 10 |  |
| EEPEL3A | Power Electronics 3              | 10 |  |
| EPAEN2A | Alternative Energy 2 (Power)     | 10 |  |
| EPEMA3A | Electrical Machines 3            | 10 |  |
|         | CHOICE MODULE (CHOOSE 1)         |    |  |
| EICSY2A | Control Systems 2                | 10 |  |

| SEMESTER 5               |                              |    |  |  |
|--------------------------|------------------------------|----|--|--|
| EPEPR3A                  | Electrical Protection 3 10   |    |  |  |
| EPAEN3A                  | Alternative Energy 3 (Power) | 10 |  |  |
| EPEMA4A                  | Electrical Machines 4        | 10 |  |  |
| ЕРТХРЗА                  | Transmission 3 (Power)       | 10 |  |  |
| EEPEL4A                  | Power Electronics 4          | 10 |  |  |
| EPEMN2A                  | Energy Management 2 10       |    |  |  |
| CHOICE MODULE (CHOOSE 1) |                              |    |  |  |
| EEELE3A                  | Electronics 3                |    |  |  |
| SEMESTER 6               |                              |    |  |  |
| WBL Placement            |                              |    |  |  |
| EPEXL1A                  | Experiential Learning 1 1    |    |  |  |
| EPEXL2A                  | Experiential Learning 2      | 16 |  |  |
| EPPRJ4A                  | Engineering Project 4 30     |    |  |  |

## Curriculum: Diploma in Electrical Engineering: Power (4 year Extended programme) – DE0864

The purpose of the Extended Diploma programme is to assist students who enter the University with APS score of 24 - 27 by giving them more time to reach the level of competency similar to those who enter with higher APS scores. The programme extends the 3-year programme into 4 years by spreading the first year of study over 2 years with the inclusion of foundational modules as well as mainstream programme modules. The foundation modules in the first year of study will help students to improve their competency in Maths, Physics and Chemistry. In the second year of study, the students will augment their foundation knowledge of Maths, Physics and Chemistry to reach the level of the mainstream programme. Students are required to pass all subjects in both years of the foundation phase to be able to proceed to the next year of study.

| MODULE  | NAME OF MODULE         | ТҮРЕ       | CREE | DITS  |
|---------|------------------------|------------|------|-------|
| CODE    |                        | Regular Fo |      | Found |
|         | YEAR 1 - SEMESTER 1    |            |      |       |
| AAXCH1A | Foundation Chemistry 1 | Foundation |      | 10    |

| AMXMA1A             | Foundation Mathematics 1                   | Foundation     |    | 10 |
|---------------------|--------------------------------------------|----------------|----|----|
| APXPH1A             | Foundation Physics 1                       | Foundation     |    | 10 |
| ASICT1A             | ICT Skills 1                               | Regular        | 10 |    |
| EEESK1A             | Engineering Skills 1                       | Regular        | 5  |    |
| EESIN1A             | Social Intelligence 1                      | Regular        | 3  |    |
| HKCOX1A             | Applied Communication Skills 1.1           | Regular        | 8  |    |
|                     | YEAR 1 - SEMEST                            | TER 2          |    |    |
| AAXCH2A             | Foundation Chemistry 2                     | Foundation     |    | 10 |
| AMXMA2A             | Foundation Mathematics 2                   | Foundation     |    | 10 |
| APXPH2A             | Foundation Physics 2 Foundation            |                |    | 10 |
| EPCOA2A             | Computing Applications 2                   | Regular        | 7  |    |
| EESPA1A             | Safety Principles and Law 1                | Regular        | 5  |    |
| HKCOY1A             | Applied Communication Skills 1.2 Regular 8 |                | 8  |    |
| YEAR 2 - SEMESTER 1 |                                            |                |    |    |
| AMMAT1B             | Mathematics 1                              | Regular (Augm) | 10 |    |
| APHYS1B             | Physics 1                                  | Regular (Augm) | 10 |    |
| EPEEN1A             | Electrical Engineering 1 Regular 10        |                |    |    |
|                     |                                            |                |    |    |

! "#\$%&' () \*+\$#, (-&("&#. \$&",%/#&#O(&1\$2%/3&#. \$&/#45\$-#&O,+&' (-#,-4\$&#(&1\$2%&6&2-5&73& "(++(O,-8&#. \$&%\$84+2%) (54+\$/9

## 9.2.2 Government Certificate of Competency (GCC)

The Certificate of Competency as a Mechanical and / or Electrical Engineering: Power Engineering Technician is issued by the Department of Labour (Factories) or the Department of Minerals and Energy Affairs (Mines) to a person with the necessary academic diploma / degree and practical experience and who has passed a qualifying examination. A person with such a certificate must take responsibility for the operation of a factory or mine where the consumption of electricity exceeds a certain limit.

This University is one of a few tertiary institutions accredited to offer Diplomas complying with the requirements for admission to the GCC examination. This is

not a GCC qualification, only a subject package complying with the entry requirements to the GCC examination.

This is for the combination of subjects of the National Diploma and **NOT** for the Diploma in Engineering.

| Government Certificate of Competency (GCC) |                                    |  |  |
|--------------------------------------------|------------------------------------|--|--|
| Computer & Programming Skills I            | Electrical Engineering, I          |  |  |
| Mathematics I                              | Electrical Engineering II          |  |  |
| Mathematics II                             | Electrical Engineering III         |  |  |
| Industrial Electronics II                  | Electrical Machines II             |  |  |
| Power Electronics III                      | Electrical Machines III            |  |  |
| Electronics I                              | Electrical Protection III          |  |  |
| Electronics II                             | Digital Systems I                  |  |  |
| Mechanics I                                | Applied Communication Skills 1.1   |  |  |
| Mechanical Engineering Drawing I           | Applied Communication Skills 1.2   |  |  |
| Mechanical Technology I                    | Applied Communication Skills 2.1   |  |  |
| Mechanical Technology II                   | • Applied Communication Skills 2.2 |  |  |
| Mechanical Technology III                  | • EDL                              |  |  |
| Design Project III                         | Strength of Materials II           |  |  |
| Electrical Distribution 3                  | Strength of Materials III          |  |  |

Government Certificate of Competency Contact Information:

Written application for admission to the examination for the Certificate of Competency can be addressed to:

| Mines & Industries | : | Department of Minerals & Energy Affairs |
|--------------------|---|-----------------------------------------|
|                    |   | Private Bag X59                         |
|                    |   | Pretoria, 0001                          |

The written application must also include a letter stating that all the prescribed theoretical requirements have been met. This letter is obtainable from the Department of Power Engineering.

## 9.2.3 Advanced Diploma in Electrical Engineering: Power Engineering (AD0824)

#### 9.2.3.1 Admission Requirements

For admission into the AdvDip: Electrical Engineering: Power Engineering (NQF level 7, min 120 credits), all applicants must have a Diploma in Electrical Engineering: Power (NQF level 6, min 360 credits) or equivalent. Apart from the prescribed qualification, a specified period of relevant post-qualification practical experience is a prerequisite for registration.

#### 9.2.3.2 Duration of Programme

One-year, full-time qualification.

#### 9.2.3.3 Curriculum: Advanced Diploma in Electrical Engineering: Power Engineering

| MODULE CODE | NAME OF MODULE | CREDITS |  |
|-------------|----------------|---------|--|
| SEMESTER 1  |                |         |  |
| COMPULSARY  |                |         |  |
| EPPRO4A     | 25             |         |  |

## 9.2.4 Postgraduate Diploma (PGDip) in Electrical Engineering: Power Engineering (PG0824)

### 9.2.4.1 Programme Structure

One-year, full-time qualification. The Postgraduate Diploma in Electrical Engineering: Power Engineering is a postgraduate qualification at NQF level 8 (Min 120 credits at level 8). The qualification is characterised by the fact that it prepares students for industry and research. This qualification typically follows a Bachelor's Degree, Advanced Diploma in Electrical Engineering: Power Engineering or relevant NQF level 7 qualification and serves to consolidate and deepen the student's expertise in Electrical Engineering: Power Engineering and to develop research capacity in the methodology and techniques of Electrical Engineering: Power Engineering.

### 9.2.4.2 Purpose of the PGDip in Electrical Engineering: Power Engineering

The Postgraduate Diploma in Electrical Engineering: Power Engineering is a postgraduate qualification at NQF level 8 (Min 120 credits at level 8). The qualification is characterised by the fact that it prepares students for industry and research. This qualification typically follows a Bachelor's Degree, Advanced Diploma in Electrical Engineering: Power Engineering or relevant NQF level 7 qualification and serves to consolidate and deepen the student's expertise in Electrical Engineering: Power Engineering: Power Engineering: Power Engineering. The methodology and techniques of Electrical Engineering: Power Engineering: Power Engineering is aligned with the DoHET's HEQFS – sub framework document and SAQA requirements. To cope with the changing needs, developing markets and new technologies, this programme focuses on equipping students with a sound knowledge base in Electrical Engineering: Power Engineering and the ability to develop new knowledge and skills in this field.

This qualification demands a high level of theoretical engagement and intellectual independence. Through benchmarking with national and international higher education institutions as well as consultation with relevant stakeholders it has become clear that a research component needs to be an integral component of the qualification. This qualification provides:

1. Preparation for careers in Electrical Engineering: Power Engineering itself and areas that potentially benefit from engineering skills, for achieving technological

proficiency and to make a contribution to the economy and national development; and

2. Entry to NQF level 9 Masters programmes e.g. MSc/MEng

Engineering students completing this qualification will demonstrate competence in all the required Exit Level Outcomes contained in this qualification. This programme compares favourably with honours level (NQF level 8) studies at local and international universities. Inputs were received from the advisory committee/board and other stakeholders in the discipline, therefore meeting the needs of industry.

Students completing this qualification will have an advantage in the discipline of Electrical Engineering in that they will be prepared to conduct industry relevant research. VUT students meet the needs of the surrounding community. The Vaal Triangle and surrounding areas has many enterprises that employ graduates from VUT.

### 9.2.4.3 Admission Requirements

Normal admission is an Advanced Diploma in Electrical Engineering: Power Engineering at NQF 7. An appropriate 360 credit Bachelor's Degree at NQF 7 which provides the necessary foundational knowledge can also provide admission to this qualification.

| MODULE CODE                               | NAME OF MODULE               | CREDITS |
|-------------------------------------------|------------------------------|---------|
|                                           | COMPULSORY                   |         |
|                                           | Engineering Research Project |         |
|                                           | Research Statistics          |         |
| MINIMUM OF 3 ELECTIVES                    |                              |         |
| Alternative Energy Feasibility         25 |                              | 25      |
| Electrical Protection                     |                              | 25      |
| Energy Efficiency Management              |                              | 25      |
|                                           | Energy Management            |         |
|                                           | High Voltage Engineering     |         |

### 9.2.4.4 Curriculum: Postgraduate Diploma in Electrical Engineering: Power Engineering

| Power Systems | 25 |
|---------------|----|
|               |    |

## 9.2.5 Master of Engineering (MEng) in Electrical Engineering: Power Engineering (MP0820)

This qualification is offered at the Vanderbijlpark campus only.

### 9.2.5.1 Programme Structure

At least one-year, full-time research, concluded with a Master's Dissertation.

### 9.2.5.2 Purpose of the MEng in Electrical Engineering: Power Engineering

The purpose of this qualification is to develop a student into a researcher, able to conduct independent research with minimum guidance in a chosen field of Electrical Engineering: Power Engineering. The outcomes of the research will contribute to knowledge production in the specialisation field. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.4).

### 9.2.5.3 Admission Requirements

BEng degree (Power) or equivalent.

Proof of successful completion of a Vaal University of Technology approved course in Research Methodology.

Ad hoc cases will be treated on merit.

# 9.2.6 Doctor of Engineering (DEng) in Electrical Engineering: Power Engineering (DP0820)

This qualification is offered at the Vanderbijlpark campus only.

### 9.2.6.1 Programme Structure

At least two years full-time research, concluded with a Doctoral Thesis.

### 9.2.6.2 Purpose of the DEng in Electrical Engineering: Power Engineering

The purpose of the qualification is to develop a researcher who will make a significant and original contribution to knowledge in a specialised area of Electrical

Engineering: Power Engineering and technology. To develop a researcher in Electrical Engineering: Power Engineering with advanced abilities, to independently apply electrical engineering design, synthesis, and related principles, to specific problems of society at large. One of the main objectives in this process is to develop an advanced capability to conduct engineering research of an original nature. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.5).

#### 9.2.6.3 Admission Requirements

Master of Engineering in Electrical Engineering: Power Engineering.

Ad hoc cases will be treated on merit.

#### 9.2.7 Assessment

The department follows the assessment strategy of formal written exams. The year mark is compiled from a series of not less than three tests and / or a practical mark. The year mark for admittance to the formal examination is 50%. Weights for calculating the year mark as well as the final mark will be reflected in the Learning Guide. All tests, assignments and practical work done during a particular semester, will help learners learn and understand the work.

Some modules follow the assessment strategies of Continuous Assessment (CASS). All marks obtained during the semester will make up the learner's final mark. Each module's Learning Guide will indicate which tests and activities will contribute according to a pre-determined weight, to the final mark.

#### 9.2.8 Enquiries

Enquiries may be addressed to:

#### **HoD: Electrical Engineering**

Faculty of Engineering & Technology Vaal University of Technology Private Bag X021 VANDERBIJLPARK. 1900

| Tel     | :   | +27 16 950 9929     |
|---------|-----|---------------------|
| Fax     | :   | +27 16 950 9795     |
| e-mail  | :   | hendrickl@vut.ac.za |
|         |     | refilwem1@vut.ac.za |
| Website | e : | www.vut.ac.za       |
|         |     |                     |

or

## Postgraduate Office

| Ms N K | okoali |                              |
|--------|--------|------------------------------|
| Tel    | :      | +27 16 950 9288              |
| e-mail | :      | <u>nomathembak@vut.ac.za</u> |

## Mr S Motsie

| Tel    | : | +27 16 950 7639             |
|--------|---|-----------------------------|
| e-mail | : | <u>sehlabakam@vut.ac.za</u> |

## 9.3 ELECTRICAL ENGINEERING: PROCESS CONTROL ENGINEERING

| Discipline Staff Details (Process Control and Computer Systems) |                           |                          |  |
|-----------------------------------------------------------------|---------------------------|--------------------------|--|
| Surname, Initials & Title                                       | Designation               | Highest<br>Qualification |  |
| Langa, HM (Dr)                                                  | HoD                       | DPhil Eng                |  |
| Mwale, RZ (Ms)                                                  | Administrator             | PG Dip (HE)              |  |
| Mathaba, T (Dr)                                                 | Discipline Coordinator    | PhD Eng                  |  |
| Joubert, A (Dr)                                                 | Senior Lecturer           | DTech Eng                |  |
| Joubert, AG (Mr)                                                | Senior Lecturer           | MDip Tech                |  |
| Loubser, JB (Mr)                                                | Senior Lecturer           | MTech                    |  |
| Mitton, PJ (Mr)                                                 | Senior Lecturer           | MDip Tech                |  |
| Claassen, CJ (Mr)                                               | Lecturer                  | MTech                    |  |
| Maloka, TV (Mr)                                                 | Lecturer                  | BTech                    |  |
| Nel, BCD (Mr)                                                   | Lecturer                  | BTech                    |  |
| Otunniyi, TO (Ms)                                               | Lecturer                  | MTech                    |  |
| Tukisi, TW (Mr)                                                 | Lecturer                  | MEng                     |  |
| Van Aardt, CC (Mr)                                              | Lecturer                  | MSc                      |  |
| Vosloo, AM (Ms)                                                 | Lecturer                  | BTech                    |  |
| Benson, MJM (Mr)                                                | Junior Lecturer           | BTech                    |  |
| Mohapi, MJ (Ms)                                                 | Junior Lecturer           | MTech                    |  |
| Nshimba, KT (Mr)                                                | Junior Lecturer           | MSc                      |  |
| Pretorius, PD (Mr)                                              | Snr Research Technologist | MTech                    |  |
| Baxter, R (Mr)                                                  | Technician                | BTech                    |  |
| Du Rand, F (Mr)                                                 | Technician                | MTech                    |  |
| Roos, L (Mr)                                                    | Technician                | BTech                    |  |
| Van Tonder, Z (Ms)                                              | Technician                | BTech                    |  |
| Fataki, MJ (Mr)                                                 | Lab Assistant             | BTech                    |  |
| Ojoseriki, DF (Mr)                                              | Lab Assistant             | BTech                    |  |
|                                                                 |                           |                          |  |
|                                                                 |                           |                          |  |

#### 9.3.1 Diploma in Electrical Engineering: Process Control (DI0825)

#### 9.3.1.1 Programme Structure

Offered full-time, contact classes are for a period for six semesters (three years) followed by a one-year Workplace Based Learning (WBL) (carried out through attachment to industry) component. The student will be assisted by the university to look for suitable industry opportunities (companies) to complete the required WBL training and skills development. Due to this component this programme is likely to take longer than 3 years to complete. This programme is presented at the Vanderbijlpark campus and the exit level of the qualification is at NQF 6, min 360 credits.

### 9.3.1.2 Purpose of the Diploma in Electrical Engineering: Process Control

The generic purpose of the qualification is spelled out in paragraph 4.1 and must be read in conjunction with the following: The purpose of the qualification is to develop the necessary knowledge, understanding and skills required for the student's further learning towards becoming a competent practicing Process Control Technician. A qualifying learner at this level is competent in process control and instrumentation operations, maintenance and problem solving. It is intended to subsequently empower candidate Process Control Engineering Technicians to demonstrate that they are capable of applying their acquired knowledge, understanding, skills, attitudes and values in the process control and instrumentation work environments in South Africa. It is designed also to add value to the qualifying student in terms of enrichment of the person, status and recognition.

| NSC                | Compulsory Subjects                  | Minimum for the | Notes         |
|--------------------|--------------------------------------|-----------------|---------------|
|                    |                                      | Diploma         |               |
|                    |                                      | programme       |               |
|                    | Mathematics                          | 4               | 3 = 40 - 49%  |
| National<br>Senior | Physical Science<br>English Language | 4<br>4          | 4 = 50 - 59%  |
| Certificate        | English Eurgauge                     |                 | 5 = 60 - 69%  |
|                    | Any other subjects                   |                 | 6 = 70 - 79%  |
|                    | with a minimum level                 |                 | 7 = 80 - 89%  |
|                    | of 3, excluding Life<br>Orientation  | 12              | 8 = 90 - 100% |
|                    | Total                                | 24*             |               |

### 9.3.1.3 Admission Requirements

#### Please note:

- The prospective student's results must meet the statutory and programme admission requirement.
- Bonus points will only be used for selection purposes. In case of a tie and all other scores remaining the same use the actual percentages to differentiate.
- \*Admission requirements for any of the 3-year Diploma programmes in Engineering is a National Senior Certificate with a minimum of 28 and above APS points, with a minimum of 4 for Mathematics, Physical Science and English.
- \*Admission requirements for any of the 4-year extended Diploma programmes in Engineering is a National Senior Certificate with a minimum of 24 – 27 maximum APS points, with a minimum of 4 for Mathematics, Physical Science and English. Students that need more information regarding Extended programmes should liaise with their respective HODs and/or the faculty manager. The main purpose of extended programmes is to widen access and reinforce/improve success.
- All other grade 12 or equivalent certificates will be evaluated against/according to statutory and programme requirements.
- International qualifications: All international qualifications will be evaluated by the International Office based on the Swedish scale and SAQA equivalence.
- Transfers: Applications from students to transfer from other institutions will be dealt with in terms of the Recognition of Prior Learning and CAT policies of VUT.

| MODULE CODE | NAME OF MODULE                   | CREDITS |  |
|-------------|----------------------------------|---------|--|
|             | SEMESTER 1                       |         |  |
| HKCOX1A     | Applied Communication Skills 1.1 | 8       |  |
| EEESK1A     | Engineering Skills 1             | 5       |  |
| EPEEN1A     | Electrical Engineering 1         | 10      |  |
| ASICT1A     | ICT Skills 1                     | 10      |  |
| AMMAT1A     | Mathematics 1                    | 10      |  |
| APHYS1A     | Physics 1                        | 10      |  |
| EESIN1A     | Social Intelligence 1            | 3       |  |
| SEMESTER 2  |                                  |         |  |
| HKCOY1A     | Applied Communication Skills 1.2 | 8       |  |
| EICOA2A     | Computing Applications 2         | 7       |  |
| EIDSY1A     | Digital Systems 1                | 10      |  |

#### 9.3.1.4 Curriculum: Diploma in Electrical Engineering: Process Control

| AMMAT2A | Mathematics 2                    | 10       |
|---------|----------------------------------|----------|
| EIPRI1A | Process Instrumentation 1        | 10       |
| APHYP2A | Physics 2 Practical              | 5        |
| APHYT2A | Physics 2 Theory                 | 5        |
| EESPA1A | Safety Principles and Law 1      | 5        |
|         | SEMESTER 3                       | <u>.</u> |
| HKCOX2A | Applied Communication Skills 2.1 | 8        |
| EPEEN2A | Electrical Engineering 2         | 10       |
| EEELE1A | Electronics 1                    | 10       |
| EIENP1A | Engineering Programming 1        | 10       |
| EINET1A | Networks 1                       | 10       |
| EIPRI2A | Process Instrumentation 2        | 10       |
| AMMAT3A | Mathematics 3                    | 10       |
|         | SEMESTER 4                       |          |
| EIDCS1A | Digital Control Systems 1        | 10       |
| HKCOY2A | Applied Communication Skills 2.2 | 8        |
| EIDSY2A | Digital Systems 2                | 10       |
| EEELE2A | Electronics 2                    | 10       |
| EIENP2A | Engineering Programming 2        | 10       |
| EINET2A | Networks 2                       | 10       |
| EIPRI3A | Process Instrumentation 3        | 10       |
|         | SEMESTER 5                       |          |
| EEPEL3A | Power Electronics 3              | 10       |
| EIDSY3A | Digital Systems 3                | 10       |
| EINET3A | Networks 3                       | 10       |
| EICSY2A | Control Systems 2                | 10       |
| EIDCS2A | Digital Control Systems 2        | 10       |
| EIENP3A | Engineering Programming 3        | 10       |
|         | SEMESTER 6                       |          |
|         | OPTIONAL ADDITIONAL              |          |

| EIDSY4A       | Digital Systems 4       | 10 |  |
|---------------|-------------------------|----|--|
| EICSY3A       | Control Systems 3       | 10 |  |
| EINET4A       | Networks 4              | 10 |  |
| WBL PLACEMENT |                         |    |  |
| EIEXL1A       | Experiential Learning 1 | 14 |  |
| EIEXL2A       | Experiential Learning 2 | 16 |  |
| EIPRJ4A       | Engineering Project 4A  | 30 |  |

## Curriculum: Diploma Electrical Engineering: Process Control (4 year Extended programme) – DE0865

The purpose of the Extended Diploma programme is to assist students who enter the University with APS score of 24 - 27 by giving them more time to reach the level of competency similar to those who enter with higher APS scores. The programme extends the 3-year programme into 4 years by spreading the first year of study over 2 years with the inclusion of foundational modules as well as mainstream programme modules. The foundation modules in the first year of study will help students to improve their competency in Maths, Physics and Chemistry. In the second year of study, the students will augment their foundation knowledge of Maths, Physics and Chemistry to reach the level of the mainstream programme. Students are required to pass all modules in both years of the foundation phase to be able to proceed to the next year of study.

| MODULE              | NAME OF MODULE                   | ТҮРЕ       | CREE    | DITS  |
|---------------------|----------------------------------|------------|---------|-------|
| CODE                |                                  |            | Regular | Found |
|                     | YEAR 1 - SEMEST                  | TER 1      |         |       |
| AAXCH1A             | Foundation Chemistry 1           | Foundation |         | 10    |
| AMXMA1A             | Foundation Mathematics 1         | Foundation |         | 10    |
| APXPH1A             | Foundation Physics 1             | Foundation |         | 10    |
| ASICT1A             | ICT Skills 1                     | Regular    | 10      |       |
| EEESK1A             | Engineering Skills 1             | Regular    | 5       |       |
| EESIN1A             | Social Intelligence 1            | Regular    | 3       |       |
| HKCOX1A             | Applied Communication Skills 1.1 | Regular    | 8       |       |
| YEAR 1 - SEMESTER 2 |                                  |            |         |       |

| Foundation Chemistry 2           | Foundation                                                                                                                                                                                       |                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                            |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Foundation Mathematics 2         | Foundation                                                                                                                                                                                       |                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                            |
| Foundation Physics 2             | Foundation                                                                                                                                                                                       |                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                            |
| Computing Applications 2         | Regular                                                                                                                                                                                          | 7                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |
| Safety Principles and Law 1      | Regular                                                                                                                                                                                          | 5                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |
| Applied Communication Skills 1.2 | Regular                                                                                                                                                                                          | 8                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |
| YEAR 2 - SEMESTER 1              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                               |
| Mathematics 1                    | Regular (Augm)                                                                                                                                                                                   | 10                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               |
| Physics 1                        | Regular (Augm)                                                                                                                                                                                   | 10                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               |
| Electrical Engineering 1         | Regular                                                                                                                                                                                          | 10                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               |
|                                  | Foundation Mathematics 2<br>Foundation Physics 2<br>Computing Applications 2<br>Safety Principles and Law 1<br>Applied Communication Skills 1.2<br>YEAR 2 - SEMEST<br>Mathematics 1<br>Physics 1 | Foundation Mathematics 2FoundationFoundation Physics 2FoundationComputing Applications 2RegularSafety Principles and Law 1RegularApplied Communication Skills 1.2RegularYEAR 2 - SEMESTMathematics 1Regular (Augm)Physics 1Regular (Augm) | Foundation Mathematics 2FoundationFoundation Physics 2FoundationComputing Applications 2RegularSafety Principles and Law 1RegularApplied Communication Skills 1.2RegularYEAR 2 - SEMESTER 1Mathematics 1Regular (Augm)Physics 1Regular (Augm) |

! "#\$%&' () \*+\$#, (-&("&#. \$&",%/#&#O(&1\$2%/3&#. \$&/#45\$-#&O,+&' (-#,-4\$&#(&1\$2%&6&2-5&73& "(++(O,-8&#. \$&%\$84+2%) (54+\$/9

## 9.3.1.5 Workplace Based Learning

The Diploma in Electrical Engineering: Process Control has a formal Workplace Based Learning (WBL) component of 60 credits. This takes place at an accredited employer (company). The student will be assisted to find suitable placement after which the student will register for the WBL modules. The student will provide progress reports at regular intervals, in co-operation with a work-based mentor, to confirm that the necessary practical outcomes are being achieved.

## 9.3.2 Advanced Diploma in Electrical Engineering: Process Control Engineering (AD0825)

### 9.3.2.1 Admission Requirements

For admission into the AdvDip in Electrical Engineering: Process Control Engineering (NQF level 7, min 120 credits), all applicants must have a Diploma in Electrical Engineering: Process Control (NQF level 6, min 360 credits) or equivalent.

9.3.2.2 Duration of Programme: One-year, full-time qualification.

# 9.3.2.3 Curriculum: Advanced Diploma in Electrical Engineering: Process Control Engineering

| MODULE CODE | NAME OF MODULE                   | CREDITS |  |
|-------------|----------------------------------|---------|--|
|             | SEMESTER 1                       | ·       |  |
|             | COMPULSORY                       |         |  |
| EIPRO4A     | Electrical Engineering Project   | 25      |  |
| EIREM4A     | Engineering Research Methods     | 15      |  |
|             | ELECTIVES                        |         |  |
| EIPRI4A     | Process Instrumentation          | 20      |  |
| EIDSP4A     | Digital Signal Processing        | 20      |  |
| SEMESTER 2  |                                  |         |  |
|             | COMPULSORY                       |         |  |
| AMAEM4A     | Advanced Engineering Mathematics | 15      |  |
| BHEMN4A     | Engineering Management           | 10      |  |
|             | ELECTIVES                        |         |  |
| EIDCS4A     | Digital Control Systems          | 20      |  |
| EIINT4A     | Industrial Network Systems       | 20      |  |

# 9.3.2.4 Typical work environment for the Process Control Engineering Technologist

The environment where a Process Control Engineering technologist will function is in measurement and control of pressure, level, flow and temperature parameters. The design, installation and maintenance of process control systems and instrumentation. Installation, commissioning and optimisation of various control systems, industrial networks, Safety Systems and Distributed Control Systems (DCS).

## 9.3.2.5 Career Opportunities

The computerisation of modern instrumentation and process control platforms in various industries, created a vacuum period in training of skills development for technicians in this modern industrial environment which led to a huge demand for technical skilled manpower in this field.

## 9.3.2.6 Career Status

The Instrument Technician can register for professional status with ECSA, the Control Board for Engineering Technicians. The South African Institute for Measurement and Control is another professional body.

## 9.3.3 Postgraduate Diploma in Electrical Engineering: Process Control Engineering (PG0825)

#### 9.3.3.1 Admission Requirements

For admission into the PGD in Electrical Engineering: Process Control Engineering (NQF level 8, min 120 credits), all applicants must have an Advanced Diploma in Electrical Engineering: Process Control Engineering (NQF level 7, min 120 credits).

| 9.3.3.2 | <b>Duration of Programme:</b> | One-year, full-time | qualification. |
|---------|-------------------------------|---------------------|----------------|
|---------|-------------------------------|---------------------|----------------|

### 9.3.3.3 Curriculum: Postgraduate Diploma in Electrical Engineering: Process Control Engineering

| MODULE CODE | NAME OF MODULE                              | CREDITS |
|-------------|---------------------------------------------|---------|
|             | SEMESTER 1                                  |         |
|             | COMPULSORY                                  |         |
|             | Engineering Research Project                | 30      |
|             | Research Statistics                         | 15      |
|             | MINIMUM OF 3 ELECTIVES                      |         |
|             | Advanced DCS and Safety Systems Engineering | 25      |
|             | Advanced Process Instrumentation Systems    | 25      |
|             | Process Control System Design & Development | 25      |
|             | Smart Digital Instrumentation Engineering   | 25      |
|             | Smart Industrial Network Control            | 25      |

## 9.3.4 Master of Engineering in Electrical Engineering: Process Control Engineering (MP0820)

#### 9.3.4.1 Programme Structure

At least 1 year full-time research, concluded with a Master's Dissertation. This qualification is offered at the Vanderbijlpark campus only.

# 9.3.4.2 Purpose of the MEng in Electrical Engineering: Process Control Engineering

The purpose of this qualification is to develop a student into a researcher, able to conduct independent research with minimum guidance in a chosen field of Electrical Engineering: Process Control Engineering. The outcomes of the research will contribute to knowledge production in the specialisation field. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.4.)

## 9.3.4.3 Admission Requirements

A BEng degree in Electrical Engineering: Process Control Engineering or equivalent level 8 qualification. Proof of successful completion of Vaal University of Technology approved course in Research Methodology. Ad hoc cases will be treated on merit.

# 9.3.5 Doctor of Engineering in Electrical Engineering: Process Control Engineering (DP0820)

### 9.3.5.1 Programme Structure

At least two years' full-time research, concluded with a Doctoral Thesis. This qualification is offered at the Vanderbijlpark campus only.

## 9.3.5.2 Purpose of the Doctor of Engineering in Electrical Engineering: Process Control Engineering

The purpose of the qualification is to develop a researcher who will make a significant and original contribution to knowledge in a specialised area of electrical engineering in Process Control Engineering and related technologies. To develop a researcher in Electrical Engineering in Process Control Engineering with advanced abilities, to independently apply Electrical Engineering: Process Control Engineering industrial based designs, synthesis, and related computer systems engineering principles, to specific problems of society at large.

One of the main objectives in this process is to develop an advanced capability to conduct engineering research of an original nature. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (See also paragraph 4.5.)

## 9.3.5.3 Admission Requirements

MEng in Electrical Engineering: Process Control Engineering. Ad hoc cases will be treated on merit.

## 9.4 ELECTRICAL ENGINEERING: COMPUTER SYSTEMS ENGINEERING

## 9.4.1 Diploma in Electrical Engineering: Computer Systems (DI0822)

## 9.4.1.1 Duration of Programme

Three years qualification, min 360 credits, NQF level 6. Offered full-time, contact classes are for a period for six semesters (three years) followed by a one-year Workplace Based Learning (WBL) (carried out through attachment to industry) component. The student will be assisted by the university to look for suitable industry opportunities (companies) to complete the required WBL training and skills development.

| NSC                | Compulsory Subjects                  | Minimum for the | Notes         |
|--------------------|--------------------------------------|-----------------|---------------|
|                    |                                      | Diploma         |               |
|                    |                                      | programme       |               |
|                    | Mathematics                          | 4               | 3 = 40 - 49%  |
| National<br>Senior | Physical Science<br>English Language | 4<br>4          | 4 = 50 - 59%  |
| Certificate        |                                      | 4               | 5 = 60 - 69%  |
|                    | Any other subjects                   |                 | 6 = 70 - 79%  |
|                    | with a minimum level                 |                 | 7 = 80 - 89%  |
|                    | of 3, excluding Life<br>Orientation  | 12              | 8 = 90 - 100% |
|                    | Total                                | 24*             |               |

#### 9.4.1.2 Admission Requirements

#### Please note:

- The prospective student's results must meet the statutory and programme admission requirement.
- Bonus points will only be used for selection purposes. In case of a tie and all other scores remaining the same use the actual percentages to differentiate.
- \*Admission requirements for any of the 3-year Diploma programmes in Engineering is a National Senior Certificate with a minimum of 28 and above APS points, with a minimum of 4 for Mathematics, Physical Science and English.
- \*Admission requirements for any of the 4-year extended Diploma programmes in Engineering is a National Senior Certificate with a minimum of 24 – 27 maximum APS points, with a minimum of 4 for Mathematics, Physical Science and English. Students that need more information regarding Extended programmes should liaise with their respective HODs and/or the faculty manager. The main purpose of extended programmes is to widen access and reinforce/improve success.
- All other grade 12 or equivalent certificates will be evaluated against/according to statutory and programme requirements.
- International qualifications: All international qualifications will be evaluated by the International Office based on the Swedish scale and SAQA equivalence.
- Transfers: Applications from students to transfer from other institutions will be dealt with in terms of the Recognition of Prior Learning and CAT policies of VUT.

| MODULE CODE | NAME OF MODULE                   | CREDITS |  |
|-------------|----------------------------------|---------|--|
|             | SEMESTER 1                       |         |  |
| HKCOX1A     | Applied Communication Skills 1.1 | 8       |  |
| EEESK1A     | Engineering Skills 1             | 5       |  |
| EPEEN1A     | Electrical Engineering 1         | 10      |  |
| ASICT1A     | ICT Skills 1                     | 10      |  |
| AMMAT1A     | Mathematics 1                    | 10      |  |
| APHYS1A     | Physics 1                        | 10      |  |
| EESIN1A     | Social Intelligence 1            | 3       |  |
|             | SEMESTER 2                       |         |  |
| HKCOY1A     | Applied Communication Skills 1.2 | 8       |  |
| EICOA2A     | Computing Applications 2         | 7       |  |
| EIDSY1A     | Digital Systems 1                | 10      |  |
| EPEEN2A     | Electrical Engineering 2         | 10      |  |
| AMMAT2A     | Mathematics 2                    | 10      |  |

## 9.4.1.3 Curriculum: Diploma in Electrical Engineering: Computer Systems

| ΑΡΗΥΡ2Α                   | Physics 2 Practical              | 5  |
|---------------------------|----------------------------------|----|
| APHYT2A                   | Physics 2 Theory                 | 5  |
| EESPA1A                   | Safety Principles and Law 1      | 5  |
|                           | SEMESTER 3                       |    |
| HKCOX2A                   | Applied Communication Skills 2.1 | 8  |
| EIDSY2A                   | Digital Systems 2                | 10 |
| EEELE1A                   | Electronics 1                    | 10 |
| EIENP1A                   | Engineering Programming 1        | 10 |
| EINET1A                   | Networks 1                       | 10 |
| EISEN1A                   | Software Engineering 1           | 10 |
| EIOSY1A                   | Operating Systems 1              | 10 |
|                           | SEMESTER 4                       |    |
| HKCOY2A                   | Applied Communication Skills 2.2 | 8  |
| EIDSY3A                   | Digital Systems 3                | 10 |
| EEELE2A                   | Electronics 2                    | 10 |
| EIENP2A                   | Engineering Programming 2        | 10 |
| EINET2A                   | Networks 2                       | 10 |
| EIOSY2A                   | Operating Systems 2              | 10 |
| EISEN2A                   | Software Engineering 2           | 10 |
|                           | SEMESTER 5                       |    |
| EIENP3A                   | Engineering Programming 3        | 10 |
| AMMAT3A                   | Mathematics 3                    | 10 |
| EINET3A                   | Networks 3                       | 10 |
| EIOSY3A                   | Operating Systems 3              | 10 |
| EISEN3A                   | Software Engineering 3           | 10 |
| EIDSY4A Digital Systems 4 |                                  | 10 |
|                           | SEMESTER 6                       |    |
|                           | CHOICE (At least 1)              |    |
| EIENP4A                   | Engineering Programming 4        | 10 |
| EINET4A                   | Networks 4                       | 10 |
|                           | WBL Placement                    |    |

| EIEXC1A | Experiential Learning 1 (Computer Systems) | 14 |
|---------|--------------------------------------------|----|
| EIEXC2A | Experiential Learning 2 (Computer Systems) | 16 |
| EIPRC4A | Engineering Project 4                      | 30 |

# Curriculum: Diploma in Electrical Engineering: Computer Systems (4 year Extended programme) – DE0862

The purpose of the Extended Diploma programme is to assist students who enter the University with APS score of 24 - 27 by giving them more time to reach the level of competency similar to those who enter with higher APS scores. The programme extends the 3-year programme into 4 years by spreading the first year of study over 2 years with the inclusion of foundational modules as well as mainstream programme modules. The foundation modules in the first year of study will help students to improve their competency in Maths, Physics and Chemistry. In the second year of study, the students will augment their foundation knowledge of Maths, Physics and Chemistry to reach the level of the mainstream programme. Students are required to pass all modules in both years of the foundation phase to be able to proceed to the next year of study.

| MODULE  | NAME OF MODULE                   | ТҮРЕ       | CREDITS |       |
|---------|----------------------------------|------------|---------|-------|
| CODE    |                                  |            | Regular | Found |
|         | YEAR 1 - SEMEST                  | TER 1      |         |       |
| AAXCH1A | Foundation Chemistry 1           | Foundation |         | 10    |
| AMXMA1A | Foundation Mathematics 1         | Foundation |         | 10    |
| APXPH1A | Foundation Physics 1             | Foundation |         | 10    |
| ASICT1A | ICT Skills 1                     | Regular    | 10      |       |
| EEESK1A | Engineering Skills 1             | Regular    | 5       |       |
| EESIN1A | Social Intelligence 1            | Regular    | 3       |       |
| HKCOX1A | Applied Communication Skills 1.1 | Regular    | 8       |       |
|         | YEAR 1 - SEMESTER 2              |            |         |       |
| AAXCH2A | Foundation Chemistry 2           | Foundation |         | 10    |
| AMXMA2A | Foundation Mathematics 2         | Foundation |         | 10    |
| APXPH2A | Foundation Physics 2             | Foundation |         | 10    |

| EICOA2A | Computing Applications 2         | Regular        | 7  |  |
|---------|----------------------------------|----------------|----|--|
| EESPA1A | Safety Principles and Law 1      | Regular        | 5  |  |
| HKCOY1A | Applied Communication Skills 1.2 | Regular        | 8  |  |
|         | YEAR 2 - SEMESTER 1              |                |    |  |
| AMMAT1B | Mathematics 1                    | Regular (Augm) | 10 |  |
| APHYS1B | Physics 1                        | Regular (Augm) | 10 |  |
| EPEEN1A | Electrical Engineering 1         | Regular        | 10 |  |

! "#\$%&' () \*+\$#, (-&("&#. \$&",%/#&#O(&1\$2%/3&#. \$&/#45\$-#&O,+&' (-#,-4\$&#(&1\$2%&6&2-5&73& "(++(O,-8&#. \$&%\$84+2%) (54+\$/9

## 9.4.1.4 Workplace Based Learning / Experiential Learning

The Diploma in Electrical Engineering: Computer Systems has a formal Workplace Based Learning (WBL) component of 60 credits. This takes place at an accredited employer (company). The student will be assisted to find suitable placement after which the student will register for the WBL modules. The student will provide progress reports at regular intervals, in co-operation with a work-based mentor, to confirm that the necessary practical outcomes are being achieved.

## 9.4.2 Advanced Diploma in Electrical Engineering: Computer Systems Engineering (AD0822)

## 9.4.2.1 Admission Requirements

For admission into the AdvDip in Electrical Engineering: Computer Systems Engineering (NQF level 7, min 120 credits), all applicants must have a Diploma in Electrical Engineering: Computer Systems (NQF level 6, min 360 credits) or equivalent.

**9.4.2.2** Duration of Programme: One-year, full-time qualification.

## 9.4.2.3 Curriculum: Advanced Diploma in Electrical Engineering: Computer Systems Engineering

| MODULE CODE | NAME OF MODULE | CREDITS |
|-------------|----------------|---------|
| SEMESTER 1  |                |         |
| COMPULSARY  |                |         |

|            | 1                                 |    |  |
|------------|-----------------------------------|----|--|
| EIPRE4A    | Electrical Engineering Project 25 |    |  |
| EIREM4A    | Engineering Research Methods 15   |    |  |
|            |                                   |    |  |
|            | ELECTIVES                         |    |  |
| EIMSD4A    | Micro Systems Design              | 20 |  |
| EEAEL4A    | Electronics                       | 20 |  |
| EINTP4A    | New Technology Programming        | 20 |  |
| EIDBP4A    | Database Programming              | 20 |  |
| SEMESTER 2 |                                   |    |  |
|            | COMPULSARY                        |    |  |
| AMAEM4A    | Advanced Engineering Mathematics  | 15 |  |
| BHEMN4A    | Engineering Management 10         |    |  |
|            |                                   |    |  |
|            | ELECTIVES                         |    |  |
| EISEN4A    | Software Engineering 20           |    |  |
| EIWDC4A    | Wireless Data Communications 20   |    |  |
| EICNS4A    | Computer Network Security 20      |    |  |
| EIDBS4A    | Database Administration 20        |    |  |
| EIARI4A    | Artificial Intelligence 20        |    |  |

## 9.4.2.4 Typical work environment for the Computer Systems Engineering Technologist

Hardware design and development using microcontroller and mobile systems. Data communications, design, installation and maintenance of network and data management systems. Programming and data processing. Database applications. Design and development of fully engineered systems.

## 9.4.2.5 Career Opportunities

The computerisation and digitization of most facets of modern business and industry, together with the great demand for technical skilled manpower created a multitude of possibilities for such a career in Computer Systems Engineering.

## 9.4.2.6 Career Status

The Computer Systems Engineering Technologist can register for professional status with ECSA, the Control Board for Engineering Technologists.

## 9.4.3 Postgraduate Diploma in Electrical Engineering: Computer Systems Engineering (PG0822)

#### 9.4.3.1 Admission Requirements

All applicants must have an Advanced Diploma in Electrical Engineering: Computer Systems Engineering (NQF level 7, min 120 credits).

**9.4.3.2 Duration of Programme:** One-year, full-time qualification (NQF level 8, min 120 credits).

| MODULE CODE                                                                                   | NAME OF MODULE                         | CREDITS |
|-----------------------------------------------------------------------------------------------|----------------------------------------|---------|
|                                                                                               | COMPULSORY                             |         |
|                                                                                               | Engineering Research Project           | 30      |
|                                                                                               | Research Statistics                    | 15      |
|                                                                                               | MINIMUM OF 3 ELECTIVES                 |         |
| Complementary Modules (Mod 1 and 2 of a module must be taken together)                        |                                        |         |
| Advanced Networking Module 1 25                                                               |                                        |         |
| Advanced Networking Module 2 25                                                               |                                        | 25      |
| Advanced Software Engineering Module 1 25                                                     |                                        | 25      |
|                                                                                               | Advanced Software Engineering Module 2 | 25      |
|                                                                                               | Systems Engineering Module 1           | 25      |
|                                                                                               | Systems Engineering Module 2           | 25      |
| Independent Modules (Any 1 module can be taken if a set of complementary modules were chosen) |                                        |         |
| Advanced Hardware Systems 25                                                                  |                                        | 25      |
|                                                                                               | Computer Systems Security              | 25      |

## 9.4.3.3 Curriculum: Postgraduate Diploma in Electrical Engineering: Computer Systems Engineering

| Emerging Systems        | 25 |
|-------------------------|----|
| Operating System Design | 25 |
| Intelligent Systems     | 25 |

## 9.4.4 Master of Engineering in Electrical Engineering: Computer Systems Engineering (MP0820)

## 9.4.4.1 Programme Structure

At least 1 year full-time research, concluded with a Master's Dissertation. This qualification is offered at the Vanderbijlpark campus only.

## 9.4.4.2 Purpose of the MEng in Electrical Engineering: Computer Systems Engineering

The purpose of this qualification is to develop a student into a researcher, able to conduct independent research with minimum guidance in a chosen field of Electrical Engineering: Computer Systems Engineering. The outcomes of the research will contribute to knowledge production in the specialisation field. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.4.)

## 9.4.4.3 Admission Requirements

A BEng degree in Electrical Engineering: Computer Systems Engineering or equivalent level 8 qualification. Proof of successful completion of Vaal University of Technology approved course in Research Methodology. Ad hoc cases will be treated on merit.

## 9.4.5 Doctor of Engineering in Electrical Engineering: Computer Systems Engineering (DP0820)

## 9.4.5.1 Programme Structure

At least two years' full-time research, concluded with a Doctoral Thesis. This qualification is offered at the Vanderbijlpark campus only.

## 9.4.5.2 Purpose of the Doctor of Engineering in Electrical Engineering: Computer Systems Engineering

The purpose of the qualification is to develop a researcher who will make a significant and original contribution to knowledge in a specialised area of electrical engineering in Computer Systems Engineering and related technologies. To develop a researcher in Electrical Engineering in Computer Systems Engineering with advanced abilities, to independently apply Electrical Engineering: Computer Systems Engineering industrial based designs, synthesis, and related computer systems engineering principles, to specific problems of society at large.

One of the main objectives in this process is to develop an advanced capability to conduct engineering research of an original nature. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (See also paragraph 4.5.)

## 9.4.5.3 Admission Requirements

MEng in Electrical Engineering: Computer Systems Engineering. Ad hoc cases will be treated on merit.

#### 9.5 Enquiries

Enquiries may be addressed to:

## **HoD: Electrical Engineering**

Faculty of Engineering & Technology Vaal University of Technology Private Bag X021 Vanderbijlpark, 1900

#### **HoD: Electrical Engineering**

| Tel    | : | +27 16 950 9929     |
|--------|---|---------------------|
| Fax    | : | +27 16 950 9795     |
| e-mail | : | hendrickl@vut.ac.za |
|        |   | refilwem1@vut.ac.za |

#### **Discipline Coordinator: Process Control & Computer Systems Engineering**

| Tel    | :  | +27 16 950 9254     |
|--------|----|---------------------|
| Fax    | :  | +27 16 950 9727     |
| e-mail | :  | tebellom1@vut.ac.za |
|        |    | refilwem1@vut.ac.za |
| Websit | e: | www.vut.ac.za       |

or

## Postgraduate Office

## Ms N Kokoali

| Tel    | : | +27 16 950 9288              |
|--------|---|------------------------------|
| e-mail | : | <u>nomathembak@vut.ac.za</u> |

## Mr S Motsie

| Tel    | : | +27 16 950 7639             |
|--------|---|-----------------------------|
| e-mail | : | <u>sehlabakam@vut.ac.za</u> |

## 10. DEPARTMENT OF INDUSTRIAL ENGINEERING & OPERATIONS MANAGEMENT AND MECHANICAL ENGINEERING

## 10.1 INDUSTRIAL ENGINEERING AND OPERATIONS MANAGEMENT

## **Discipline Staff Details**

| Surname, Initials & Title | Designation     | Highest<br>Qualification |
|---------------------------|-----------------|--------------------------|
| Tengen, TB (Prof)         | HoD             | PhD                      |
| Nakedi, K (Ms)            | Administrator   | PGD                      |
| Sukraj, R (Mr)            | Senior Lecturer | BTech                    |
| Van Wyk, T (Ms)           | Senior Lecturer | MBL, Pr Tech Eng         |
| Adeyemi, OS (Mr)          | Lecturer        | MSc                      |
| lkome, JM, (Mr)           | Lecturer        | MTech                    |
| Khumalo, I (Mr)           | Lecturer        | MSc                      |
| Nhlabathi, GS (Mr)        | Lecturer        | MTech                    |
| Mallane, TM (Ms)          | Junior Lecturer | BTech                    |
| Sivambu, JC (Mr)          | Technician      | BTech                    |

## 10.1.1 Diploma in Industrial Engineering (DI0830)

A diploma will be issued on the completion of 36 modules, made up of five semesters of theoretical learning and one-semester Workplace-Based Learning (WBL) at an accredited employer. The six-month period of Workplace-Based Learning is registered at the University. The WBL training is undertaken upon completion of S5 or at least 90% of all the theoretical components of the training.

The University will look for placement for students who complete ALL the theoretical components of the qualification, while students who only complete around 90% of the theoretical components will have the responsibility to look for THEIR OWN placements.

## 10.1.1.1 Programme Structure

Three-year full-time qualification:

- Five semesters (S1 to S5) of theoretical learning at the Vaal University of Technology
- One semester (at least) of Work Integrated learning (Industry)

Each semester of theoretical consists of approximately 15 weeks of tuition, comprising of lectures, tutorials and practical work done in laboratories for some modules. During this time, the student's progress is evaluated by means of written tests, assignments (individual or group), practical evaluations, continuous assessments. case-based studies. documented investigation/research, presentations, documented projects, computer-based assessments and simulations. At the end of each semester, final examinations are written on all the work done during the semester over an approximatelytwo2 weeks' period for those modules that were not assessed on a continuous assessment basis.

## 10.1.1.2 Purpose of the Diploma in Industrial Engineering

The generic purpose of the qualification is spelt out in paragraph 4.1 and must be read in conjunction with the following: The purpose of the qualification Diploma in Industrial Engineering is to develop the necessary knowledge, understanding and skills required for the student's further learning towards becoming a competent practising Industrial Engineering Technician. It is intended to subsequently empower candidate Engineering Technicians to demonstrate that they can apply their acquired knowledge, understanding, skills, attitudes and values in the work environments in South Africa and the world at large. It is also designed to add value to the qualifying student in terms of enrichment of the person, status and recognition.

The main objective of this discipline is to constantly improve methods, procedures and practice within an organisation in order to increase productivity and profits. More value is added if inputs like manpower, materials, machinery and money are converted more effectively with sound management principles into products and services. Such a person is continually engaged in core aspects such as communication, co-operation, quality, planning, scheduling, cycle time, capacity, utilisation, economic analysis, problem-solving, materials handling, facility layout, etc. Industrial Engineering, therefore, requires persons who like working with people, who enjoy analysing and solving problems, developing solutions, gaining co-operation, motivating people and always seek better, quicker and cheaper ways of doing things.

| NSC                   | Compulsory Subjects                 | Minimum for the | Notes         |
|-----------------------|-------------------------------------|-----------------|---------------|
|                       |                                     | Diploma         |               |
|                       |                                     | programme       |               |
|                       | Mathematics                         | 4               | 3 = 40 - 49%  |
| National              | Physical Science                    | 4               | 4 = 50 - 59%  |
| Senior<br>Certificate | English Language                    | 4               | 5 = 60 - 69%  |
|                       | Any other subjects                  |                 | 6 = 70 - 79%  |
|                       | with a minimum level                |                 | 7 = 80 - 89%  |
|                       | of 3, excluding Life<br>Orientation | 12              | 8 = 90 - 100% |
|                       | Total                               | 24*             |               |

## 10.1.1.3 Admission Requirements: Diploma in Industrial Engineering

#### Please note:

- The prospective student's results must meet the statutory and programme admission requirement.
- Bonus points will only be used for selection purposes. In case of a tie and all other scores remaining the same use the actual percentages to differentiate.
- \*Admission requirements for any of the 3-year Diploma programmes in Engineering is a National Senior Certificate with a minimum of 28 and above APS points, with a minimum of 4 for Mathematics, Physical Science and English.
- \*Admission requirements for any of the 4-year extended Diploma programmes in Engineering is a National Senior Certificate with a minimum of 24 – 27 maximum APS points, with a minimum of 4 for Mathematics, Physical Science and English. Students that need more information regarding Extended programmes should liaise with their respective HODs and/or the faculty manager. The main purpose of extended programmes is to widen access and reinforce/improve success.
- All other grade 12 or equivalent certificates will be evaluated against/according to statutory and programme requirements.
- International qualifications: All international qualifications will be evaluated by the International Office based on the Swedish scale and SAQA equivalence.
- Transfers: Applications from students to transfer from other institutions will be dealt with in terms of the Recognition of Prior Learning and CAT policies of VUT.

## 10.1.1.4 Career Opportunities

There is a great need for persons who are well trained in Industrial Engineering. Job opportunities abound in all types of manufacturing companies as well as service organisations as advisors, industrial analysts, production personnel, planning personnel and line managers. Experience has shown that people with a qualification in Industrial Engineering and a dynamic personality quickly progress to the management level or start their own business.

| MODULE CODE | NAME OF MODULE                   | CREDITS |  |  |
|-------------|----------------------------------|---------|--|--|
|             | SEMESTER 1                       |         |  |  |
| HKCOX1A     | Applied Communication Skills 1.1 | 8       |  |  |
| AAECH1A     | Engineering Chemistry 1          | 10      |  |  |
| EEESK1A     | Engineering Skills 1             | 5       |  |  |
| ASICT1A     | ICT Skills 1                     | 10      |  |  |
| AMMAT1A     | Mathematics 1                    | 10      |  |  |
| APHYS1A     | Physics 1                        | 10      |  |  |
| EESIN1A     | Social Intelligence 1            | 3       |  |  |
| SEMESTER 2  |                                  |         |  |  |
| HKCOY1A     | Applied Communication Skills I.2 | 8       |  |  |
| EBCOA2A     | Computing Applications 2         | 7       |  |  |
| AAECH2A     | Engineering Chemistry 2          | 10      |  |  |
| EMEDR1A     | Engineering Drawing 1            | 10      |  |  |
| EBMRE2A     | Manufacturing Relations 2        | 10      |  |  |
| AMMAT2A     | Mathematics 2                    | 10      |  |  |
| APHYT2A     | Physics 2 (Theory)               | 5       |  |  |
| ΑΡΗΥΡ2Α     | Physics 2 (Practical)            | 5       |  |  |
| EBSPA1A     | Safety Principles and Law 1      | 5       |  |  |
|             | SEMESTER 3                       |         |  |  |
| НКСОХ2А     | Applied Communication Skills 2.1 | 8       |  |  |

## 10.1.1.5 Curriculum: Diploma in Industrial Engineering

| EPEEN1A | Electrical Engineering 1                   | 10 |
|---------|--------------------------------------------|----|
| EBEWS1A | Engineering Work Study 1                   | 10 |
| EMMEN1A | Manufacturing Engineering 1                | 10 |
| EBPEN1A | Production Engineering 1                   | 10 |
| EBQTE1A | Qualitative Techniques 1                   | 10 |
| EMMEC1A | Mechanics 1                                | 10 |
| AMMAT3A | Mathematics 3                              | 10 |
|         | SEMESTER 4 (All Compulsory and 1 Elective) |    |
|         | Compulsory (All):                          |    |
| HKCOY2A | Applied Communication Skills 2.2           | 8  |
| BACOS2A | Costing 2                                  | 10 |
| EBEWS2A | Engineering Work Study 2                   | 10 |
| EBFLA2A | Facility Layout and Material Handling 2    | 10 |
| EMMEN2A | Mechanical Manufacturing Engineering 2     | 10 |
| EBPEN2A | Production Engineering 2                   | 10 |
| EBQAS2A | Quality Assurance 2                        | 10 |
|         | Electives* (Only 1):                       |    |
| EBCAD1A | Computer-Aided Draughting 1*               | 10 |
| EPEEN2A | Electrical Engineering 2*                  | 10 |
| EMMAE1A | Maintenance 1*                             | 10 |
| EMMOM2A | Mechanics of Machines 2*                   | 10 |
| EMSOM2A | Strength of Materials 2*                   | 10 |
|         | SEMESTER 5                                 |    |
| EBAUT3A | Automation 3                               | 10 |
| EBEWS3A | Engineering Work Study 3                   | 10 |
| EBIAC3A | Industrial Accounting 3                    | 10 |
| EBILE3A | Industrial Leadership 3                    | 10 |
| EBORE3A | Operations Research 3                      | 10 |
|         | SEMESTER 6                                 | ·  |

#### EBWIL1A

## Progression and Pathway:

To move to POS B, student should have obtained at least 13 credits in POS A; To move to POS C, student should have obtained at least 15 credits in POS B; To move to POS D, student should have obtained at least 20 credits in POS C. To move to POS E, student should have obtained at least 10 credits in POS D. Only modules for which the pre-requisite has been passed can be enrolled.

Upon completion of the Diploma in Industrial Engineering (NQF Level 6, minimum 360 credits), the graduate meets the minimum entry requirement for admission to the Advanced Diploma in Industrial Engineering (NQF Level 7), designed to support articulation to satisfy a Professional Industrial Engineering Technologist education benchmark.

# Curriculum: Diploma in Industrial Engineering (4 year Extended programme) – DE0831

The purpose of the Extended Diploma programme is to assist students who enter the University with APS score of 24 - 27 by giving them more time to reach the level of competency similar to those who enter with higher APS scores. The programme extends the 3-year programme into 4 years by spreading the first year of study over 2 years with the inclusion of foundational modules as well as mainstream programme modules. The foundation modules in the first year of study will help students to improve their competency in Maths, Physics, Chemistry and Drawing. In the second year of study, the students will augment their foundation knowledge of Maths, Physics, Chemistry and Drawing to reach the level of the mainstream programme. Students are required to pass all modules in both years of the foundation phase to be able to proceed to the next year of study.

| MODULE  | NAME OF MODULE           | ТҮРЕ       | CREDITS |       |
|---------|--------------------------|------------|---------|-------|
| CODE    |                          |            | Regular | Found |
|         | YEAR 1 - SEMESTER 1      |            |         |       |
| AAXCH1A | Foundation Chemistry 1   | Foundation |         | 10    |
| AMXMA1A | Foundation Mathematics 1 | Foundation |         | 10    |
| APXPH1A | Foundation Physics 1     | Foundation |         | 10    |
| ASICT1A | ICT Skills 1             | Regular    | 10      |       |

|         | 1                                |                |    |    |
|---------|----------------------------------|----------------|----|----|
| EEESK1A | Engineering Skills 1             | Regular        | 5  |    |
| EESIN1A | Social Intelligence 1            | Regular        | 3  |    |
| HKCOX1A | Applied Communication Skills 1.1 | Regular        | 8  |    |
|         | YEAR 1 - SEMEST                  | 'ER 2          |    |    |
| AAXCH2A | Foundation Chemistry 2           | Foundation     |    | 10 |
| AMXMA2A | Foundation Mathematics 2         | Foundation     |    | 10 |
| APXPH2A | Foundation Physics 2             | Foundation     |    | 10 |
| EMXDR1A | Foundation Drawing 1             | Foundation     |    | 10 |
| EBCOA2A | Computing Applications 2         | Regular        | 7  |    |
| EBSPA1A | Safety Principles and Law 1      | Regular        | 5  |    |
| HKCOY1A | Applied Communication Skills 1.2 | Regular        | 8  |    |
|         | YEAR 2 - SEMEST                  | ER 1           |    |    |
| AAECH1B | Engineering Chemistry 1          | Regular (Augm) | 10 |    |
| AMMAT1B | Mathematics 1                    | Regular (Augm) | 10 |    |
| APHYS1B | Physics 1                        | Regular (Augm) | 10 |    |
| EMMEC1B | Mechanics 1                      | Regular (Augm) | 10 |    |
|         | YEAR 2 - SEMEST                  | ER 2           |    |    |
| AAECH2A | Engineering Chemistry 2          | Regular        | 10 |    |
| AMMAT2A | Mathematics 2                    | Regular        | 10 |    |
| APHYP2A | Physics 2 – Practical            | Regular        | 5  |    |
| APHYT2A | Physics 2 - Theory               | Regular        | 5  |    |
| EBMRE2A | Manufacturing Relations 2        | Regular        | 10 |    |
| EMEDR1B | Engineering Drawing 1            | Regular (Augm) | 10 |    |
|         | -                                | -              | -  |    |

! "#\$%&' () \*+\$#, (-&("&#. \$&",%/#&#O(&1\$2%/3&#. \$&/#45\$-#&O,+&' (-#,-4\$&#(&1\$2%&6&2-5&73& "(++(O,-8&#. \$&%\$84+2%) (54+\$/9

**Progression Rules:** 

Students on the extended programme that fail modules can carry them over to the nest semester in which those modules are offered. The timetable will probably allow for this in most cases since these students take reduced numbers of modules. This will also apply for modules that are prerequisites to follow up modules. Modules failed during the second year of the extended programme will have to be carried over beyond the duration of the extended first year. In such cases, the HoD must determine the workload and degree of progression as per standard practice in the regular programme.

The continuation of studies policy (CoS) will apply to the extended programme as it does for all VUT programmes. Essentially, in terms of the CoS, students that have not completed their first semester modules (S1) after two attempts are academically excluded unless they successfully appeal against exclusion. Similarly, if after two years on the extended programme, a student has not yet completed all the S1 modules, will have to appeal against exclusion.

## 10.1.1.6 Workplace Based Learning

The Diploma in Industrial Engineering has a formal Workplace Based Learning component of six months. This takes place at a Vaal University of Technology accredited employer (company). The student will be placed in the industry by VUT. Registration of this WBL is the responsibility of the student, and continuous progress will be monitored by VUT staff. In co-operation with an Industry mentor, the learner will be assessed by the mentor and VUT staff.

## 10.1.1.7 Progression and Pathway

Upon completion of this Diploma in Engineering in Industrial Engineering, which is at NQF Level 6 (with a minimum of 360 Credits), the graduate meets the minimum entry requirement for admission to Advanced Diploma in Industrial Engineering at NQF Level 7 (with a minimum of 120 credits and ECSA 140 Credits) designed to support articulation to satisfy an Industrial Engineering Technologist education benchmark. This Diploma provides the base for the graduate to enter training and experience toward independent practice as a candidate Industrial Engineering Technician and, once qualified, undergo registration as a Professional Industrial Engineering Technician by the Engineering Council of South Africa (ECSA). This qualification lies in a HEQSF Vocational Pathway.

## 10.1.2 Advanced Diploma in Industrial Engineering (AD0830)

## 10.1.2.1 Admission Requirements

A Diploma in Industrial Engineering (NQF level 6, 360 credits) or equivalent. All other equivalent qualifications will be treated on an ad hoc basis.

#### 10.1.2.2 Programme Duration

The Advanced Diploma in Industrial Engineering is a minimum of a one-year fulltime course.

## 10.1.2.3 Programme Structure

Each semester consists of approximately 15 weeks of tuition, comprising lectures, tutorials and practical work done in laboratories for some modules. During this time, the student's progress is evaluated by means of written tests, assignments (individual or group), practical evaluations, continuous assessments, case-based studies, documented investigation/research, presentations, documented projects, computer-based assessments and simulations. At the end of each semester, final examinations are written on all the work done during the semester, over an approximately two weeks' period for those modules that were not assessed on a continuous assessment basis.

| MODULE<br>CODE | NAME OF MODULE                                      | CREDITS |  |  |
|----------------|-----------------------------------------------------|---------|--|--|
|                | SEMESTER 1 (All 3 modules are compulsory)           |         |  |  |
| EBMPS4A        | Manufacturing and Production Science                | 20      |  |  |
| EBQIC4A        | Quality Control and Improvement                     | 20      |  |  |
| EBRMI4A        | Research Methods and Industrial Engineering Project | 20      |  |  |
|                | SEMESTER 2 (2 compulsory modules and 2 electives)   |         |  |  |
|                | Compulsory modules:                                 |         |  |  |
| EBFPD4A        | Facility Planning and Design                        | 20      |  |  |
| EBMOS4A        | Modelling and Simulation                            | 20      |  |  |
|                | Elective modules (choose one):                      |         |  |  |
| EBHFE4A        | Human Factors and Ergonomics                        | 20      |  |  |
| EBIEM4A        | Industrial Engineering Management                   | 20      |  |  |

10.1.2.4 Curriculum: Advanced Diploma in Industrial Engineering

| EBFEE4A | Financial Engineering and Economics *  | 20 |
|---------|----------------------------------------|----|
| EBIKM4A | Information and Knowledge Management * | 20 |

*Please note: All modules must be done at VUT. This is an NQF Level 7 qualification with a minimum of 120 credits and 140 credits to meet ECSA requirements.* 

## 10.1.2.5 Progression and Pathway

Upon completion of the Advanced Diploma in Industrial Engineering (NQF Level 7, minimum 140 credits), the graduate meets the minimum entry requirement for admission to the Postgraduate Diploma in Industrial Engineering (NQF Level 8), designed to support articulation to satisfy a Professional Industrial Engineering Technologist education benchmark. This Advanced Diploma provides the base for the graduate to enter training and experience towards independent practice as a Professional Industrial Engineering Technologist and, once qualified, undergo registration as a Professional Industrial Engineering Technologist by ECSA. This qualification lies in a HEQSF Vocational Pathway.

## 10.1.3 Postgraduate Diploma in Industrial Engineering (PG0830)

## 10.1.3.1 Admission Requirements

A Bachelor's degree or Advanced Diploma in Industrial Engineering or relevant NQF level 7 qualification (120 credits). All other equivalent qualifications will be treated on an ad hoc basis.

## 10.1.3.2 Programme Duration

The Postgraduate Diploma in Industrial Engineering is a minimum one-year, fulltime course.

| MODULE CODE                             | NAME OF MODULE                                              | CREDITS |  |
|-----------------------------------------|-------------------------------------------------------------|---------|--|
| YEAR MODULES (All compulsory)           |                                                             |         |  |
| EBIPD5A                                 | Industrial Engineering Project Planning and Design          | 30      |  |
| EBIDI5A                                 | Industrial Engineering Project Design and<br>Implementation | 30      |  |
| SEMESTER 1 (All modules are Compulsory) |                                                             |         |  |
| EBADA5A                                 | Advanced Decision Analysis                                  | 20      |  |

| 10.1.3.3 Curriculum: | Postgraduate Di | ploma in Industrial | Engineering |
|----------------------|-----------------|---------------------|-------------|
|                      |                 | P                   |             |

| EBAMS5A | Advanced Modelling and Simulation               | 20 |
|---------|-------------------------------------------------|----|
|         | SEMESTER 2 (1 Compulsory module and 1 Elective) |    |
|         | Compulsory module:                              |    |
| EBMPE5A | Manufacturing and Production Engineering        | 20 |
|         | Elective modules (choose one):                  |    |
| EBAFD5A | Advanced Facility Design*                       | 20 |
| EBFEN5A | Financial Engineering*                          | 20 |
| EBPRE5A | Project Engineering*                            | 20 |

*Please note: All modules must be done at VUT. This is an NQF level 8 qualification with 140 credits.* 

## 10.1.3.4 Programme Structure

Each semester consists of approximately 15 weeks of tuition, comprising lectures, tutorials and practical work done in laboratories for some modules. During this time, the student's progress is evaluated by means of written tests, assignments (individual or group), practical evaluations, continuous assessments, case-based studies, documented investigation/research, presentations, documented projects, computer-based assessments and simulations. At the end of each semester, final examinations are written on all the work done during the semester over an approximately two weeks' period for those modules that were not assessed on a continuous assessment basis.

## 10.1.3.5 Progression and Pathway

Upon completion of the Postgraduate Diploma in Industrial Engineering (NQF Level 8, 120 credits), the graduate meets the minimum entry requirement for admission to the Master of Engineering in Industrial Engineering (NQF Level 9), designed to support articulation to satisfy a Professional Industrial Engineer education benchmark. This Postgraduate Diploma provides the base for the graduate to enter training and experience towards independent practice as a Professional Industrial Engineer and once qualified, undergo registration as a Professional Industrial Engineer by ECSA. This qualification lies in a HEQSF Vocational Pathway.

# 10.1.4 Master of Engineering in Industrial Engineering (MEng (Industrial)) (MP0830)

## 10.1.4.1 Admission Requirements

A BEng Degree or Equivalent NQF level 8 qualification including the Postgraduate Diploma with a minimum of 60% average.

## 10.1.4.2 Duration of Programme

The equivalent of a minimum one-year full-time study.

## 10.1.4.3 Programme Structure

This instructional programme comprises of a thesis only.

## WHAT IS INDUSTRIAL ENGINEERING?

The main objective of this discipline is to constantly improve methods, procedures and practices within an organisation in order to increase productivity and profits. Value is added if inputs like manpower, materials, machinery and money are converted more effectively into products and services by using sound management principles. An Industrial Engineer is continually engaged in core aspects such as communication, cooperation, quality, planning and scheduling, as well as the calculation of cycle time, capacity and utilisation. Industrial Engineers should also be competent in economic analysis, problem-solving, materials handling, facility layout etc. Industrial Engineering, therefore, requires persons who like working with people; who enjoy analysing and solving problems, developing solutions, gaining co-operation and motivating people. Industrial engineers always seek better, quicker and cheaper ways of doing things.

#### **JOB OPPORTUNITIES**

There is a great need for persons who are well trained in Industrial Engineering. Job opportunities as business advisors, industrial analysts, production personnel, planning personnel and line managers are available in all types of manufacturing companies as well as in service organisations. Experience has shown that people with a qualification in Industrial Engineering and a dynamic personality quickly progress to the management level or start their own businesses.

## 10.1.5 Diploma in Operations Management (DI0400)

A diploma will be issued on the completion of five semesters of theoretical learning and one semester of Operations Management Practice (Project-based).

## 10.1.5.1 Programme Structure

Each semester consists of approximately 15 weeks of tuition, comprising lectures, tutorials and practical work done in laboratories for some modules. During this time, the student's progress is evaluated by means of written tests, assignments (individual or group), practical evaluations, continuous assessments, case-based studies, documented investigation/research, presentations, documented projects, computer-based assessments and simulations. At the end of each semester, final examinations are written on all the work done during the semester over an approximately two weeks' period for those modules that were not assessed on a continuous assessment basis.

## 10.1.5.2 Purpose of the Diploma in Operations Management

If you are a person who likes working with people, who enjoys analysing and solving problems, developing solutions, gaining co-operation, motivating people and who always seeks better, quicker and cheaper ways of doing things – then this is the course for you!

Qualified persons in Operations Management are employed by manufacturing companies because this qualification is most suitable for careers in production and operations management.

In Operations Management, you will specialise in production scheduling, material movement, inventory control, quality management, work simplification, productivity improvement and will contribute to the design and implementation of integrated systems comprising capital, plant, manpower and raw materials. Your objective will be to constantly improve methods, procedures and practices within an organisation in order to increase productivity and profits.

| NSC                | Compulsory Subjects             | Level | Notes        |
|--------------------|---------------------------------|-------|--------------|
|                    | English                         | 4     | 3 = 40 - 49% |
| National<br>Senior | Mathematics<br>Physical Science | 4     | 4 = 50 - 59% |
| Certificate        | Thysical science                | 5     | 5 = 60 - 69% |
| Certimote          |                                 |       | 6 = 70 - 79% |

10.1.5.3 Admission Requirements

| Any other subjects with a<br>minimum level of 3, excluding<br>Life Orientation | 12 | 7 = 80 - 89%<br>8 = 90 - 100% |
|--------------------------------------------------------------------------------|----|-------------------------------|
|                                                                                | 23 |                               |
| Total                                                                          |    |                               |

All other grade 12 or equivalent certificates will be treated on an ad hoc basis.

## 10.1.5.4 Progression and Pathway

Upon completion of the Advanced Diploma in Operations Management (NQF Level 7, minimum 140 credits), the graduate meets the minimum entry requirement for admission to the Postgraduate Diploma in Operations Management (NQF Level 8).

## 10.1.5.5 Career Opportunities

Operations Management offers a challenging and exciting career in the private sector. The expertise and skills that you will achieve find their optimum application and growth in the manufacturing industry, progressively, as Production Assistant / Production Planner, Production Scheduler / Head Planner, Production Superintendent, Production Manager and Operations Management.

People with Operations Management qualifications and experience are also well equipped to start their own business.

| MODULE CODE | NAME OF MODULE                   | CREDITS |
|-------------|----------------------------------|---------|
|             | SEMESTER 1                       |         |
| HKCOX1A     | Applied Communication Skills 1.1 | 8       |
| ASICT1A     | ICT Skills 1                     | 10      |
| EBMFX1A     | Manufacturing Technology 1.1     |         |
| AMMAT1A     | Mathematics 1 10                 |         |
| EBOPX1A     | Operations Management 1.1 10     |         |
| EBOGX1A     | Organisational Effectiveness 1.1 |         |
| EBWPX1A     | Workplace Dynamics 1.1 10        |         |
| SEMESTER 2  |                                  |         |

## 10.1.5.6 Curriculum: Diploma in Operations Management

| HKCOY1A | Applied Communication Skills 1.2             | 8  |
|---------|----------------------------------------------|----|
| EBMFY1A | Manufacturing Technology 1.2                 | 10 |
| EBOPY1A | Operations Management 1.2                    | 10 |
| EBOGY1A | Organisational Effectiveness 1.2             | 10 |
| EBQMA1A | Quality Management 1                         | 10 |
| EBWPY1A | Workplace Dynamics 1.2                       | 10 |
|         | SEMESTER 3                                   |    |
| HKCOX2A | Applied Communication Skills 2.1             | 8  |
| BACEX1A | Costing and Estimating 1.1                   | 10 |
| EBMAX2A | Operations Management 2.1                    | 10 |
| EBOGX2A | Organisational Effectiveness 2.1             | 10 |
| EBQAS2A | Quality Assurance 2                          | 10 |
| EBSTX1A | Statistics 1.1                               | 10 |
|         |                                              |    |
|         | (Modules with * are electives) – choose one: |    |
| AAECH1A | *Engineering Chemistry 1                     | 10 |
| HLAWX1A | *Labour Law 1.1                              | 15 |
| APHYS1A | *Physics 1                                   | 10 |
| ASPRG1A | *Programming 1                               |    |
|         | SEMESTER 4                                   |    |
| HKCOY2A | Applied Communication Skills 2.2             | 8  |
| BACEY1A | Costing and Estimating 1.2                   | 10 |
| EBMAY2A | Operations Management 2.2                    | 10 |
| EBMAT2A | Operations Management Techniques 2           | 10 |
| EBOGY2A | Organisational Effectiveness 2.2             | 10 |
|         |                                              |    |
|         | (Modules with * are electives) – choose one: |    |
| AAECH2A | *Engineering Chemistry 2                     | 10 |
| EMMAE2A | *Maintenance Engineering 2                   | 10 |
| EMMEN2A | *Manufacturing Engineering 2                 | 10 |
| APHYS2A | *Physics 2                                   | 10 |

| ASPRG2A    | *Programming 2                     | 10 |
|------------|------------------------------------|----|
|            | SEMESTER 5                         |    |
| EBILE3A    | Industrial Leadership 3            | 10 |
| EBMAX3A    | Operations Management 3.1          | 10 |
| EBMAT3A    | Operations Management Techniques 3 | 10 |
| EBOMG3A    | Operations Management Technology 3 | 10 |
| EBOEG3A    | Organisational Effectiveness 3 10  |    |
| SEMESTER 6 |                                    |    |
| EBMAP1A    | Operations Management Practice 1   | 60 |

## Progression and Pathway:

To move to POS B, student should have obtained at least 18 credits in POS A; To move to POS C, student should have obtained at least 18 credits in POS B; To move to POS D, student should have obtained at least 18 credits in POS C. To move to POS E, student should have obtained at least 10 credits in POS D. Only modules for which the pre-requisite has been passed can be enrolled.

Upon completion of the Diploma in Operations Management (NQF Level 6, minimum 360 credits), the graduate meets the minimum entry requirement for admission to the Advanced Diploma in Operations Management (NQF Level 7).

## 10.1.6 Advanced Diploma in Operations Management (AD0400)

## **10.1.6.1 Admission Requirements**

A Diploma in Operations Management (NQF level 6, 360 credits) or other engineering disciplines or equivalent (including National Diploma in Operations Management). With a pass in Mathematics 1. All other equivalent qualifications will be treated on an ad hoc basis.

## 10.1.6.2 Programme Duration

The Advanced Diploma in Operations Management is a minimum one-year full-time course.

| MODULE CODE                       | NAME OF MODULE                                   | CREDITS |
|-----------------------------------|--------------------------------------------------|---------|
|                                   | SEMESTER 1 (2 compulsory modules and 1 elective) |         |
| EBQMA4A                           | Quality Management                               | 20      |
| EBRMO4A                           | Research Methodology for Operations Management   | 20      |
|                                   | Elective modules (choose one):                   |         |
| EBWDE4A                           | Workplace Design                                 | 20      |
| EBSCM4A                           | Supply Chain Management                          | 20      |
| SEMESTER 2 (3 compulsory modules) |                                                  |         |
|                                   | Compulsory modules:                              |         |
| EBFIM4A                           | Financial Management                             | 20      |
| EBMAS4A                           | Manufacturing Systems* 20                        |         |
| EBMOM4A                           | Modelling in Operations Management*              | 20      |

*Please note: All modules must be done at VUT. This is an NQF Level 7 qualification with 120 credits.* 

## 10.1.6.4 Programme Structure

Each semester consists of approximately 15 weeks of tuition, comprising lectures, tutorials and practical work done in laboratories for some modules. During this time, the student's progress is evaluated by means of written tests, assignments (individual or group), practical evaluations, continuous assessments, case-based studies, documented investigation/research, presentations, documented projects, computer-based assessments and simulations. At the end of each semester, final examinations are written on all the work done during the semester over an approximately two weeks' period for those modules that were not assessed on a continuous assessment basis.

## 10.1.6.5 Progression and Pathway

Upon completion of the Advanced Diploma in Operations Management (NQF Level 7, minimum 140 credits), the graduate meets the minimum entry requirement for admission to the Postgraduate Diploma in Operations Management (NQF Level 8).

## 10.1.7 Postgraduate Diploma in Operations Management (PG0400)

## 10.1.7.1 Admission Requirements

Bachelor's degree or Advanced Diploma or relevant NQF level 7 qualification (120 credits). All other equivalent qualifications will be treated on an ad hoc basis.

## 10.1.7.2 Programme Duration

The Postgraduate Diploma in Operations Management is a minimum one-year, full-time course.

## 10.1.7.3 Programme Structure

Each semester consists of approximately 15 weeks of tuition, comprising lectures, tutorials and practical work done in laboratories for some modules. During this time, the student's progress is evaluated by means of written tests, assignments (individual or group), practical evaluations, continuous assessments, case-based studies, documented investigation/research, presentations, documented projects, computer-based assessments and simulations. At the end of each semester, final examinations are written on all the work done during the semester over an approximately two weeks' period for those modules that were not assessed on a continuous assessment basis.

| MODULE<br>CODE                                  | NAME OF MODULE                                             | CREDITS |  |
|-------------------------------------------------|------------------------------------------------------------|---------|--|
|                                                 | YEAR MODULES (All compulsory)                              |         |  |
| EBOPD5A                                         | Operations Management Project Planning and Design          | 30      |  |
| EBODI5A                                         | Operations Management Project Design and<br>Implementation |         |  |
|                                                 | SEMESTER 1 (All 2 modules are Compulsory)                  |         |  |
| EBAMA4A                                         | Advanced Modelling in Operations Management                | 20      |  |
| EBQRM5A                                         | Quality and Reliability Management                         | 20      |  |
| SEMESTER 2 (1 Compulsory module and 1 Elective) |                                                            |         |  |
|                                                 | Compulsory module:                                         |         |  |
| EBOMS5A                                         | Advanced Manufacturing Systems                             | 20      |  |
|                                                 | Elective modules (choose one):                             |         |  |

## 10.1.7.4 Curriculum: Postgraduate Diploma in Operations Management

| EBAIM5A | Advanced Industrial Management* | 20 |
|---------|---------------------------------|----|
| EBAFD5A | Business Finance*               | 20 |

*Please note: All modules must be done at VUT. This is an NQF level 8 qualification with 140 credits.* 

## WHAT IS OPERATIONS MANAGEMENT?

If you are a person who likes working with people, who enjoy analyzing and solving problems, developing solutions, gaining co-operation, motivating people and who always seeks better, quicker and cheaper ways of doing things, then this is the programme for you. Qualified persons in Operations Management are employed by both manufacturing companies as well as service organizations. In Operations Management, you will specialize in production scheduling, material movement, inventory control, quality management, work simplification, productivity improvement and will contribute to the design and implementation of integrated systems comprising capital, plant, manpower and raw materials. Your objective will be to constantly improve methods, procedures and practices within an organization in order to increase productivity and profits.

## JOB OPPORTUNITIES

Operations Management offers a challenging and exciting career in the private sector. The expertise and skills that you will achieve, find their optimum applications and growth in the manufacturing industry, progressively, as Production Assistant / Production Planner, Production Scheduler / Head Planner, Production Superintendent, Production Manager and Operations Manager. People with Operations Management qualifications and experience are also well equipped to be employed in many other industries to start their own businesses.

## 10.1.8 Assessment

The department follows the assessment strategy of formal written exams. The year mark is compiled from a series of no less than three assessments (tests, practical's, assignments, presentations, case studies, etc.). The year mark for admittance to the formal examination is 50%. Weights for calculating the year mark as well as the final mark will be reflected in the Learning Guide.

All assessments done during a particular semester will help learners learn and understand the work.

Some modules follow the assessment strategies of Continuous Assessment (CASS). All marks obtained during the semester will make up the learner's final mark. Each module's Learning Guide will indicate which tests and activities will contribute according to a pre-determined weight to the final mark.

#### 10.1.9 Enquiries

Enquiries may be addressed to:

HoD: Industrial Engineering & Operations Management and Mechanical Engineering

Faculty of Engineering & Technology

Vaal University of Technology

Private Bag X021

VANDERBIJLPARK, 1900

| Tel     | :  | +27 16 950 9287 / 9087 |
|---------|----|------------------------|
| Fax     | :  | +27 16 950 9797        |
| e-mail  | :  | thomas@vut.ac.za       |
|         |    | lieketsengn@vut.ac.za  |
| Website | e: | www.vut.ac.za          |
| or      |    |                        |

## **Postgraduate Office**

| Ms N K | okoali |                       |
|--------|--------|-----------------------|
| Tel    | :      | +27 16 950 9288       |
| e-mail | :      | nomathembak@vut.ac.za |

Mr S Motsie

| 127 10 550 7055 | Tel | : | +27 16 950 7639 |
|-----------------|-----|---|-----------------|
|-----------------|-----|---|-----------------|

| e-mail | : | <u>sehlabakam@vut.ac.za</u> |
|--------|---|-----------------------------|
|        |   |                             |

## **10.2 MECHANICAL ENGINEERING**

## **Discipline Staff Details**

| Surname, Initials & Title | Designation            | Highest Qualification |
|---------------------------|------------------------|-----------------------|
| Alugongo, AA (Prof)       | Discipline Coordinator | PhD                   |
| Nakedi, K (Ms)            | Administrator          | PGD                   |
| Altaki, K (Mr)            | Lecturer               | BTech                 |
| Andezai, AM (Mr)          | Lecturer               | B.Eng, Mech Eng       |
| Aniki, AO (Mr)            | Lecturer               | M Eng                 |
| Inyang, EE (Mr)           | Lecturer               | MTech                 |
| Kibonge, T (Mr)           | Lecturer               | BEng                  |
| Koza, VS (Mr)             | Lecturer               | MEng                  |
| Matshaba, MI (Mr)         | Lecturer               | BTech Mech            |
| Mbatha, AJ (Mr)           | Lecturer               | BTech Mech            |
| Nkomo, NZ (Mr)            | Lecturer               | MSc MEng Mech         |
| Nturanabo, F (Mr)         | Lecturer               | MSc Eng               |
| Odiagbe, FO (Mr)          | Lecturer               | BEng, Mech Eng        |
| Olivier, AA (Mr)          | Lecturer               | MTech                 |
| Onyango, LO (Mr)          | Lecturer               | MTech                 |
| Pieterse, DP (Mr)         | Lecturer               | BTech                 |
| Ramano, KL (Mr)           | Lecturer               | BTech Mech            |
| Sob, PB (Dr)              | Lecturer               | DTech Mech            |
| Sozinando, DF (Mr)        | Lecturer               | MEng                  |
| Tchomeni Kouejou, BX (Mr) | Lecturer               | DEng                  |
| Teku, GN (Mr)             | Lecturer               | MSc Eng               |
| Theron, HS (Mr)           | Lecturer               | BTech                 |
| Tshitshonu, EK (Mr)       | Lecturer               | BSc Hons              |
| Yakeu, KH                 | Lecturer               | BTech Mech            |

| Mhlongo, O (Ms)   | Technician          | BTech             |
|-------------------|---------------------|-------------------|
| Sigonde, CV (Ms)  | Technician          | BTech Mech        |
|                   | Technician          |                   |
| Vilakazi, LN (Ms) | Technician          | MTech             |
| De Wet, GCO (Mr)  | Workshop Manager    | Trade Certificate |
| Greyling, M (Mr)  | Workshop Assistant  | Grade 12          |
| Ntshala, I (Mr)   | Artisan             | N3 Technical      |
| Harris, HG (Mr)   | Project Coordinator | M Dip Tech        |
| Jacobs, JH        | Project Coordinator | MTech Mech        |

## 10.2.1 Diploma in Mechanical Engineering (DI0840)

## 10.2.1.1 Programme Structure

Three-year full-time (six semesters S1 to S6) qualification.

The department is making provision to gradually release S6 completely of coursework to allow space for workplace based learning.

## 10.2.1.2 Purpose of the Diploma in Mechanical Engineering

The generic purpose of the qualification is spelled out in paragraph 4.1 and must be read in conjunction with the following:

The purpose of the qualification Diploma in Mechanical Engineering is to develop the necessary knowledge, understanding and skills required for the student's further learning towards becoming a competent practicing Mechanical Engineering Technician. It is intended to subsequently empower candidate Engineering Technicians to demonstrate that they are capable of applying their acquired knowledge, understanding, skills, attitudes and values in the work environments in South Africa. It is designed also to add value to the qualifying student in terms of enrichment of the person, status and recognition.

## 10.2.1.3 Admission Requirements: Diploma in Mechanical Engineering

| NSC                | Compulsory Subjects                        | Minimum for the<br>Diploma | Notes         |
|--------------------|--------------------------------------------|----------------------------|---------------|
|                    |                                            | programme                  |               |
|                    | Mathematics                                | 4                          | 3 = 40 - 49%  |
| National<br>Senior | Physical Science<br>English Language       | 4<br>4                     | 4 = 50 - 59%  |
| Certificate        |                                            |                            | 5 = 60 - 69%  |
|                    | Any other subjects<br>with a minimum level |                            | 6 = 70 - 79%  |
|                    | of 3, excluding Life                       |                            | 7 = 80 - 89%  |
|                    | Orientation                                | 12                         | 8 = 90 - 100% |
|                    | Total                                      | 24*                        |               |

#### Please note:

- The prospective student's results must meet the statutory and programme admission requirement.
- Bonus points will only be used for selection purposes. In case of a tie and all other scores remaining the same use the actual percentages to differentiate.
- \*Admission requirements for any of the 3-year Diploma programmes in Engineering is a National Senior Certificate with a minimum of 28 and above APS points, with a minimum of 4 for Mathematics, Physical Science and English.
- \*Admission requirements for any of the 4-year extended Diploma programmes in Engineering is a National Senior Certificate with a minimum of 24 – 27 maximum APS points, with a minimum of 4 for Mathematics, Physical Science and English. Students that need more information regarding Extended programmes should liaise with their respective HODs and/or the faculty manager. The main purpose of extended programmes is to widen access and reinforce/improve success.
- All other grade 12 or equivalent certificates will be evaluated against/according to statutory and programme requirements.
- International qualifications: All international qualifications will be evaluated by the International Office based on the Swedish scale and SAQA equivalence.
- Transfers: Applications from students to transfer from other institutions will be dealt with in terms of the Recognition of Prior Learning and CAT policies of VUT.

## 10.2.1.4 Career Opportunities

A Mechanical Technician is a person in possession of at least a Diploma in Mechanical Engineering. The task of the Technician in the design field is to assist the Engineer / Technologist with the design of new products or equipment for use in industry or society.

A Technician in the maintenance field must see to it that preventive or scheduled maintenance is done on all machines in order to prevent interruptions in production.

The activities in Mechanical Engineering can therefore be grouped into design, maintenance, electromechanical and project work where the latter includes aspects such as planning of projects, cost control, evaluation of tenders, negotiations with contractors, control over the progress of the project, coordination of all the interested departments and commissioning of the completed project.

In any heavy or light manufacturing industry, e.g. the chemical industry, iron and steel manufacturing industry, mining industry, power stations, transport services, provisional and government services, etc. Technicians are much sought after and a career in this field is lucrative and rewarding.

| MODULE CODE | NAME OF MODULE                   | CREDITS |  |
|-------------|----------------------------------|---------|--|
| SEMESTER 1  |                                  |         |  |
| HKCOX1A     | Applied Communication Skills 1.1 | 8       |  |
| AAECH1A     | Engineering Chemistry 1          | 10      |  |
| EEESK1A     | Engineering Skills 1             | 5       |  |
| ASICT1A     | ICT Skills 1                     | 10      |  |
| AMMAT1A     | Mathematics 1                    | 10      |  |
| APHYS1A     | Physics 1                        | 10      |  |
| EESIN1A     | Social Intelligence 1            | 3       |  |
| SEMESTER 2  |                                  |         |  |
| HKCOY1A     | Applied Communication Skills 1.2 | 8       |  |
| EMCOA2A     | Computing Applications 2         | 7       |  |
| AAECH2A     | Engineering Chemistry 2          | 10      |  |
| EMEDR1A     | Engineering Drawing 1            | 10      |  |
| AMMAT2A     | Mathematics 2                    | 10      |  |
| APHYT2A     | Physics 2 (Theory)               | 5       |  |
| ΑΡΗΥΡ2Α     | Physics 2 (Practical)            | 5       |  |

#### 10.2.1.5 Curriculum: Diploma in Mechanical Engineering

| EMSPA1A    | Safety Principles and Law 1            | 5  |  |
|------------|----------------------------------------|----|--|
| SEMESTER 3 |                                        |    |  |
| EMMEC1A    | Mechanics 1                            | 10 |  |
| EMPRJ1A    | Project 1 (WIL Mechanical)             | 7  |  |
| EPEEN1A    | Electrical Engineering 1               | 10 |  |
| AMMAT3A    | Mathematics 3                          | 10 |  |
| HKCOX2A    | Applied Communication Skills 2.1       | 8  |  |
| EMMEN1A    | Mechanical Manufacturing Engineering 1 | 10 |  |
| EMEDR2A    | Engineering Drawing 2                  | 10 |  |
|            | SEMESTER 4                             |    |  |
| EMMED2A    | Mechanical Engineering Design 2        | 10 |  |
| EMMOM2A    | Mechanics of Machines 2                | 10 |  |
| EMSOM2A    | Strength of Materials 2                | 10 |  |
| EMFMM2A    | Fluid Mechanics 2 (Mechanics)          | 10 |  |
| EMTHE2A    | Thermodynamics 2                       | 10 |  |
| EMPRJ2A    | Project 2 (WIL Mechanical)             | 8  |  |
| HKCOY2A    | Applied Communication Skills 2.2       | 8  |  |
| EMCAI1A    | Computer-Aided Draughting 1            | 10 |  |
| SEMESTER 5 |                                        |    |  |
| EMMOM3A    | Mechanics of Machines 3                | 10 |  |
| EMSOM3A    | Strength of Materials 3                | 10 |  |
| EMFME3A    | Fluid Mechanics 3                      | 10 |  |
| EMTHE3A    | Thermodynamics 3                       | 10 |  |
| EMMED3A    | Mechanical Engineering Design 3        | 10 |  |
| EMMEN2A    | Manufacturing Engineering 2            | 10 |  |
| EMMAE1A    | Maintenance Engineering 1              | 10 |  |
| EMPRJ3A    | Project 3 (WIL Mechanical)             | 15 |  |
| SEMESTER 6 |                                        |    |  |
| EMTOM3A    | Theory of Machines 3                   | 10 |  |
| EMAOM3A    | Applied Strength of Materials 3        | 10 |  |
| EMHYM3A    | Hydraulic Machines 3                   | 10 |  |

| EMSPL3A | Steam Plant 3                           | 10 |
|---------|-----------------------------------------|----|
| EMMDE3A | Machine Design 3                        | 10 |
| EMMAE2A | Maintenance Engineering 2               | 10 |
| EMMEC2A | Modelling and Engineering Computation 2 | 10 |
| EMEXM1A | Workplace Based Learning 1 (Mechanical) | 30 |

## Curriculum: Diploma in Mechanical Engineering (4 year Extended programme) – DE0841

The purpose of the Extended Diploma programme is to assist students who enter the University with APS score of 24 – 27 by giving them more time to reach the level of competency similar to those who enter with higher APS scores. The programme extends the 3-year programme into 4 years by spreading the first year of study over 2 years with the inclusion of foundational modules as well as mainstream programme modules. The foundation modules in the first year of study will help students to improve their competency in Maths, Physics, Chemistry and Drawing. In the second year of study, the students will augment their foundation knowledge of Maths, Physics, Chemistry and Drawing to reach the level of the mainstream programme. Students are required to pass all modules in both years of the foundation phase to be able to proceed to the next year of study.

| MODULE              | NAME OF MODULE                   | ТҮРЕ       | CREDITS |       |  |
|---------------------|----------------------------------|------------|---------|-------|--|
| CODE                |                                  |            | Regular | Found |  |
| YEAR 1 - SEMESTER 1 |                                  |            |         |       |  |
| AAXCH1A             | Foundation Chemistry 1           | Foundation |         | 10    |  |
| AMXMA1A             | Foundation Mathematics 1         | Foundation |         | 10    |  |
| APXPH1A             | Foundation Physics 1             | Foundation |         | 10    |  |
| ASICT1A             | ICT Skills 1                     | Regular    | 10      |       |  |
| EEESK1A             | Engineering Skills 1             | Regular    | 5       |       |  |
| EESIN1A             | Social Intelligence 1            | Regular    | 3       |       |  |
| HKCOX1A             | Applied Communication Skills 1.1 | Regular    | 8       |       |  |
| YEAR 1 - SEMESTER 2 |                                  |            |         |       |  |
| AAXCH2A             | Foundation Chemistry 2           | Foundation |         | 10    |  |
| AMXMA2A             | Foundation Mathematics 2         | Foundation |         | 10    |  |

| APXPH2A | Foundation Physics 2             | Foundation     |    | 10 |
|---------|----------------------------------|----------------|----|----|
| EMXDR1A | Foundation Drawing 1             | Foundation     |    | 10 |
| EMCOA2A | Computing Applications 2         | Regular        | 7  |    |
| EMSPA1A | Safety Principles and Law 1      | Regular        | 5  |    |
| HKCOY1A | Applied Communication Skills 1.2 | Regular        | 8  |    |
|         | YEAR 2 - SEMEST                  | ER 1           |    |    |
| AAECH1B | Engineering Chemistry 1          | Regular (Augm) | 10 |    |
| AMMAT1B | Mathematics 1                    | Regular (Augm) | 10 |    |
| APHYS1B | Physics 1                        | Regular (Augm) | 10 |    |
| EMMEC1B | Mechanics 1                      | Regular (Augm) | 10 |    |
|         | YEAR 2 - SEMEST                  | 'ER 2          |    |    |
| AAECH2A | Engineering Chemistry 2          | Regular        | 10 |    |
| AMMAT2A | Mathematics 2                    | Regular        | 10 |    |
| ΑΡΗΥΡ2Α | Physics 2 – Practical            | Regular        | 5  |    |
| ΑΡΗΥΤ2Α | Physics 2 - Theory               | Regular        | 5  |    |
| EPEEN1A | Electrical Engineering 1         | Regular        | 10 |    |
| EMEDR1B | Engineering Drawing 1            | Regular (Augm) | 10 |    |

! "#\$%&' () \*+\$#, (-&("&#. \$&",%/#&#O(&1\$2%/3&#. \$&/#45\$-#&O,+&' (-#,-4\$&#(&1\$2%&6&2-5&73& "(++(O,-8&#. \$&%\$84+2%) (54+\$/9

### 10.2.2 Advanced Diploma in Mechanical Engineering (AD0840)

### 10.2.2.1 Programme Structure

One-year full-time qualification.

## 10.2.2.2 Purpose of the Advanced Diploma in Mechanical Engineering

The main purpose of this educational programme design is to build the necessary knowledge, understanding, abilities and skills required for further learning towards becoming a competent practicing engineering technologist. This qualification provides:

- Preparation for careers in Mechanical Engineering at NQF level 7 (Technologist status), for achieving technical proficiency and to make a contribution to the economy and national development;
- The educational base required for registration as a Professional Engineering Technologist with ECSA.
- Entry to NQF level 8 programmes e.g. bachelor's Honours and Postgraduate Diploma programmes and then to proceed to Masters and Doctorate programmes.

#### 10.2.2.3 Admission Requirements: Advanced Diploma in Mechanical Engineering

A Diploma in Mechanical Engineering (NQF level 6, 360 credits) or National Diploma in Mechanical Engineering. All other equivalent qualifications will be treated on an ad hoc basis.

| MODULE CODE | NAME OF MODULE                                  | CREDITS |
|-------------|-------------------------------------------------|---------|
|             | SEMESTER 1                                      |         |
| EMEPR4A     | Engineering Professionalism                     | 10      |
| EMECN4A     | Engineering Economics                           | 10      |
| EMAEM4A     | Applied Engineering Mathematics                 | 15      |
| EMMTS4A     | Material Science                                | 15      |
| SEMESTER 2  |                                                 |         |
| EMTFM4A     | Thermo-Fluids and Turbo Machinery               | 15      |
| EMHMT4A     | Heat and Mass Transfer                          | 15      |
| EMSMS4A     | Solid Mechanics and Stress Analysis             | 15      |
| EMVCE4A     | Vibration and Control Engineering               | 15      |
| YEAR MODULE |                                                 |         |
| EMRMD4A     | Research Methods and Engineering Design Project | 30      |

#### 10.2.2.4 Curriculum: Advanced Diploma in Mechanical Engineering

#### 10.2.3 Postgraduate Diploma in Mechanical Engineering (PG0840)

#### 10.2.3.1 Programme Structure

One-year, full-time qualification.

### 10.2.3.2 Purpose of the Programme

This qualification is primarily industry oriented. The knowledge emphasises general principles, application, and technology transfer. The qualification provides students with a sound knowledge base in Mechanical Engineering and the ability to apply their knowledge and skills to this particular career in professional contexts, while equipping them to undertake more specialised and intensive learning. Programmes leading to this qualification tend to have a strong professional or career focus and holders of this qualification are normally prepared to enter a specific niche in the labour market.

Specifically the purpose of educational programmes designed to meet this qualification are to build the necessary knowledge, understanding, abilities and skills required for further learning towards becoming a competent practicing engineering technologist with research and innovation abilities. This qualification provides:

- Preparation for careers in Mechanical engineering, for achieving technical proficiency and to make a contribution to the economy and national development;
- 2. The educational base required for proceeding towards a Masters in Engineering Programme at NQF level 9 Programme.
- 3 An avenue to those who wish to pursue registration with ECSA in the category 'Candidate Engineer' upon acquiring additional 20 Credits, which need not be at NQF 8.

| MODULE CODE | NAME OF MODULE                                 | CREDITS |
|-------------|------------------------------------------------|---------|
|             | SEMESTER 1                                     |         |
| EMEAM5A     | Advanced Engineering Mathematics               | 15      |
| EMEMS5A     | Engineering Modelling and Simulations Module 1 | 15      |
| EMEIC5A     | Internal Combustion Engine Analysis            | 8*      |

#### 10.2.3.3 Curriculum: Postgraduate Diploma in Mechanical Engineering

| EMEMM5A     | Maintenance Management                                    | 7* |
|-------------|-----------------------------------------------------------|----|
|             | SEMESTER 2                                                |    |
| EMECM5A     | Continuum Mechanics                                       | 15 |
| EMEES5A     | Energy Systems                                            | 15 |
| EMEMS5B     | Engineering Modelling and Simulations Module 2            | 15 |
| EMEPM5A     | Production and Manufacturing                              | 8* |
| EMERE5A     | Refrigeration and Air-conditioning                        | 7* |
| YEAR MODULE |                                                           |    |
| EMEAR5A     | Applied Research Methodology in Mechanical<br>Engineering | 30 |

#### \* Elective: total credit 15 required

#### 10.2.4 Master of Engineering in Mechanical Engineering (MP0840)

This qualification is offered at the Vanderbijlpark campus only.

#### 10.2.4.1 Programme Structure

At least one-year full-time research, concluded with a master's dissertation.

### 10.2.4.2 Purpose of the MEng (Mechanical Engineering)

The purpose of this qualification is to develop a student into a researcher, able to conduct independent research with minimum guidance in a chosen field of Mechanical Engineering. The outcomes of the research will contribute to knowledge production in the specialisation field. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.4.)

#### 10.2.4.3 Admission Requirements

A BEng Degree or equivalent level 8 qualification including the Postgraduate Diploma. Ad hoc cases will be treated on merit.

#### 10.2.5 Doctor of Engineering in Mechanical Engineering (DP0840)

This qualification is offered at the Vanderbijlpark campus only.

#### 10.2.5.1 Programme Structure

At least two years full-time research, concluded with a Doctoral Thesis.

#### 10.2.5.2 Purpose of the DEng in Mechanical Engineering

The purpose of the qualification is to develop a researcher who will make a significant and original contribution to knowledge in a specialised area of mechanical engineering and technology.

To develop a researcher in mechanical engineering with advanced abilities, to independently apply mechanical engineering design, synthesis, and related principles, to specific problems of society at large. One of the main objectives in this process is to develop an advanced capability to conduct engineering research of an original nature. It also promotes a lifelong learning approach and an aptitude for training other students in similar fields. (Also see paragraph 4.5.)

#### 10.2.5.3 Admission Requirements

Master of Engineering in Mechanical Engineering or equivalent.

Proof of successful completion of a Vaal University of Technology approved course in Research Methodology. Ad hoc cases will be treated on merit.

#### 10.2.6 Assessment

The department follows the assessment strategy of formal written exams. The year mark is compiled from a series of not less than three tests and / or a practical mark. The year mark for admittance to the formal examination is 50%. Weights for calculating the year mark as well as the final mark will be reflected in the Learning Guide. All tests, assignments and practical work done during a particular semester, will help learners learn and understand the work.

Some modules follow the assessment strategies of Continuous Assessment (CASS). All marks obtained during the semester will make up the learner's final mark. Each module's Learning Guide will indicate which tests and activities will contribute according to a pre-determined weight, to the final mark.

#### 10.2.7 Workplace Based Learning (WBL)

The Diploma in Mechanical Engineering has a formal six months Workplace Based Learning Component that is coordinated by the Department of Mechanical Engineering.

#### 10.2.8 Enquiries

Enquiries may be addressed to:

HoD: Industrial Engineering & Operations Management and Mechanical Engineering

Faculty of Engineering & Technology

Vaal University of Technology

Private Bag X021

VANDERBIJLPARK, 1900

#### HoD

| Tel    | : | +27 16 950 9287 / 9087  |
|--------|---|-------------------------|
| Fax    | : | +27 16 950 9797         |
| e-mail | : | <u>thomas@vut.ac.za</u> |
|        |   | lieketsengn@vut.ac.za   |

#### **Discipline Coordinator: Mechanical Engineering**

| Tel     | :  | +27 16 950 9302       |
|---------|----|-----------------------|
| Fax     | :  | +27 16 950 9797       |
| e-mail  | :  | alfayoa@vut.ac.za     |
|         |    | lieketsengn@vut.ac.za |
| Website | 2: | www.vut.ac.za         |

or

### **Postgraduate Office**

#### Ms N Kokoali

| Tel    | : | +27 16 950 9288              |
|--------|---|------------------------------|
| e-mail | : | <u>nomathembak@vut.ac.za</u> |

Mr S Motsie

| Tel    | : | +27 16 950 7639             |
|--------|---|-----------------------------|
| e-mail | : | <u>sehlabakam@vut.ac.za</u> |

## 11. SYLLABI

# 11.1 CHEMICAL ENGINEERING

| Syllabi:<br>DIPLOMA: CHEMICAL ENGINEERING (3 year programme)<br>(Course code: DI0800) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Module<br>Code                                                                        | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                       | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| НКСОХ1А                                                                               | Applied Communication Skills 1.1<br>Communication theory: what is meant by communication;<br>elements common to all forms of communication; Reading for<br>academic purpose: what it means to read a written text<br>purposefully; Writing process and referencing: writing requires<br>knowledge of grammar, punctuation, spelling, style, structure and<br>audience; Listening process: why people fail to listen; the different<br>types of listening; aspects of intercultural listening, Creative<br>thinking, critical thinking and disability communication: critical<br>thinking.                                                                                                                                                                                              |  |
| EEESK1A                                                                               | Engineering Skills 1<br>The Engineering Profession: Different types of engineering.<br>Mechanical, electrical, civil, chemical, computer etc. The<br>engineering team; artisans, technicians, technologists and<br>engineers. Engineering Teamwork: Engineering design.<br>Teamwork versus group work. Basic principles of; engineering<br>project management (plan, organise, lead and control), project<br>costing, budgeting and resource management. What is a business<br>plan? Engineering and the Environment: social responsibility,<br>environmental impact, natural resources, sustainability of the<br>engineering activity. Legal and safety considerations. Ethics in<br>Engineering: professional ethics, responsibility, engineering<br>norms, ECSA and their function. |  |
| AAECH1A                                                                               | Engineering Chemistry 1<br>Matter and measurement; Atoms; Molecules and ions; Formulas,<br>Equations and moles; Chemical reactions in aqueous solution;<br>Periodicity and atomic structure; Ionic bonds; Covalent bonds and<br>molecular structure; Chemical equilibrium; Acids and bases;<br>Organic chemistry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ASICT1A                                                                               | ICT Skills 1<br>Recognizing Computers; Using current versions of Microsoft<br>Windows Professional; Common Elements; Microsoft Word;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

|         | Microsoft Excel; Microsoft PowerPoint; Microsoft Outlook,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | getting connected and using the Internet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | Engineering Mathematics 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AMMAT1A | Binomial expansion, radian measure and limits of functions:<br>Binomial theorem, Radian measure. Applications of radian<br>measure. Differentiation techniques: Limits of functions,<br>Differentiation from first principles, Derivatives of polynomials &<br>product rule, The quotient and chain rules, Derivatives of trig<br>functions, Derivatives of exponential & log functions, Higher order<br>derivatives, Implicit differentiation, Logarithmic differentiation,<br>Applications. Integration techniques: Integration (Indefinite<br>integrals), Definite integrals, Area enclosed by two curves,<br>Simpson's rule. Vectors: Rep & magnitude of vectors. Resolving<br>vectors, Unit vectors and direction vectors, Scalar multiplication,<br>addition and sub, Dot product, the angle between two vectors and<br>work done, Determinant of a 2 x 2 matrix. Cross product and the<br>moment of a vector. Complex numbers: Rep. of complex numbers<br>and operations, Equality of complex numbers, Argand diagram,<br>polar form & De Moivre's, Calculating roots. |
| APHYS1A | <b>Physics 1</b><br>Units of measurement, Waves and sound, Principles of Linear Superposition and Interference, Electromagnetic waves, Interference and Wave nature of light, Reflection of Light: Mirrors, Refraction of Light, Lenses and optical instruments, Vectors and scalars, Kinematics in one dimension, Forces and Newton's Law of Motion, Work and Energy, Impulse and Momentum, Electric Forces and Electric Fields, Electric Potential and Potential Energy, Electric circuits, Fluids, Temperature and heat, Transfer of heat, Nuclear Physics and Radioactivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EESIN1A | <b>Social Intelligence 1</b><br>Leadership styles: Democratic, Autocratic, Consensus etc.<br>Economic systems of governance: Capitalism, Socialism and<br>Communism. Etiquette in society and the workplace. Soft skills,<br>Cultural influences. Success in Engineering: Professionalism,<br>Ethics, Responsibility, Discipline, Time management, Acquiring<br>information and Independent learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| НКСОҮ1А | Applied Communication Skills 1.2<br>Social Intelligence: Characteristics of Social Intelligence;<br>Paragraphing: The structure of a paragraph, Elements of a<br>Paragraph, Report writing: Different types of reports, Purpose of<br>a report, Perception: What does perception involve? Facts vs<br>Opinions: Facts, opinions. Subjectivity and Objectivity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|               | Introduction, Subjectivity, objectivity. Denotations and                                                                  |
|---------------|---------------------------------------------------------------------------------------------------------------------------|
|               | Introduction, Subjectivity, objectivity. Denotations and<br>Connotations: Denotation, connotation. Bias: Age Bias, Belief |
|               | system or Religious Bias, Disability, Visual Literacy: Different types                                                    |
|               | of visual literacy. Graphics: Tables, Bar Graphs, Histogram, Pie                                                          |
|               | Chart, Line Graph, Pictogram, and Flow Chart. Advertisements:                                                             |
|               |                                                                                                                           |
|               | Examples of Figurative language.                                                                                          |
|               | Engineering Chemistry 2<br>Introduction to chemical bonding; Ionic bonds; Covalent bonding                                |
|               | and molecular structure; Hydrogen; The Group IA and IIA metals;                                                           |
| A A E C U 2 A |                                                                                                                           |
| AAECH2A       | Boron and Aluminium; Chemical reactions in aqueous solutions;                                                             |
|               | Carbon, Silicon, Germanium, Tin, and Lead; Acids, bases, and non-                                                         |
|               | aqueous solvents; Nitrogen Phosphorus, Arsenic; Oxygen,                                                                   |
|               | Sulphur, Selenium, and Tellurium; Halogens.                                                                               |
|               | Engineering Drawing 1                                                                                                     |
| EMEDR1A       | Drawing instruments; Drawing skills; Object visualization and                                                             |
|               | drawing; sketch and drawing of chemical engineering process                                                               |
|               | equipment's using computer software.                                                                                      |
|               | Introduction to Chemical Engineering 1                                                                                    |
|               | Dimensions, Units and their Conversion; Moles density and                                                                 |
|               | concentration; Pressure and barometric measurements;                                                                      |
| EHITC1A       | Introduction to material balances; Closed and open systems;                                                               |
|               | Batch and continuous processes; Solving material balance                                                                  |
|               | problems for single and multiple units without reactions;                                                                 |
|               | Chemical reaction equation and stoichiometry.                                                                             |
|               | Engineering Mathematics 2                                                                                                 |
|               | Differentiation: Inverse trig functions, Hyperbolic functions,                                                            |
|               | Inverse hyperbolic functions, Parametric equations, Maxima and                                                            |
|               | minima, Partial differentiation, Small changes, Rate of change.                                                           |
|               | Integration: Revision of integration, Use of formulae sheet,                                                              |
|               | Inverse functions, Partial fractions, Partial fractions, Integration                                                      |
|               | by parts, Trig. & hyperbolic substitutions, t-formulae, Mean and                                                          |
| AMMAT2A       | RMS values. Differential Equations: Differential equation,                                                                |
|               | separation, Using the integrating factor, Applications,                                                                   |
|               | Homogeneous differential equations. Matrix Algebra: Operations                                                            |
|               | with matrices, Inverse of a matrix, solve equations using inverse,                                                        |
|               | Cramer's rule, Eigenvalues and -vectors. Probability and                                                                  |
|               | Statistics: Data representation, Data summaries, Normal                                                                   |
|               | distribution, Conf. intervals, error est. Conf. intervals, error est.                                                     |
|               | Hypothesis testing.                                                                                                       |
|               | Physics 2 Practical                                                                                                       |
| ΑΡΗΥΡ2Α       | Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors                                                     |
|               | in series and in parallel, RC Circuits. Magnetic Fields, Force on a                                                       |
|               | moving charge, Particle motion in a magnetic field, Mass                                                                  |

|         | spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,<br>Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,<br>Transformers. Alternating Current Circuits, Capacitive Reactance,<br>Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,<br>Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,<br>The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of<br>gas, Diffusion. Thermodynamics, Thermodynamic Systems, Zeroth<br>Law, First law of thermodynamics, Thermal processes, Specific<br>heat capacities, Second Law of Thermodynamics, Heat engines,<br>Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X<br>Rays, Lasers. Radiation, Ionising radiation, Nuclear Energy and<br>Elementary Particles, Biological Effects of Ionizing Radiation,<br>Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors,<br>Nuclear Fusion. Kinematics in two dimensions, Displacement<br>velocity and acceleration, Equations, Projectile motion. Uniform<br>Circular Motion, Acceleration, Centripetal force, Rotational<br>Kinematics, Rotational Dynamics. Simple Harmonic motion and<br>Elasticity.                                                                                                                                                          |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| АРНҮТ2А | <b>Physics 2 Theory</b><br>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors<br>in series and in parallel, RC Circuits. Magnetic Fields, Force on a<br>moving charge, Particle motion in a magnetic field, Mass<br>spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,<br>Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,<br>Transformers. Alternating Current Circuits, Capacitive Reactance,<br>Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,<br>Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,<br>The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of<br>gas, Diffusion. Thermodynamics, Thermodynamic Systems, Zeroth<br>Law, First law of thermodynamics, Thermal processes, Specific<br>heat capacities, Second Law of Thermodynamics, Heat engines,<br>Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X<br>Rays, Lasers. Radiation, Ionising Radiation, Nuclear Energy and<br>Elementary Particles, Biological Effects of Ionizing Radiation,<br>Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors,<br>Nuclear Fusion. Kinematics in two dimensions, Displacement<br>velocity and acceleration, Equations, Projectile motion. Uniform<br>Circular Motion, Acceleration, Centripetal force, Rotational |

|         | Kinemetics Detetional Dynamics Circula Harmonic metics and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Kinematics, Rotational Dynamics. Simple Harmonic motion and<br>Elasticity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| EHSPA1A | Safety Principles and Law 1<br>Importance of health and safety: What is safety and health<br>concepts as indicated in the OHS Act, Fundamental safety<br>concepts and terms: Fundamental safety terms, legal<br>appointments as per the OHS Act, duties of the legal appointees<br>as per the OHS Act, safety awareness and fire training, What is<br>hazards and risk in the workplace: What is a hazard, what is a risk,<br>what is the difference between a hazard and a risk, identification<br>of main six hazards in the workplace, occupational hazards,<br>difference between an accident and an incident: general<br>principles of control and risk reduction, safe systems of work,<br>permit-to-work systems, emergency procedures and first-aid,<br>Principles of hazard and risk control: What is a risk assessment,<br>why do a risk assessment, how to conduct a risk assessment, Risk<br>assessment and risk management, Tools and Machinery: Tool and<br>machine hazards, Principles of safeguarding powered and driven<br>machines, point of operation safeguards, controls for hand toll<br>hazards, portable power tool controls, Electrical safety: What do I<br>need to know about electricity, what kind of injuries result from<br>electrical current, electrical shock hazards, arc flash, control of<br>electrical hazards, electrical safety-related work practices, Noise<br>and vibration: Sound and noise, hearing, hazards of noise,<br>exposure standard for noise, engineering controls for noise, noise<br>measurement, vibrations of the human body or parts of the<br>human body. |
|         | SEMESTER 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| НКСОХ2А | Applied Communication Skills 2.1<br>Introduction to Group Dynamics: Show understanding of different<br>group characteristics, Communication Theory: Communication<br>Model, Communication Barriers, Communication styles in work-<br>place, PowerPoint Presentations: Planning and preparation of a<br>presentation (Audience, Language, Knowledge of topics, Level of<br>education, Social variables, Values, Needs and Size of Audience,<br>Non-verbal and Intercultural Communication: Introduction to<br>Non-verbal Communication, Logic and Reasoning: Conceptualise<br>vital terminology uses in argumentative writing, construct a<br>logically sound and well- reasoned argument, write and present<br>logical arguments, Meetings and Interviews: Introduction of<br>meetings, Types of meetings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BHMAN1A | Management 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|         | Organizational structure and design, Organizational change and<br>learning, Motivating for performance, The dynamics of<br>leadership, Groups and teams in organizations; Operating<br>strategies; Forecasting; Process planning and designing; Trade-off<br>analysis; Automated processes; Allocating resources with LP;<br>Decision trees; Facility location; Aggregate planning; Master<br>production schedules; Inventory systems; Material requirements<br>planning and Lot-sizing for MRP and CRP.                                                                                                                                                                                                                                                          |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EHCPI1A | <u>Chemical Process Industries 1</u><br>Industrial gases and heavy chemicals, Cryogenic air separation,<br>Ammonia manufacture, Chlori-alkali industries; Inorganic acids,<br>Sulphuric acid, Phosphoric acid, Nitric acid, Hydrochloric acid; Coal<br>processing, Combustion, Destructive Distillation – By product<br>coking, Gasification and Synthol processes; Petroleum refining,<br>Petrol and its properties, Pre-treatment of crude oil, Separation<br>of crude oil, Conversion processes; Industrial polymers, Synthetic<br>Rubber, Plastics; Iron and steel making processes, Iron making,<br>Steel making.                                                                                                                                            |
| AAECH3A | Engineering Chemistry 3<br>Introduction to chemical bonding; Covalent bonding and<br>molecular structure; Chemical reactions in aqueous solutions;<br>Acids, bases, and non-aqueous solvents; Groups; Reaction<br>kinetics, titrations, pH studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EHMEB2A | Material and Energy Balance 2<br>Basic material balances on single units and on multiple systems;<br>Chemical reaction equation and stoichiometry; Material balances<br>for processes involving chemical reactions; Recycle; Bypass and<br>Purge; Recycle and purge for processes involving chemical<br>reactions; Heat balances without chemical reactions and heat<br>balances involving chemical reactions.                                                                                                                                                                                                                                                                                                                                                    |
| АММАТЗА | Mathematics 3<br>Application of Integration: Volumes of solids of revolution, Length<br>of Curves, Double Integrals: Iterated Integrals & Fubini's theorem,<br>Double Integrals, Polar Coordinates. First Order Differentiation<br>Equations: Exact DE, Homogeneous DE, Bernoulli DE, Applications<br>(Excluding Newton's Law of Cooling), D-Operator Methods.<br>Numerical Solutions of First Order Differential Equations: Euler's<br>method, Runge-Kutta order 2, Runge-Kutta order 4. Operator D<br>Methods/Undetermined coefficients: Complementary Solutions,<br>D-operator & Inverse, binomial or long division method, Theorem<br>1, Theorem 2, Theorem 3, Special cases, General solution,<br>Applications. Laplace Transforms, and Table of transforms. |

| EHMP01A | (Derivation from first principles not for examination purposes),<br>First shifting property, Laplace transforms of derivatives, Inverse<br>Laplace Transforms using tables, Laplace Transforms of<br>discontinuous functions, Inverse Laplace Transforms of<br>discontinuous functions, Solution of differential equations,<br>Application to electric circuits, Application to beams. Fourier<br>Series: Periodic functions and harmonics, sketching of graphs and<br>determining Fourier Series, Series with period 2I, Even and Odd<br>functions, Full range and Half range series, Numerical Harmonic<br>Analysis.<br>Mechanical Operation 1<br>Particulate solids; Screening; Transportation and storage of solids;<br>Comminution (Size Reduction); Size reduction equipment;                                                                                                                                        |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Separation based on properties; Mixing; Froth Flotation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | SEMESTER 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| НКСОҮ2А | Applied Communication Skills 2.2<br>Interpersonal Skills in the Workplace: Group Dynamics, Conflict<br>Resolution, Persuasion, Negotiation, Mediation, the Business<br>Plan: Introduction to the business plan, Marketing your new<br>business; Intellectual Property; How to obtain funding for your<br>small business; The Business Pitch, Disability Etiquette: Definition<br>of disability and disablism, Different depictions of disability,<br>Words to describe different disabilities, Disability in South Africa,<br>Models of disability; Disability Etiquette, Job advertisement,<br>Curriculum Vitae and Cover letter: Analysing job advertisements;<br>aligning your skills with job advertisements; Designing a<br>professional curriculum vitae; Online job applications, Drafting a<br>cover letter, Written Messages: E-mail etiquette; Writing Styles;<br>Memoranda, Business Letters; The News Article. |
| EHCOA2A | <b>Computing Applications 2</b><br>Basic Microsoft Excel spreadsheet commands and functions;<br>Advanced Microsoft Excel for Algebraic and Numerical<br>computations; Data representation using tables and graphs;<br>Introduction statistical analysis. Introduction to Computer<br>Programming using Visual Basic for Applications in Microsoft<br>Excel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EHCEL1A | Chemical Engineering Laboratory 1<br>Projects such as: Batch distillation; Gas absorption with<br>determination off mass transfer coefficient; Thin film evaporator;<br>Vapour liquid equilibrium; Filtration; Cooling tower;<br>Boiling/condensation; Refrigeration/heat pump; Leaching.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EHCET2A | Chemical Eng. Thermodynamics 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|           | Introduction to thermodynamics; The first law and other basic                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|
|           | concepts; Second Law of Thermodynamics, Volumetric behaviour                                                                  |
|           | of pure fluids; Heat Effect; Thermodynamics properties of fluids.                                                             |
|           | Heat and Mass Transfer 1                                                                                                      |
|           | Different modes of heat transfer: conduction, convection                                                                      |
|           | radiation. Heat transfer by conduction- Fourier's law; Resistance                                                             |
|           | of heat flow; derivation and application of equation for resistance                                                           |
|           | in series and parallel. Heat transfer by convection-concept of the                                                            |
|           | film; evaluation of individual film coefficients, derivation and                                                              |
| EHHMT2A   | application of the convection equation; definition and application                                                            |
|           | of the overall heat transfer coefficient using mean area and mean                                                             |
|           | temperature difference. Heat transfer by radiation-definition of                                                              |
|           | the term blackbody absorptivity and emissivity; definition and                                                                |
|           | application of the Stefan-Boltzmann law. Basic principle of mass                                                              |
|           | transfer, molecular diffusion (mass diffusion in gas phase, mass                                                              |
|           | diffusion in liquid phase, mass diffusion through solid).                                                                     |
|           | Process Control 1                                                                                                             |
|           | Control of chemical processes: Incentive of chemical process                                                                  |
|           | control, Design aspects of a process control system, Control                                                                  |
|           | modes (P, PI, PD, PID). Analysis and Design of advanced control                                                               |
|           | systems: Introduction to feedback control, Control systems with                                                               |
|           | multiple loops, Split range control, feed forward control, Ration                                                             |
| EHPCO2A   | control, Adaptive control, Inferential control, Design of control                                                             |
|           | systems for Multivariable processes. Introduction to plant control.                                                           |
|           | Modelling the dynamic and static behaviour of chemical                                                                        |
|           | processes: Development of a mathematical model, Modelling                                                                     |
|           | considerations for control purpose. Instrumentation: P&ID (Piping                                                             |
|           | and Instrumentation Diagrams), Temperature measurement,                                                                       |
|           | Pressure measurement, Flow measurement, Level measurement.                                                                    |
|           | Process Fluid Dynamics 1                                                                                                      |
|           | Units and Dimensions, System of units, Dimensional analysis,                                                                  |
|           | Scale-up methods; Fluid Statics, Hydrostatics, Pressure and                                                                   |
| EHPFD2A   | pressure measurement devices; General Conservation Laws,                                                                      |
| ENPFUZA   | Mass, momentum and energy relationships; Fluid Dynamics                                                                       |
|           | (general principles in fluid flow), Laminar & turbulence flow,<br>Newtonian & non-Newtonian fluids and viscosity, Friction in |
|           | pipes, Piping and pumping, piping auxiliaries, valves and 3D sigma,                                                           |
|           | Non-circular conduits, Flow measuring devices.                                                                                |
|           | SEMESTER 5                                                                                                                    |
|           | Applied Thermodynamics 2                                                                                                      |
| ЕНАТНЗА   | Steam/Vapour; Steam Condensers; Boiler; Turbines and Steam                                                                    |
|           | Cycles; Refrigeration.                                                                                                        |
| EHCPR3A   | Chemical Process Design                                                                                                       |
| LITCH NOA | <u>enerinear ricecco peoign</u>                                                                                               |

|                | Computer simulation and financial assessment; Basic Cost            |  |
|----------------|---------------------------------------------------------------------|--|
|                | Estimation and Economic Assessment; A simple flash calculation      |  |
|                | by hand and simulator; Material Streams: energy balances and        |  |
|                | flow sheeting on computer; Physical property data bases and         |  |
|                | predictive methods, Degrees of freedom in problem solution;         |  |
|                | Complex unit operations design; Design with recycles and            |  |
|                | application to improved design; Emphasis on operability &           |  |
|                | controllability of processes.                                       |  |
|                | Environmental Engineering 1                                         |  |
|                | Material & Energy balances and Separations; Reactors and            |  |
| EHENE1A        | Reactions; Water Quality & Water Treatment; Wastewater              |  |
| 2              | Treatment; Air Quality and Control; Solid Waste; Hazardous          |  |
|                | Waste; Types Pollution.                                             |  |
|                | Reactor Technology 1                                                |  |
|                | Reactor Mole Balance and definitions, Batch Reactor, Continuous     |  |
|                | Stirred Tank Reactor (CSTR), Plug Flow Reactor (PFR), Packed Bad    |  |
|                | Reactor, Semi-batch Reactor; Reaction Kinetics, Order of            |  |
| <b>EHRTE3A</b> | reactions, Type of reactions; Elementary and non-Elementary         |  |
|                | reactions, Reaction stoichiometry: development of stoichiometry     |  |
|                | table; Reactor design, Application to Batch reactor, Application to |  |
|                | CSTR, Application to PFR; Data analysis, Application of integral    |  |
|                | method of analysis.                                                 |  |
|                | Separation Processes 1                                              |  |
| EHSEP3A        | Introduction to processes separations; Distillation (binary         |  |
|                | system); Absorption; Evaporation; Drying; Crystallization.          |  |
|                | Chemical Engineering Laboratory 2                                   |  |
|                | Projects such as: Continuous distillation; Gas absorption with      |  |
| EHCEL2A        | determination off mass transfer coefficient; Thin film evaporator;  |  |
|                | Vapour liquid equilibrium; Filtration; Cooling tower;               |  |
|                | Boiling/condensation; Refrigeration/heat pump; Leaching.            |  |
|                | SEMESTER 6                                                          |  |
| EHEXL1A        | Workplace Based Learning 1                                          |  |

| Syllabi:<br>DIPLOMA: CHEMICAL ENGINEERING (Extended 4 year programme)<br>(Course code: DE0801) |                                                               |  |  |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| Module                                                                                         | Module Description                                            |  |  |
| Code                                                                                           |                                                               |  |  |
|                                                                                                | SEMESTER 1                                                    |  |  |
| AAXCH1A                                                                                        | Foundation Chemistry 1                                        |  |  |
|                                                                                                | Atoms, molecules & ions; Stoichiometry; Reactions in aqueous  |  |  |
|                                                                                                | solution; Rate and extent of reactions; Chemical equilibrium; |  |  |
|                                                                                                | Acids, bases and salts; Electrochemistry.                     |  |  |

|         | Foundation Mathematics 1                                          |
|---------|-------------------------------------------------------------------|
| AMXMA1A | Intro to Algebra, Expressions & equations, Linear & simultaneous  |
|         | equations, Polynomial equations, Matrix algebra, Hyperbolic       |
|         | functions.                                                        |
|         | Foundation Physics 1                                              |
| АРХРН1А | Mechanics: Force and Newton's laws; Momentum and impulse;         |
| AFAFILA | Vertical projectile motion in one dimension; Work, energy &       |
|         | power; Doppler effect.                                            |
|         | SEMESTER 2                                                        |
| ААХСН2А | Foundation Chemistry 2                                            |
| AAACHZA | Organic molecules; The chemical industry.                         |
|         | Foundation Mathematics 2                                          |
| ΑΜΧΜΑ2Α | Polynomial equations, Partial fractions, Trigonometry (radian     |
| ,,      | measure), Binomial series, Functions, Intro to differentiation,   |
|         | Intro to integration.                                             |
|         | Foundation Physics 2                                              |
| АРХРН2А | Electrostatics; Electric circuits; Electrodynamics; Optical       |
| ,,      | phenomena; Properties of materials; Emission and absorption       |
|         | spectra.                                                          |
|         | Foundation Drawing 1                                              |
| EMXDR1A | Letter and number notation; Line notation; Handling of apparatus; |
|         | Measurement notation; Geometrical construction; Orthographic      |
|         | projections; Arcs of penetration and developments; Detailed       |
|         | works drawing; Composite drawings.                                |
|         |                                                                   |

| Syllabi:<br>ADVANCED DIPLOMA: CHEMICAL ENGINEERING |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Course code: AD0800)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Module                                             | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Code                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| YEAR MODULES                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EHAPD4A                                            | Advanced Process Design<br>Equipment Design: Design and sizing of most common equipment<br>used in chemical plants: shell & tube exchangers, cooling towers,<br>multicomponent flash drums, distillation columns, absorption<br>columns, catalytic reactors, etc. Chemical Plant Design Aspects:<br>Code of Professional Practice; Process design principles and<br>design objectives; Design Guidelines: Conceptual design, detailed<br>design process, detailed design layout, Operation and |

|         | Maintenance, Documentation; Safety. Process Flow diagrams                                                                      |
|---------|--------------------------------------------------------------------------------------------------------------------------------|
|         | (PFD), Process Piping and Instrumentation Diagrams (P&ID's)                                                                    |
|         | Hazard and Operability Analysis (HAZOP); Environmental and                                                                     |
|         | Sustainability Aspects of Plant Design and Operations: Chemical                                                                |
|         | Plant Emissions (Air Emission. Solid waste, liquid effluent),                                                                  |
|         | Environmental Impact Assessment (EIA). Chemical Process                                                                        |
|         | Economics: Plant capital costs estimates (detailed factorial                                                                   |
|         | method); Operating costs estimates; Economic evaluation: NPV,                                                                  |
|         | IRR, etc. Design Project: Literature survey – evaluation of process                                                            |
|         | and engineering alternatives; Material and Energy balances;                                                                    |
|         | Process Flow sheeting – PFD and P&I diagrams; Simulation of a                                                                  |
|         | continuous flow process using rigorous simulation packages e.g.                                                                |
|         | CHEMCAD / ASPEN / HYSIM. Etc.; Equipment design and                                                                            |
|         | specifications; Hazards and Operability Study; Environmental                                                                   |
|         | considerations, legislation and pollution control; Process                                                                     |
|         | economics.                                                                                                                     |
|         | Research Methodology and Project                                                                                               |
|         | Identify, describe, and delimit an industrial process                                                                          |
|         | problem/research problem, Motivate the need for the project,                                                                   |
|         | State specific objectives, Estimate resource requirements,<br>Establish various tasks in project and time frame for each task, |
|         | Survey relevant sources on the research problem, Write a                                                                       |
| EHRMP4A | properly referenced literature survey, Identify and justify relevant                                                           |
|         | theoretical framework and justify choice, Describe and defend                                                                  |
|         | methodology, Design and conduct experiments and trials to study                                                                |
|         | the effects of process variables on process operations, analyse,                                                               |
|         | interpret and report results of experiments and trials, write                                                                  |
|         | technical reports.                                                                                                             |
|         | SEMESTER 1                                                                                                                     |
|         | Advanced Engineering Mathematics                                                                                               |
|         | Least Square method and curve fitting of data, cubic spline                                                                    |
|         | problems, approximation of functions interpolation and                                                                         |
|         | extrapolation of techniques; forward, backward and central                                                                     |
|         | difference, error approximation; derivatives from difference                                                                   |
|         | tables; Numerical integration – Newton Cotes Integration                                                                       |
| EHAEM4A | technique, Simpson's 1/3 rd and 3/8th rule, trapezoidal rule,                                                                  |
|         | Gaussian quadrature; Multiple Integral solution of Non-linear                                                                  |
|         | equation, bisection methods, regular-falsi method, Newton-<br>Raphson methods, Euler's method, Euler's modified iteration      |
|         | technique, Picaed method, Runge-Kutta 4th order technique,                                                                     |
|         | Taylor series method; Solutions of ordinary differential equation                                                              |
|         | (initial and boundary value problem).                                                                                          |
| EHARE4A | Advanced Reaction Engineering                                                                                                  |
|         | Automotive Reaction Engineering                                                                                                |

|         | Decie principles, rate controlling stone. Thermodynamic concerts of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Basic principles, rate controlling steps, Thermodynamic aspects of chemical equilibrium calculations, Intrinsic and Global rates. Heterogeneous reactor design. Non-catalytic and catalytic heterogeneous reaction and reactor design, axial mixing phenomenon, Fluidized bed reactors, Analysis of real reactors. Multiphase flow reactors, Stirred vessel reactors, miscellaneous reactors, Multiphase flow regimes, Gas-liquid, Solid-gas, Gassolid, liquid-solid reactors, Isothermal and adiabatic fixed bed reactors, Non-isothermal and non-adiabatic fixed bed reactors, fixable bed reactors. Classification, characterization, preparation and application of catalysts, activation & deactivation catalysts, Specific design aspects and the typical industrial reactors with their performance, Reactor stability and optimization, Scale up of reactors. |
|         | Advanced Fluid Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EHFLM4A | Similitude and scale-up applications, Advanced Equations of Fluid<br>Flow (Energy Mass and momentum conservation), Incompressible<br>Flow in Pipes and Channels, Flow of incompressible non-<br>Newtonian fluids in pipes, Flow of Compressible Fluids, Flow of<br>multiphase mixtures, Flow Past Immersed Bodies, Transportation<br>and Metering of Fluids, Agitation and Mixing of Liquids,<br>Introduction to unsteady state flow (laminar flow).                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | Advanced Heat, Mass Transfer and Separation: Mod 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EHHMX4A | Heat Transfer to Fluid without Phase Change, Heat transfer to<br>fluid with a phase change, Radiative heat transfer, Heat-Exchange<br>Equipment, Mass Transfer, Multicomponent distillation, multiple<br>effect evaporation, liquid-liquid extraction, crystallization, drying,<br>adsorption Solid-liquid extraction (leaching), membrane<br>separations and absorption.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EHHMY4A | Advanced Heat, Mass Transfer and Separation: Mod 2<br>Heat Transfer to Fluid without Phase Change, Heat transfer to<br>fluid with a phase change, Radiative heat transfer, Heat-Exchange<br>Equipment, Mass Transfer, Multicomponent distillation, multiple<br>effect evaporation, liquid-liquid extraction, crystallization, drying,<br>adsorption Solid-liquid extraction (leaching), membrane<br>separations and absorption.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | Engineering Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EHMAN4A | Using Operations to Complete. Managing Effective Projects.<br>Developing a Process Strategy. Analysing Processes. Managing<br>Quality. Planning Capacity. Managing Process Constraints.<br>Maintenance and Reliability. Linear Programming Model.<br>Engineering Economics Analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| EHCEL4A | <b>Chemical Engineering Laboratory</b><br>Continuous Distillation: Conduct an energy and material balance<br>around the column, determine the number of theoretical plates<br>using the McCabe-Thiele method, determine the feed location<br>stage. Refrigeration: Observe the effects of high ambient<br>temperature, to observe the effects of a shortage of refrigerant,<br>observe the effects of severely restricted air flow through the<br>condenser, observe the effects of a stopped condenser fan, To<br>observe the effects of hot air over the condenser. Batch Stirred<br>Tank Reactor: determine the reaction order with respect to NaOH,<br>determine the reaction rate constant with respect to NaOH,<br>determine the rate of the chemical reaction. Evaporator: evaluate<br>the mass and energy balances, determine the amount of heat<br>transferred by the steam, determine the steam required (kg/s),<br>determine the overall heat transfer coefficient (U), determine the<br>efficiency (%). |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EHAPC4A | Advanced Process Control<br>Introduction to Process Control, Control System Hardware,<br>Control and Modelling Philosophies, and Economic Justification of<br>Process Control. Theoretical Models of Chemical Processes or<br>Mathematical Modeling of Chemical Processes. Dynamic Behavior<br>of Chemical Processes. Analysis and Design of Feedback Control<br>Systems (Closed-loop Control Systems). Analysis and Design of<br>Feed Forward (FF) Control Systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Syllabi:<br>POSTGRADUATE DIPLOMA: CHEMICAL ENGINEERING<br>(Course code: PG0800) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module                                                                          | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Code                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EHPRM5A                                                                         | <b>Research Project (Chemical Engineering)</b><br>Perform critical review of the published literature in areas appropriate to the area of the research and identify and apply relevant theories to the problem. Record and analyse experimental data. Draw appropriate conclusions from the results. Discuss the purpose of a research project and its significance in relation to relevant previous work reported in literature. Communicate/Convey the work and its outcomes in a variety of formats – report, poster and academic paper. Carry out/Do literature search using library and IT facilities to identify knowledge gaps. |
| EHPEEX5A                                                                        | Environmental Engineering I (Chemical Eng)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|          | Conventional and advanced water treatment techniques; Local<br>and international environmental regulations for a chemical   |
|----------|-----------------------------------------------------------------------------------------------------------------------------|
|          | industry; environmental impact assessment of a chemical                                                                     |
|          | process; environmental economics; design of sampling and                                                                    |
|          | assessment tools; indicators of ecological integrity;                                                                       |
|          | environmental risk assessment and management; policy decision-                                                              |
|          | making; impact assessment and environmental audit; national                                                                 |
|          | and international air pollution regulations; Source and                                                                     |
|          | propagation of water, air and land pollutants; modelling of diurnal                                                         |
|          | and seasonal pollution dispersion; quantification methods for                                                               |
|          | pollutants; Conventional and advanced treatment techniques for                                                              |
|          | industrial wastewater from petrochemical, mining and energy                                                                 |
|          | industries; Air pollution control in petrochemical, mining and                                                              |
|          | energy industries; Causes of land pollution such as agricultural                                                            |
|          | chemicals, industrialisation, mining, landfills, human sewage;                                                              |
|          | Effects of land pollution and prevention and mitigation strategies.                                                         |
|          | Chemical Process Design I (Chemical Eng)                                                                                    |
|          | Process synthesis philosophy of integrated process synthesis;                                                               |
|          | Integrated process synthesis with process mass and energy                                                                   |
|          | balance targets; Process based flow sheet synthesis; Application                                                            |
| EHPPDX5A | of transport processes: mass, heat and momentum transfer;                                                                   |
|          | Application of reacting systems; Introduction to renewable                                                                  |
|          | resources and integration of renewable energy with industrial                                                               |
|          | processes; Heat and mass integration - designing for maximum                                                                |
|          | energy recovery and wastewater minimization.                                                                                |
|          | Environmental Engineering II (Chemical Eng)                                                                                 |
|          | Primary, secondary and advanced wastewater treatment and                                                                    |
|          | other methods such as activated carbon adsorption; membrane                                                                 |
|          | separation; ozonalysis, photodegradation; enhanced coagulation;                                                             |
|          | heavy metal removal, chemical precipitation; neutralization;                                                                |
| EHPEEY5A | oxidation-reduction; desalination processes; ion exchange.                                                                  |
|          | Composition and characterization of sewage; Basic design                                                                    |
|          | principles of sewage treatment systems; Sludge handling and                                                                 |
|          | treatment; simulation software for wastewater treatment                                                                     |
|          | processes; Simulation and modelling tool to design and optimized                                                            |
|          | the performance of wastewater treatment systems                                                                             |
|          | Chemical Process Design II (Chemical Eng)                                                                                   |
|          | Introduction to Computational Modelling; Discrete modelling of                                                              |
| EHPPDY5A | process systems; Solution methods for discrete optimization                                                                 |
| CHPPUTSA | problems: Process synthesis using implicit enumeration;<br>Algorithmic approaches to synthesis of sustainable systems: heat |
|          | exchanger networks; Process synthesis under uncertainty;                                                                    |
|          | Flexibility analysis; Computer based modelling, simulation and                                                              |
|          | Flexibility analysis; Computer based modelling, simulation and                                                              |

|          | optimisation of integrated processes using ChemCad; Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | process economics; Process engineering in the green economy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EHPBEX5A | <b>Bioprocess Engineering I</b><br>Introduction to bioprocess engineering; Calculations,<br>Presentation and Analysis of Data; Material and Energy Balances,<br>hydrodynamics and mixing; Structure and Biology of Cells:<br>Prokaryotic, Eukaryotic; Cell types: Bacteria, Yeasts, Molds, Algae,<br>Protozoa, Animal & Plant Cells; Structure and function of bio-<br>molecules: lipids, proteins, carbohydrates (sugars &<br>polysaccharides), nucleic acids, hybrid bio-chemicals; Kinetics of<br>Enzyme-Catalysed reactions and Applied Enzyme Catalysis:<br>Mechanistic models, Michaelis-Menten Equation to determine<br>rate parameters; Immobilised systems. |
| EHPBEY5A | <b>Bioprocess Engineering II</b><br>Fermentation (Process Design and Optimisation) – Foods and<br>beverages, Amino Acids, Organic feed-stocks, Organic acids,<br>Vitamins, Antibiotics, Single-cell proteins; Design and Analysis of<br>Bioreactors: Batch, Continuous and Plug-Flow Reactors, Dynamic<br>models, stability, Non-ideal processes, Sterilisation, Immobilised<br>Biocatalysts and Multiphase systems, Bioreactor scale-up,<br>Instrumentation and Control, Bio-process economics.                                                                                                                                                                     |
| EHPPEX5A | Petrochemical Engineering I<br>Origin, Formation and Composition of Petroleum: Overview of<br>Petroleum Refinery, Petroleum Refinery Processes and<br>operations, Petroleum Refinery flow schemes, Definitions of<br>Refining terms, Types of refineries such as simple intermediate<br>and complex, preflashing, Major petroleum products and their<br>specifications, Blending of various petroleum fractions to meet<br>required specification, Methane, natural gas, compressed natural<br>gas (CNG), rebuilding of hydrocarbons.                                                                                                                                |
| ЕНРРЕҮБА | Petrochemical Engineering II<br>Petrochemical Industry; Petrochemical Industry Integration and<br>Value Chain; Petrochemical Industry By-processes: Ammonia<br>Synthesis, Methanol Synthesis, Polymers and Associated<br>Chemicals; Synthetic Fuels, Solvents and Chemicals.                                                                                                                                                                                                                                                                                                                                                                                         |

## 11.2 METALLURGICAL ENGINEERING

Syllabi: DIPLOMA IN METALLURGICAL ENGINEERING (3 year programme) (Course code: DI0850)

| Module  | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | Applied Communication Skills 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| НКСОХ1А | Communication theory: what is meant by communication; elements<br>common to all forms of communication; Reading for academic purpose:<br>what it means to read a written text purposefully; Writing process and<br>referencing: writing requires knowledge of grammar, punctuation,<br>spelling, style, structure and audience; Listening process: why people fail<br>to listen; the different types of listening; aspects of intercultural listening,<br>Creative thinking, critical thinking and disability communication: critical<br>thinking.                                                                                                                                                                                                                                  |
| EEESK1A | Engineering Skills 1<br>The Engineering Profession: Different types of engineering. Mechanical,<br>electrical, civil, chemical, computer etc. The engineering team; artisans,<br>technicians, technologists and engineers. Engineering Teamwork:<br>Engineering design. Teamwork versus group work. Basic principles of;<br>engineering project management (plan, organise, lead and control),<br>project costing, budgeting and resource management. What is a business<br>plan? Engineering and the Environment: social responsibility,<br>environmental impact, natural resources, sustainability of the<br>engineering activity. Legal and safety considerations. Ethics in<br>Engineering: professional ethics, responsibility, engineering norms, ECSA<br>and their function. |
| AAECH1A | Engineering Chemistry 1<br>Matter and measurement; Atoms; Molecules and ions; Formulas,<br>Equations and moles; Chemical reactions in aqueous solution; Periodicity<br>and atomic structure; Ionic bonds; Covalent bonds and molecular<br>structure; Chemical equilibrium; Acids and bases; Organic chemistry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ASICT1A | ICT Skills 1<br>Recognizing Computers; Using current versions of Microsoft Windows<br>Professional; Common Elements; Microsoft Word; Microsoft Excel;<br>Microsoft PowerPoint; Microsoft Outlook, getting connected and using<br>the Internet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AMMAT1A | <u>Mathematics 1</u><br>Binomial expansion, radian measure and limits of functions: Binomial<br>theorem, Radian measure. Applications of radian measure.<br>Differentiation techniques: Limits of functions, Differentiation from first<br>principles, Derivatives of polynomials & product rule, The quotient and<br>chain rules, Derivatives of trig functions, Derivatives of exponential & log<br>functions, Higher order derivatives, Implicit differentiation, Logarithmic<br>differentiation, Applications. Integration techniques: Integration<br>(Indefinite integrals), Definite integrals, Area enclosed by two curves,                                                                                                                                                  |

|         | Simpson's rule. Vectors: Rep & magnitude of vectors. Resolving vectors,<br>Unit vectors and direction vectors, Scalar multiplication, addition and sub,<br>Dot product, the angle between two vectors and work done, Determinant<br>of a 2 x 2 matrix. Cross product and the moment of a vector. Complex<br>numbers: Rep. of complex numbers and operations, Equality of complex<br>numbers, Argand diagram, polar form & De Moivre's, Calculating roots.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APHYS1A | <b>Physics 1</b><br>Units of measurement, Waves and sound, Principles of Linear<br>Superposition and Interference, Electromagnetic waves, Interference and<br>Wave nature of light, Reflection of Light: Mirrors, Refraction of Light,<br>Lenses and optical instruments, Vectors and scalars, Kinematics in one<br>dimension, Forces and Newton's Law of Motion, Work and Energy,<br>Impulse and Momentum, Electric Forces and Electric Fields, Electric<br>Potential and Potential Energy, Electric circuits, Fluids, Temperature and<br>heat, Transfer of heat, Nuclear Physics and Radioactivity.                                                                                                                                                                                                                                                                                                          |
| EESIN1A | Social Intelligence 1<br>Leadership styles: Democratic, Autocratic, Consensus etc. Economic<br>systems of governance: Capitalism, Socialism and Communism. Etiquette<br>in society and the workplace. Soft skills, Cultural influences. Success in<br>Engineering: Professionalism, Ethics, Responsibility, Discipline, Time<br>management, Acquiring information and Independent learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AMMAT2A | Mathematics 2<br>Differentiation: Inverse trig functions, Hyperbolic functions, Inverse<br>hyperbolic functions, Parametric equations, Maxima and minima, Partial<br>differentiation, Small changes, Rate of change. Integration: Revision of<br>integration, Use of formulae sheet, Inverse functions, Partial fractions,<br>Partial fractions, Integration by parts, Trig. & hyperbolic substitutions, t-<br>formulae, Mean and RMS values. Differential Equations: Differential eq.,<br>separation, Using the integrating factor, Applications, Homogeneous<br>differential equations. Matrix Algebra: Operations with matrices, Inverse<br>of a matrix, solve equations using inverse, Cramer's rule, Eigenvalues and<br>-vectors. Probability and Statistics: Data representation, Data<br>summaries, Normal distribution, Conf. intervals, error est. Conf. intervals,<br>error est. Hypothesis testing. |
| EMEDR1A | Engineering Drawing 1<br>Drawing instruments; Drawing skills; Object visualization and drawing;<br>sketch and drawing of chemical engineering process equipment's using<br>computer software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| APHYS2A | Physics 2<br>Projectile motion; rotational motion; simple harmonic motion and<br>elasticity; fluids; gas behaviour; thermodynamics; current and capacitors;<br>magnetism; nuclear physics, radioactivity and ionising radiation; Calculus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|         | Funda and Chamister 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AAECH2A | Engineering Chemistry 2<br>Introduction to chemical bonding; Ionic bonds; Covalent bonding and<br>molecular structure; Hydrogen; The Group IA and IIA metals; Boron and<br>Aluminium; Chemical reactions in aqueous solutions; Carbon, Silicon,<br>Germanium, Tin, and Lead; Acids, bases, and non-aqueous solvents;<br>Nitrogen Phosphorus, Arsenic; Oxygen, Sulphur, Selenium, and Tellurium;<br>Halogens.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | Safety Principles and Law 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EYSPA1A | Importance of health and safety: What is safety and health concepts as indicated in the OHS Act, Fundamental safety concepts and terms: Fundamental safety terms, legal appointments as per the OHS Act, duties of the legal appointees as per the OHS Act, safety awareness and fire training, What is hazards and risk in the workplace: What is a hazard, what is a risk, what is the difference between a hazard and a risk, identification of main six hazards in the workplace, occupational hazards, difference between an accident and an incident: general principles of control and risk reduction, safe systems of work, permit-to-work systems, emergency procedures and first-aid, Principles of hazard and risk control: What is a risk assessment, why do a risk assessment, how to conduct a risk assessment, Risk assessment and risk management, Tools and Machinery: Tool and machine hazards, Principles of safeguarding powered and driven machines, point of operation safeguards, controls for hand toll hazards, portable power tool controls, Electrical safety: What do I need to know about electricity, what kind of injuries result from electrical current, electrical shock hazards, arc flash, control of electrical hazards, electrical safety-related work practices, Noise and vibration: Sound and noise, hearing, hazards of noise, exposure standard for noise, engineering controls for hama body. |
| EYCOA2A | Computing Applications 2<br>Navigating EECOA2A on VUTela, Laboratory rules & guidelines. Microsoft<br>Excel 2016: Working principles, creating engineering spreadsheets,<br>navigating excel to solve engineering problems, using operations for<br>engineering application. Introduction to VB programming.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| НКСОУ1А | <b>Applied Communication Skills 1.2</b><br>Social Intelligence: Characteristics of Social Intelligence; Paragraphing:<br>The structure of a paragraph, Elements of a Paragraph, Report writing:<br>Different types of reports, Purpose of a report, Perception: What does<br>perception involve? Facts vs Opinions: Facts, opinions. Subjectivity and<br>Objectivity: Introduction, Subjectivity, objectivity. Denotations and<br>Connotations: Denotation, connotation. Bias: Age Bias, Belief system or<br>Religious Bias, Disability, Visual Literacy: Different types of visual literacy.<br>Graphics: Tables, Bar Graphs, Histogram, Pie Chart, Line Graph,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|            | Pictogram, and Flow Chart. Advertisements: Examples of Figurative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | language.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SEMESTER 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EYPTH1A    | Process Thermodynamics 1<br>Enthalpy; Entropy: processes – spontaneous, reversible and irreversible;<br>Free energy; Ellingham diagram for oxides and sulphides; Chemical<br>equilibrium; Behaviour of gases; Principles of phase equilibrium;<br>Construction of phase diagrams: binary, free energy. Phase equilibria: the<br>Clausius- Clapeyron equations; Fugacity, activity and equilibrium<br>constant; Construction binary phase diagrams and application of Gibbs<br>phase rule.                                                                        |
| EYEME1A    | <b>Extractive Metallurgy 1</b><br>Physical and Chemical Characteristics of Ore Minerals; Production of non-<br>ferrous metals; Production of iron and steel; Pollution and pollution<br>control; Refractories; The concept of distribution functions.                                                                                                                                                                                                                                                                                                            |
| EYPME1A    | <b>Physical Metallurgy 1</b><br>Electron configuration in metals; Crystallography; Solidification of metals;<br>Introduction to plastic deformation; Constitution of alloys; Phases and<br>phase diagrams; Heat treatment; Alloy specification.                                                                                                                                                                                                                                                                                                                  |
| EYMPR1A    | Mineral Processing 1<br>Ore deposits; Mining and mining methods; Ore handling; Ore<br>preparation; Principles of comminution; Economic considerations.                                                                                                                                                                                                                                                                                                                                                                                                           |
| EYMAM1A    | Manufacturing Metallurgy 1<br>Solidification of metals; casting technologies; design of Runners and<br>gating systems; Casting construction and pattern design; Moulding<br>materials; Moulding boxes; Cores and core making; Production<br>techniques; Calculations of: solidification rates. Defects in castings; Dye-<br>penetrant testing; Magnetic particle testing; Eddy current testing;<br>Internal defects: Ultrasonic testing; Radiographic inspection; Introduction<br>to Simulation of Casting Processes; Introduction to Additive<br>Manufacturing. |
| EYEGE1A    | Engineering Geology 1<br>Earth: surface, structure and age; Mineralogy; Petrology; Structural<br>geology; Surface processes; Stratigraphy; Ore deposits; Industrial<br>minerals; Practical work.                                                                                                                                                                                                                                                                                                                                                                 |
|            | Applied Communication Skills 2.1<br>Introduction to Group Dynamics: Show understanding of different group<br>characteristics, Communication Theory: Communication Model,<br>Communication Barriers, Communication styles in workplace,<br>PowerPoint Presentations: Planning and preparation of a presentation<br>(Audience, Language, Knowledge of topics, Level of education, Social                                                                                                                                                                           |
| HKCOX2A    | variables, Values, Needs and Size of Audience, Non-verbal and<br>Intercultural Communication: Introduction to Non-verbal                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|         | Communication, Logic and Reasoning: Conceptualise vital terminology<br>uses in argumentative writing, construct a logically sound and well-<br>reasoned argument, write and present logical arguments, Meetings and                                                                                                                                                                                                                                                                                                                                                         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Interviews: Introduction of meetings, Types of meetings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | SEMESTER 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EYHYD2A | <b><u>Hydrometallurgy 2</u></b><br>Solution chemistry and process thermodynamics; leaching reagents and processes; influence of pH and potential; leaching methods; application in leaching of oxide, sulphide and native minerals; design of a leaching plant; quantitative analysis (calculations); laboratory work.                                                                                                                                                                                                                                                      |
| EYPYR2A | <b>Pyrometallurgy 2</b><br>Mining and iron ore preparation. Iron blast furnace process and alternative iron making processes. Principles of direct reduction processes and comparisons of different processes. Corex process for iron making. Classification of refractory materials and testing methods. Types of refractory materials and identification of different basic, acid and neutral materials for manufacturing. Design- and installation methods in the refractory material with special reference to the iron and steel and ferro-alloy production processes. |
| EYPME2A | <b>Physical Metallurgy 2</b><br>Mechanical metallurgy; Strengthening mechanisms; Phase transformations; Diffusion; The tension test; The torsion test; Hardness; Fatigue; Creep and stress rupture; Brittle fracture and Impact testing. Fracture and fracture mechanics, residual stress concentrations, Failure analysis.                                                                                                                                                                                                                                                 |
| EYMPR2A | Mineral Processing 2<br>Application of distribution functions to selection; Sampling and material<br>balance; Mineral separation methods based on physical properties;<br>Dewatering.                                                                                                                                                                                                                                                                                                                                                                                       |
| EYMAM2A | Manufacturing Metallurgy 2<br>Welding processes; Manual and automated welding processes; Physics of<br>welding; Defects in welding; Welding and weldability tests; Weld<br>distortion; Welding procedures; Welding specifications, codes, symbols.<br>Additive Manufacturing in Welding Processes. Automation in Welding<br>Processes.                                                                                                                                                                                                                                      |
| EBQCO2A | Quality Control 2<br>Fundamentals of statistics; Statistical process control; Product<br>acceptance (sampling); Quality engineering; Quality and economy and<br>Computers and quality.                                                                                                                                                                                                                                                                                                                                                                                      |
| HKCOY2A | Applied Communication Skills 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|         | Interpersonal Skills in the Workplace: Group Dynamics, Conflict<br>Resolution, Persuasion, Negotiation, Mediation, the Business Plan:<br>Introduction to the business plan, Marketing your new business;<br>Intellectual Property; How to obtain funding for your small business; The<br>Business Pitch, Disability Etiquette: Definition of disability and disabilism,<br>Different depictions of disability, Words to describe different disabilities,<br>Disability in South Africa, Models of disability; Disability Etiquette, Job<br>advertisement, Curriculum Vitae and Cover letter: Analysing job |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | advertisements; aligning your skills with job advertisements; Designing a professional curriculum vitae; Online job applications, Drafting a cover letter, Written Messages: E-mail etiquette; Writing Styles; Memoranda, Business Letters; The News Article.                                                                                                                                                                                                                                                                                                                                              |
|         | SEMESTER 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EYHYD3A | Hydrometallurgy 3<br>Winning and recovery processes: adsorption on activated coal; Ion<br>exchange processes; Solvent extraction; Applications in gold, PGM and<br>uranium leaching and treatment of the leach solution.                                                                                                                                                                                                                                                                                                                                                                                   |
| EYPYR3A | <b>Pyrometallurgy 3</b><br>Desulphurization of hot metal. Basic oxygen process for steel making.<br>Production of Ferro-silicon; Production of Ferro-manganese; Production<br>of Ferro chrome; Production of special Ferro-alloys; Pollution and<br>pollution control. Pyrometallurgy of copper ores roasting and smelting.<br>Pyrometallurgy of zinc smelting. Pyrometallurgy for lead ore roasting, and<br>smelting.                                                                                                                                                                                     |
| EYPME3A | Physical Metallurgy 3<br>Corrosion processes and corrosion testing; Electrochemistry of corrosion;<br>Passivity; Corrosion of iron and steel; Protection against corrosion;<br>Alloying against corrosion; Non-ferrous alloys and polymers. Ternary<br>phase diagrams Ultra low carbon steels; Low carbon steels; High strength<br>low alloy steels; Ultra high strength steels; High alloy and heat resistant<br>steels; Cast irons; Titanium and Titanium alloys, Aluminium and<br>Aluminium alloys or Copper and copper alloys.                                                                         |
| EYMPR3A | Mineral Processing 3<br>Principles of mineral processing plant design; Material balances on<br>complex flow diagrams; Mathematical models and their applications in<br>mineral processing; Principles, theory and practice of industrial process<br>control in mineral processing plants; Mineral processing plant<br>commissioning practice; Principles and practice of cost estimating.                                                                                                                                                                                                                  |
| ЕҮМАМЗА | Manufacturing Metallurgy 3<br>Fundamentals of metal working; Forging processes; Rolling of metals;<br>Extrusion; Drawing of rod and wire; Sheet metal forming including the<br>theoretical aspects. Additive Manufacturing and Simulation                                                                                                                                                                                                                                                                                                                                                                  |

|         | (MagmaSoft). Manufacturing processes of other Materials; Ceramics;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Polymers; Composites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Management 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BHMAN1A | Organizational structure and design, Organizational change and learning,<br>Motivating for performance, The dynamics of leadership, Groups and<br>teams in organizations; Operating strategies; Forecasting; Process<br>planning and designing; Trade-off analysis; Automated processes;<br>Allocating resources with LP; Decision trees; Facility location; Aggregate<br>planning; Master production schedules; Inventory systems; Material<br>requirements planning and Lot-sizing for MRP and CRP.                                                                                                                                                                                                                                                                                                                                                                |
|         | Environmental Geochemistry 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EYENC1A | Review of chemical principles, reactions at the solid-water interface, soil chemistry, contaminants in soils and sediments, medical geochemistry of Earth materials, hydro-geochemistry and hydrologic cycle, water chemistry and contamination, groundwater geochemistry and contamination, atmospheric chemistry and pollution, waste dumps, acid mine drainage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | SEMESTER 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | Workplace Based Learning 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EYWIL1A | The Diploma in Metallurgical Engineering has a formal six months<br>Workplace Based Learning Component that is coordinated by the<br>Department of Metallurgical Engineering. Companies accredited by the<br>University will provide Workplace Based Learning. Students will spend a<br>full six months at the work place following an approved programme<br>under an approved company-based mentor. The programme will include<br>work-based exposure and activities that will cover those sub-disciples of<br>the qualification that provide specialisation suitable for the company<br>providing the Workplace Based Learning. The students will be required to<br>submit regular progress reports as indicated in the programme as well as<br>a final report that will include suitable work-based project reports, which<br>will be assessed by the University. |

| Syllabi:                           |                        |  |
|------------------------------------|------------------------|--|
| DIPLOMA: METALLURGICAL ENGINEERING |                        |  |
| (Extended 4 year programme)        |                        |  |
| (Course code: DE0851)              |                        |  |
| Module                             | Module Description     |  |
| Code                               |                        |  |
| SEMESTER 1                         |                        |  |
| AAXCH1A                            | Foundation Chemistry 1 |  |

|             | Atoms, molecules & ions; Stoichiometry; Reactions in aqueous      |
|-------------|-------------------------------------------------------------------|
|             | solution; Rate and extent of reactions; Chemical equilibrium;     |
|             | Acids, bases and salts; Electrochemistry.                         |
|             | Foundation Mathematics 1                                          |
| AMXMA1A     | Intro to Algebra, Expressions & equations, Linear & simultaneous  |
|             | equations, Polynomial equations, Matrix algebra, Hyperbolic       |
|             | functions.                                                        |
|             | Foundation Physics 1                                              |
| APXPH1A     | Mechanics: Force and Newton's laws; Momentum and impulse;         |
| ΑΡΧΡΠΙΑ     | Vertical projectile motion in one dimension; Work, energy &       |
|             | power; Doppler effect.                                            |
| SEMESTER 2  |                                                                   |
| ААХСН2А     | Foundation Chemistry 2                                            |
| AAXCHZA     | Organic molecules; The chemical industry.                         |
|             | Foundation Mathematics 2                                          |
| ΑΜΧΜΑ2Α     | Polynomial equations, Partial fractions, Trigonometry (radian     |
| AIVIXIVIAZA | measure), Binomial series, Functions, Intro to differentiation,   |
|             | Intro to integration.                                             |
|             | Foundation Physics 2                                              |
|             | Electrostatics; Electric circuits; Electrodynamics; Optical       |
| APXPH2A     | phenomena; Properties of materials; Emission and absorption       |
|             | spectra.                                                          |
|             | Foundation Drawing 1                                              |
|             | Letter and number notation; Line notation; Handling of apparatus; |
| EMXDR1A     | Measurement notation; Geometrical construction; Orthographic      |
|             | projections; Arcs of penetration and developments; Detailed       |
|             | works drawing; Composite drawings.                                |
|             |                                                                   |

| Syllabi:                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADVANCED DIPLOMA: METALLURGICAL ENGINEERING |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Course code: AD0850)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Module Code                                 | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SEMESTER 1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AMMAT3A                                     | Engineering Mathematics 3<br>Application of Integration: Volumes of solids of revolution, Length of<br>Curves, Double Integrals: Iterated Integrals & Fubini's theorem, Double<br>Integrals, Polar Coordinates. First Order Differentiation Equations:<br>Exact DE, Homogeneous DE, Bernoulli DE, Applications (Excluding<br>Newton's Law of Cooling), D-Operator Methods. Numerical Solutions<br>of First Order Differential Equations: Euler's method, Runge-Kutta order<br>2, Runge-Kutta order 4. Operator D Methods/Undetermined |

|         | coefficients: Complementary Solutions, D-operator & Inverse, binomial<br>or long division method, Theorem 1, Theorem 2, Theorem 3, Special<br>cases, General solution, Applications. Laplace Transforms, and Table of<br>transforms. (Derivation from first principles not for examination<br>purposes), First shifting property, Laplace transforms of derivatives,<br>Inverse Laplace Transforms using tables, Laplace Transforms of<br>discontinuous functions, Inverse Laplace Transforms of discontinuous<br>functions, Solution of differential equations, Application to electric<br>circuits, Application to beams. Fourier Series: Periodic functions and<br>harmonics, sketching of graphs and determining Fourier Series, Series<br>with period 2I, Even and Odd functions, Full range and Half range series,<br>Numerical Harmonic Analysis. |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -       | Quality Control 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EBQCO3A | Introduction; Different philosophies; Quality cost; Quality control and Quality improvement. Acceptance quality control: Inspection and testing; Measurement and acceptance sampling and Special quality experiments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | SEMESTER 1 & 2 (Year Modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EYHYD4A | <u>Hydrometallurgy</u><br>Revision of background process thermodynamics; leaching rates;<br>winning and recovery processes - ion exchange, solvent extraction,<br>cementation, electrowinning; applications in extraction of copper, gold,<br>platinum group metals, titanium, lead, zinc and uranium (primary<br>minerals, occurrences, leaching chemistry, flowsheet, existing plants);<br>quantitative analyses.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EYPYR4A | <b>Pyrometallurgy</b><br>Electric arc steel making. Conventional and continuous casting of steel.<br>Monolithic refractory materials. Manufacturing techniques and<br>properties expected from plastic-, castable- and all relevant monolithic<br>refractories. Mass balances, thermodynamics and basic electro refining<br>calculations over typical plants. The pyrometallurgy of vanadium,<br>titanium and platinum.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EYPME4A | <b>Physical Metallurgy</b><br>Production Metallurgy and applications of cast irons, non-ferrous alloys<br>(Al,Ti,Mg,Cu,Ni). The physical metallurgy of light alloys (e.g. Al, Ti, Mg<br>alloys), superalloys (Ni and PGMs), smart alloys (NiTi alloys), hard<br>materials (WC-Co, hard steels), Ceramic materials (structural, electrical,<br>energy storage) and their processing technology. Advanced physical<br>metallurgy of low alloy C steels and stainless steels.                                                                                                                                                                                                                                                                                                                                                                               |
| EYMIP4A | Mineral Processing<br>Principles of mineral processing plant design. Material balances on<br>complex flow diagrams. Mathematical models and their applications in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|         | mineral processing. Principles, theory and practice of industrial process<br>control in mineral processing plants. Mineral processing plant<br>commissioning practice. Principles and practice of cost estimating.                                     |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EYMAM4A | Manufacturing Metallurgy<br>Manufacturing Processes. Additive manufacturing (e.g 3-D printing).<br>Computer Integrated Manufacturing and Automation (e.g. in welding<br>processes). Nanomanufacturing. Sustainable Manufacturing. Case<br>studies.     |
| EYPRO2A | Metallurgical Research Methods and Project<br>Introduction to research methodology in Metallurgical Engineering.<br>Laboratory safety. Generation of empirical data. Reporting of data.<br>Interpretation of data. Report writing. Oral presentations. |

| Syllabi:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POSTGRADUATE DIPLOMA: METALLURGICAL ENGINEERING |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (Course code: PG0850)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Module Code                                     | PHYSICAL METALLURGY OPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                 | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                 | Process Thermodynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EYPTH2A                                         | Reaction spontaneities $\Delta G$ and equilibrium constant k. Phase equilibrium. Binary- and multiple solutions. Electrochemical cells. Activation energy. Solubility. Order of reactions. Reaction kinetics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                 | Corrosion Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EYMKR5A                                         | Corrosion Principles. Corrosion Electrochemistry. Thermodynamics and<br>Kinetics of Corrosion Processes. Corrosion Processes (Atmospheric,<br>Crevice and Pitting, EAC, Galvanic, Corrosion in water systems,<br>Concrete Corrosion and High temperature Oxidation). Corrosion<br>Control (Inhibitors, Protective Coatings, Materials Selection, CP and<br>Anodic Protection). Corrosion Management, Modelling, Life Prediction,<br>Computer Applications and Monitoring. Corrosion Failure Analysis.<br>Corrosion Monitoring and Measurement techniques.                                                                                                                           |
|                                                 | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ЕҮНМТ5А                                         | Heat and Mass Transfer<br>Distinguish between the mechanisms of heat transfer modes, derive<br>suitable heat loss equations for different situations. Determine<br>temperature distributions, heat losses, analyse heat flow resistances<br>and discuss heat source systems. Compare flow patterns between<br>objects at different angles, explain advantages of insulation layers and<br>calculate the thickness. Interpret mechanisms of radiation, types of<br>bodies, emissivity and apply these principles in solving typical<br>problems. Apply Heissler charts as a method to determine energy losses<br>and temperature distributions in different objects and at different |

|         | depths. Discuss the kinetics of diffusion and calculate reaction mass<br>flow rates, and evaporation processes. Compare flow types of liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | and gases and calculate volumetric flow rates. Illustrate different types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | of heat exchangers, calculate flow rates and temperature exchange. SEMESTER 1 & 2 (Year Modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | Advanced Modelling and Simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EYMAS5A | Introduction to discrete event simulation - Applications, advantages,<br>and limitations. Simulation project methodology, event calendar and<br>implications. Advanced statistic distributions, familiarisation with Arena<br>and Simio. Making decisions with simulation. Buffer zone modelling.<br>Introduction to advanced modelling techniques. Modelling material<br>handling devices. Conveyor modelling. Continuous systems:<br>classification of systems, system's abstraction and modelling, types of<br>systems and examples, system variables, input-output system<br>description, system response and analysis of system behaviour. System<br>simulation (computer-aided: Simio software), real-world system<br>examples. Discrete systems: difference equations, numerical<br>simulation of continuous-time dynamics, discrete-event systems, and<br>real-world system examples. |
| EYPRO5A | <b>Physical Metallurgy Research Project</b><br>The theory of characterization tools. Research Methodology in Science<br>and Engineering. The use of research tools and databases (literature<br>search databases, zetero, origin, published articles, presentation of<br>scientific data, presentation skills, conferences, networking in science<br>and engineering, publishing etc.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ΕΥΡΜΕ5Α | <b>Physical Metallurgy</b><br>Thermodynamics and kinetics of Solidification. Diffusional transformation in solids. Diffusionless transformation in solids. Heat treatment process. Coarsening of particles. Discontinuous phase transformations. Thermomechanical treatment of metals and alloys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EYMAM5A | Manufacturing Metallurgy<br>Science and selection of Engineering Materials and Alloys. Basic<br>Metallurgical Manufacturing Processes: Casting, Forming, Powder<br>Processing, Machining, welding. Advanced Materials Manufacturing:<br>Metal-Matrix Composites, Ceramic Matrix Composites and Polymer-<br>Based composites, Additive manufacturing, Functionally graded<br>Materials. Introduction to Materials Modelling and process simulation.<br>Computer Automated Design, Manufacturing and Automation.<br>Manufacturing Costs.                                                                                                                                                                                                                                                                                                                                                        |
| EYMAE5A | Materials Engineering<br>Introduction to Materials science and Engineering. Structure-Property<br>relationships of Materials and Materials design. An introduction to<br>Properties and Applications of Materials: (Ceramics, Polymers,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Composites and non-ferrous alloys). Specialty Materials Applications:<br>Functional Materials/Compositionally graded Materials (e.g. electronic,<br>magnetic, superconducting, high temperature alloys, biomaterials, |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| thermoelectric, smart materials). Manufacturing Methods (Casting &<br>Powder Metallurgy). Additive Manufacturing. Materials Selection and<br>Economics. Introduction to Computational Material Science: Modelling     |
| and Simulation.                                                                                                                                                                                                       |

| Syllabi:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| POSTGRADUATE DIPLOMA: METALLURGICAL ENGINEERING |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| (Course code: PG0850)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Module Code                                     | EXTRACTIVE METALLURGY OPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                 | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| EYPTH2A                                         | Process Thermodynamics<br>Reaction spontaneities ΔG and equilibrium constant k. Phase<br>equilibrium. Binary- and multiple solutions. Electrochemical cells.<br>Activation energy. Solubility. Order of reactions. Reaction kinetics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| EYMKR5A                                         | <u>Corrosion Engineering</u><br>Corrosion Principles. Corrosion Electrochemistry. Thermodynamics and<br>Kinetics of Corrosion Processes. Corrosion Processes (Atmospheric,<br>Crevice and Pitting, EAC, Galvanic, Corrosion in water systems,<br>Concrete Corrosion and High temperature Oxidation). Corrosion<br>Control (Inhibitors, Protective Coatings, Materials Selection, CP and<br>Anodic Protection). Corrosion Management, Modelling, Life Prediction,<br>Computer Applications and Monitoring. Corrosion Failure Analysis.<br>Corrosion Monitoring and Measurement techniques.                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                 | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| EYHMT5A                                         | Heat and Mass Transfer<br>Distinguish between the mechanisms of heat transfer modes, derive<br>suitable heat loss equations for different situations. Determine<br>temperature distributions, heat losses, analyse heat flow resistances<br>and discuss heat source systems. Compare flow patterns between<br>objects at different angles, explain advantages of insulation layers and<br>calculate the thickness. Interpret mechanisms of radiation, types of<br>bodies, emissivity and apply these principles in solving typical<br>problems. Apply Heissler charts as a method to determine energy losses<br>and temperature distributions in different objects and at different<br>depths. Discuss the kinetics of diffusion and calculate reaction mass<br>flow rates, and evaporation processes. Compare flow types of liquids<br>and gases and calculate volumetric flow rates. Illustrate different types<br>of heat exchangers, calculate flow rates and temperature exchange. |  |
| SEMESTER 1 & 2 (Year Modules)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| SEMESTER 1 & 2 (Year Modules)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

| EYMAS5A | Advanced Modelling and Simulation<br>Introduction to discrete event simulation - Applications, advantages,<br>and limitations. Simulation project methodology, event calendar and<br>implications. Advanced statistic distributions, familiarisation with Arena<br>and Simio. Making decisions with simulation. Buffer zone modelling                                                                                                                                                                                                                                       |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Introduction to advanced modelling techniques. Modelling material handling devices. Conveyor modelling. Continuous systems: classification of systems, system's abstraction and modelling, types of systems and examples, system variables, input-output system description, system response and analysis of system behaviour. System simulation (computer-aided: Simio software), real-world system examples. Discrete systems: difference equations, numerical simulation of continuous-time dynamics, discrete-event systems, and real-world system examples.            |
| EYPRO5A | <b>Extractive Metallurgy Research Project</b><br>The theory of characterization tools. Research Methodology in Science<br>and Engineering. The use of research tools and databases (literature<br>search databases, zotero, origin, published articles, presentation of<br>scientific data, presentation skills, conferences, networking in science<br>and engineering, publishing etc.). Laboratory-based empirical research<br>project.                                                                                                                                   |
| EYMIP5A | Mineral Processing<br>Introduction to mineral processing principles and terminology. Ore<br>characteristics and mineral separation methods. Application of mineral<br>separation methods in the concentration of coal, precious metals (Au<br>and PGM's) and base metals (Cu, N, Zn, Pb). Material balance on<br>complex mineral processing flow diagrams. Equipment selection and<br>sizing. Principles of mineral processing plant design. Principles of<br>mineral processing plant cost estimation. Application of mathematical<br>models for mineral processing units. |
| EYHYD5A | <b>Hydrometallurgy</b><br>Hydrometallurgy processes and plants design: review of<br>hydrometallurgy basics; hydrometallurgical plants; general plant design<br>considerations; process design; flowsheets development; drawing;<br>plant design economics; secondary resources processing; South African<br>core commodities; Case studies of recent trends in application to<br>specific commodities; laboratory work.                                                                                                                                                     |
| EYPYR5A | <b>Pyrometallurgy</b><br>Define thermodynamic laws; Discuss and determine spontaneity of processes; Discuss influence of various parameters on processes in steel industry; Calculate flame temperatures and blast air volumes in blast furnaces; Calculate mass stoichiometric mass balances in blast furnaces; Calculate tap temperatures, tap times, compositions etc in                                                                                                                                                                                                 |

| steel production processes, continuous casting processes, electric arc      |
|-----------------------------------------------------------------------------|
| furnaces and degassing processes; Define different slag theories and        |
| compare and discuss the role of slag; Discuss principles of solid-, liquid- |
| and gas reactions and calculate parameters; Derive mathematical             |
| models for smelting and metal-slag systems; Calculate reaction rates        |
| for pyro systems.                                                           |

# 11.3 CIVIL ENGINEERING

| Syllabi:<br>DIPLOMA: CIVIL ENGINEERING (3 year programme)<br>(Course code: DI0810) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module<br>Code                                                                     | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                    | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| НКСОХ1А                                                                            | Applied Communication Skills 1.1<br>Communication theory: what is meant by communication;<br>elements common to all forms of communication; Reading for<br>academic purpose: what it means to read a written text<br>purposefully; Writing process and referencing: writing requires<br>knowledge of grammar, punctuation, spelling, style, structure and<br>audience; Listening process: why people fail to listen; the different<br>types of listening; aspects of intercultural listening, Creative<br>thinking, critical thinking and disability communication: critical<br>thinking.                                                                                                                          |
| EEESK1A                                                                            | Engineering Skills 1<br>The Engineering Profession: Different types of engineering.<br>Mechanical, electrical, civil, chemical, computer etc. The<br>engineering team; artisans, technicians, technologists and<br>engineers. Engineering Teamwork: Engineering design.<br>Teamwork versus group work. Basic principles of; engineering<br>project management (plan, organise, lead and control), project<br>costing, budgeting and resource management. What is a business<br>plan? Engineering and the Environment: social responsibility,<br>environmental impact, natural resources, sustainability of the<br>engineering: professional ethics, responsibility, engineering<br>norms, ECSA and their function. |
| AAECH1A                                                                            | Engineering Chemistry 1<br>Matter and measurement; Atoms; Molecules and ions; Formulas,<br>Equations and moles; Chemical reactions in aqueous solution;<br>Periodicity and atomic structure; Ionic bonds; Covalent bonds and<br>molecular structure; Chemical equilibrium; Acids and bases;<br>Organic chemistry.                                                                                                                                                                                                                                                                                                                                                                                                  |
| ASICT1A                                                                            | ICT Skills 1<br>Recognizing Computers; Using current versions of Microsoft<br>Windows Professional; Common Elements; Microsoft Word;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|         | Microsoft Excel; Microsoft PowerPoint; Microsoft Outlook,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | getting connected and using the Internet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AMMAT1A | Mathematics 1<br>Binomial expansion, radian measure and limits of functions:<br>Binomial theorem, Radian measure. Applications of radian<br>measure. Differentiation techniques: Limits of functions,<br>Differentiation from first principles, Derivatives of polynomials &<br>product rule, The quotient and chain rules, Derivatives of trig<br>functions, Derivatives of exponential & log functions, Higher order<br>derivatives, Implicit differentiation, Logarithmic differentiation,<br>Applications. Integration techniques: Integration (Indefinite<br>integrals), Definite integrals, Area enclosed by two curves,<br>Simpson's rule. Vectors: Rep & magnitude of vectors. Resolving<br>vectors, Unit vectors and direction vectors, Scalar multiplication,<br>addition and sub, Dot product, the angle between two vectors and<br>work done, Determinant of a 2 x 2 matrix. Cross product and the<br>moment of a vector. Complex numbers: Rep. of complex numbers<br>and operations, Equality of complex numbers, Argand diagram,<br>polar form & De Moivre's, Calculating roots. |
| APHYS1A | Physics 1<br>Units of measurement, Waves and sound, Principles of Linear<br>Superposition and Interference, Electromagnetic waves,<br>Interference and Wave nature of light, Reflection of Light: Mirrors,<br>Refraction of Light, Lenses and optical instruments, Vectors and<br>scalars, Kinematics in one dimension, Forces and Newton's Law of<br>Motion, Work and Energy, Impulse and Momentum, Electric<br>Forces and Electric Fields, Electric Potential and Potential Energy,<br>Electric circuits, Fluids, Temperature and heat, Transfer of heat,<br>Nuclear Physics and Radioactivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EESIN1A | Social Intelligence 1<br>Leadership styles: Democratic, Autocratic, Consensus etc.<br>Economic systems of governance: Capitalism, Socialism and<br>Communism. Etiquette in society and the workplace. Soft skills,<br>Cultural influences. Success in Engineering: Professionalism,<br>Ethics, Responsibility, Discipline, Time management, Acquiring<br>information and Independent learning.<br>SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | Applied Communication Skills 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| НКСОҮ1А | Applied Communication Skills 1.2<br>Social Intelligence: Characteristics of Social Intelligence;<br>Paragraphing: The structure of a paragraph, Elements of a<br>Paragraph, Report writing: Different types of reports, Purpose of<br>a report, Perception: What does perception involve? Facts vs<br>Opinions: Facts, opinions. Subjectivity and Objectivity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|         | Introduction, Subjectivity, objectivity. Denotations and<br>Connotations: Denotation, connotation. Bias: Age Bias, Belief<br>system or Religious Bias, Disability, Visual Literacy: Different types<br>of visual literacy. Graphics: Tables, Bar Graphs, Histogram, Pie<br>Chart, Line Graph, Pictogram, and Flow Chart. Advertisements:<br>Examples of Figurative language.                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECAME1A | <u>Applied Mechanics 1</u><br>Measurement, Statics, mechanics, basics of structural<br>engineering, mass, vectors, forces, properties of sections, friction.<br>Laboratory work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ECCOA2A | <b>Computing Applications 2</b><br>Navigating EECOA2A on VUTela, Laboratory rules & guidelines.<br>SIMetrix Software: Working principles, Interfaces, creating<br>electronic circuits, simulation, graphs, measurements. Microsoft<br>Word 2016: Working principles, creating engineering documents,<br>navigating word, using operations. Microsoft Excel 2016: Working<br>principles, creating engineering spreadsheets, navigating excel to<br>solve engineering problems, using operations for engineering<br>applications.                                                                                                                                                                                                                                           |
| AAECH2A | Engineering Chemistry 2<br>Introduction to chemical bonding; Ionic bonds; Covalent bonding<br>and molecular structure; Hydrogen; The Group IA and IIA metals;<br>Boron and Aluminium; Chemical reactions in aqueous solutions;<br>Carbon, Silicon, Germanium, Tin, and Lead; Acids, bases, and non-<br>aqueous solvents; Nitrogen Phosphorus, Arsenic; Oxygen,<br>Sulphur, Selenium, and Tellurium; Halogens.                                                                                                                                                                                                                                                                                                                                                             |
| ECEDR1A | Engineering Drawing 1<br>Basic Drawing Principles; Design Components; Identify and use<br>drawing equipment; Draw common objects using standardized<br>rules; Represent given data on graph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AMMAT2A | Mathematics 2<br>Differentiation: Inverse trig functions, Hyperbolic functions,<br>Inverse hyperbolic functions, Parametric equations, Maxima and<br>minima, Partial differentiation, Small changes, Rate of change.<br>Integration: Revision of integration, Use of formulae sheet,<br>Inverse functions, Partial fractions, Partial fractions, Integration<br>by parts, Trig. & hyperbolic substitutions, t-formulae, Mean and<br>RMS values. Differential Equations: Differential eq., separation,<br>Using the integrating factor, Applications, Homogeneous<br>differential equations. Matrix Algebra: Operations with matrices,<br>Inverse of a matrix, solve equations using inverse, Cramer's rule,<br>Eigenvalues and –vectors. Probability and Statistics: Data |

| [       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | representation, Data summaries, Normal distribution, Conf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | intervals, error est. Conf. intervals, error est. Hypothesis testing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| АРНҮР2А | <b>Physics 2 Practical</b><br>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors<br>in series and in parallel, RC Circuits. Magnetic Fields, Force on a<br>moving charge, Particle motion in a magnetic field, Mass<br>spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,<br>Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,<br>Transformers. Alternating Current Circuits, Capacitive Reactance,<br>Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,<br>Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,<br>The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of<br>gas, Diffusion. Thermodynamics, Thermodynamic Systems, Zeroth<br>Law, First law of thermodynamics, Thermal processes, Specific<br>heat capacities, Second Law of Thermodynamics, Heat engines,<br>Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X<br>Rays, Lasers. Radiation, Ionising radiation, Nuclear Energy and<br>Elementary Particles, Biological Effects of Ionizing Radiation,<br>Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors,<br>Nuclear Fusion. Kinematics in two dimensions, Displacement<br>velocity and acceleration, Equations, Projectile motion. Uniform<br>Circular Motion, Acceleration, Centripetal force, Rotational<br>Kinematics, Rotational Dynamics. Simple Harmonic motion and<br>Elasticity. |
| ΑΡΗΥΤ2Α | <b>Physics 2 Theory</b><br>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors<br>in series and in parallel, RC Circuits. Magnetic Fields, Force on a<br>moving charge, Particle motion in a magnetic field, Mass<br>spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,<br>Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,<br>Transformers. Alternating Current Circuits, Capacitive Reactance,<br>Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,<br>Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,<br>The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of<br>gas, Diffusion. Thermodynamics, Thermodynamic Systems, Zeroth<br>Law, First law of thermodynamics, Thermal processes, Specific<br>heat capacities, Second Law of Thermodynamics, Heat engines,<br>Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X<br>Rays, Lasers. Radiation, Ionising Radiation, Nuclear Energy and                                                                                                                                                                                                                                                                                                                                                                                                                        |

| ECSPA1A | Elementary Particles, Biological Effects of Ionizing Radiation,<br>Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors,<br>Nuclear Fusion. Kinematics in two dimensions, Displacement<br>velocity and acceleration, Equations, Projectile motion. Uniform<br>Circular Motion, Acceleration, Centripetal force, Rotational<br>Kinematics, Rotational Dynamics. Simple Harmonic motion and<br>Elasticity.<br><b>Safety Principles and Law 1</b><br>Importance of health and safety: What is safety and health<br>concepts as indicated in the OHS Act, Fundamental safety<br>concepts and terms: Fundamental safety terms, legal<br>appointments as per the OHS Act, duties of the legal appointees<br>as per the OHS Act, safety awareness and fire training, What is<br>hazards and risk in the workplace: What is a hazard, what is a risk,<br>what is the difference between a hazard and a risk, identification<br>of main six hazards in the workplace, occupational hazards,<br>difference between an accident and an incident: general<br>principles of control and risk reduction, safe systems of work,<br>permit-to-work systems, emergency procedures and first-aid,<br>Principles of hazard and risk control: What is a risk assessment, Risk<br>assessment and risk management, Tools and Machinery: Tool and<br>machine hazards, Principles of safeguarding powered and driven<br>machines, point of operation safeguards, controls for hand toll<br>hazards, portable power tool controls, Electrical safety: What do I<br>need to know about electricity, what kind of injuries result from<br>electrical current, electrical shock hazards, arc flash, control of |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | electrical current, electrical shock hazards, arc flash, control of electrical hazards, electrical safety-related work practices, Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | and vibration: Sound and noise, hearing, hazards of noise, exposure standard for noise, engineering controls for noise, noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | measurement, vibrations of the human body or parts of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | human body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | SEMESTER 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | Applied Communication Skills 2.1<br>Introduction to Group Dynamics: Show understanding of different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | group characteristics, Communication Theory: Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | Model, Communication Barriers, Communication styles in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HKCOX2A | workplace, PowerPoint Presentations: Planning and preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | of a presentation (Audience, Language, Knowledge of topics, Level<br>of education, Social variables, Values, Needs and Size of Audience,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | Non-verbal and Intercultural Communication: Introduction to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Non-verbal Communication, Logic and Reasoning: Conceptualise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | vital terminology uses in argumentative writing, construct a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| <b></b> | logically cound and well reasoned argument write and present                                                                                                  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | logically sound and well- reasoned argument, write and present<br>logical arguments, Meetings and Interviews: Introduction of<br>meetings, Types of meetings. |
|         | Construction Methods 1                                                                                                                                        |
|         | Construction plant; Safety; Construction methods: Foundations,                                                                                                |
| ECCOS1A | structures; Major civil engineering structures: Roads, bridges,                                                                                               |
|         | tunnels, dams; Drainage; Infrastructures: Harbours, airport,                                                                                                  |
|         | railways; Labour-Enhanced Construction (LEC).                                                                                                                 |
|         | Construction Materials 1                                                                                                                                      |
| ECCOM1A | Over view of construction materials; Aggregates; Concrete,                                                                                                    |
|         | Structural steel, Plastics, Clay products, Timber; Laboratory work.                                                                                           |
|         | Engineering Drawing 2                                                                                                                                         |
|         | Elements of engineering design presentation: Buildings; plans,                                                                                                |
| ECEDR2A | elevations, sections. Roads; layout plan, longitudinal sections, cross                                                                                        |
| -       | sections. Hydraulic structures; pipelines, water reticulation, sewer                                                                                          |
|         | lines and treatment plants.                                                                                                                                   |
|         | Engineering Geology 1                                                                                                                                         |
|         | Earth: surface, structure and age; Mineralogy; Petrology;                                                                                                     |
| EYEGE1A | Structural geology; Surface processes; Stratigraphy; Ore deposits;                                                                                            |
|         | Industrial minerals; Practical work.                                                                                                                          |
|         | Engineering Surveying 1                                                                                                                                       |
| ECESU1A | Basic principles; Coordinates (Traversing); Levelling;                                                                                                        |
|         | Tacheometry; Areas and volumes; Map projections; Practical.                                                                                                   |
|         | Soil Mechanics 1                                                                                                                                              |
| ECSME1A | Engineering soils; Soil composition; Soil classification; Classification                                                                                      |
|         | system for soils; Compactions; Laboratory work.                                                                                                               |
|         | Theory of Structures 2                                                                                                                                        |
|         | Sectional properties; Stresses and strain: Direct stress-strain;                                                                                              |
| ECST2A  | Theory of elastic bending; Torsional stress, Stress due to impact                                                                                             |
| 20012/1 | loading; Simply supported beams and cantilevers with point loads;                                                                                             |
|         | Uniformly distributed and uniformly varying loads; Analysis of                                                                                                |
|         | statically determinate pin-jointed frames; Laboratory work.                                                                                                   |
|         | SEMESTER 4                                                                                                                                                    |
|         | Applied Communication Skills 2.2                                                                                                                              |
|         | Interpersonal Skills in the Workplace: Group Dynamics, Conflict                                                                                               |
|         | Resolution, Persuasion, Negotiation, Mediation, the Business                                                                                                  |
| НКСОҮ2А | Plan: Introduction to the business plan, Marketing your new                                                                                                   |
|         | business; Intellectual Property; How to obtain funding for your                                                                                               |
|         | small business; The Business Pitch, Disability Etiquette: Definition                                                                                          |
|         | of disability and disablism, Different depictions of disability,                                                                                              |
|         | Words to describe different disabilities, Disability in South Africa,                                                                                         |
|         | Models of disability; Disability Etiquette, Job advertisement,                                                                                                |
|         | Curriculum Vitae and Cover letter: Analysing job advertisements;                                                                                              |

| ГТ      | aligning vous skills with isk advertisements. Designing a                                                                    |
|---------|------------------------------------------------------------------------------------------------------------------------------|
|         | aligning your skills with job advertisements; Designing a professional curriculum vitae; Online job applications, Drafting a |
|         | cover letter, Written Messages: E-mail etiquette; Writing Styles;                                                            |
|         | Memoranda, Business Letters; The News Article.                                                                               |
|         | Civil Engineering Management 1                                                                                               |
|         | Overview of civil engineering works; Contracts; Tendering; Office                                                            |
| ECCEM1A | and site administration; Work study; Quality control and                                                                     |
|         |                                                                                                                              |
|         | assurance.                                                                                                                   |
|         | Construction Materials 2                                                                                                     |
| ECCOM2A | Overview of highway construction materials: Bitumen, Lime,                                                                   |
|         | Binders and Asphalt, Quality control of construction materials;                                                              |
|         | Laboratory work.                                                                                                             |
|         | Elements of Structural Steel and Timber Design 2                                                                             |
|         | Reinforced concrete: Limit state theory, Design of structural                                                                |
| ECEOS2A | elements (Standard connections, Rectangular beams, T-beams                                                                   |
|         | and L-beams, slabs, staircases, flat slabs, Columns, foundations);                                                           |
|         | Unreinforced masonry: Design basis; Laboratory work.                                                                         |
|         | Engineering Surveying 2                                                                                                      |
| ECESU2A | Leveling; Traversing; Tacheometry; Setting out of Civil structures;                                                          |
|         | Triangulation, Geographic information system; Practical work.                                                                |
|         | Structural Analysis 3                                                                                                        |
| ECSAN3A | Shear stress; Momentary area theorems; Influence lines for                                                                   |
|         | statically determinant beams and frames; Struts; Combined                                                                    |
|         | stresses; Laboratory work.                                                                                                   |
|         | Transportation Engineering 1                                                                                                 |
| ECTEN1A | Transport planning; Transport engineering; Geometric design;                                                                 |
|         | Railway design.                                                                                                              |
|         | Water Engineering 1                                                                                                          |
| ECWEN1A | Hydrology: Hydrological cycle, Meteorology, Infiltration, Runoff,                                                            |
|         | Ground water, Stormwater; Water and wastewater treatment:                                                                    |
|         | Water treatment, Sewerage and wastewater treatment.                                                                          |
|         | SEMESTER 5                                                                                                                   |
|         | Civil Engineering Management 2                                                                                               |
| ECCEM2A | Project management; Contract planning; Planning techniques;                                                                  |
|         | Financial planning techniques; Labour law; Pricing and cost                                                                  |
|         | planning; Basic computer software application.                                                                               |
|         | Documentation 1                                                                                                              |
| ECDOC1A | Quantities of civil works; specifications; Types of contracts;                                                               |
| LEDOCIA | Conditions of contract; Compilation of tender documents; Law of                                                              |
|         | contracts.                                                                                                                   |
|         | Elements of Reinforced Concrete Masonry Design 3                                                                             |
| ECEOR3A |                                                                                                                              |
| ECEOR3A | Reinforced concrete: Design Basis, Limit –State Theory, Design of                                                            |

|         | Rectangular beams, T-beams and L-beams, Slabs, Staircases, Flat      |
|---------|----------------------------------------------------------------------|
|         | slabs (introduction only), Columns, Cantilever type retaining walls, |
|         | Foundations; Unreinforced Masonry: Design Basis, Introduction        |
|         | to the design of a simple wall column using empirical rules;         |
|         | Laboratory work and computer applications.                           |
|         | Fluid Mechanics 2 (Civil)                                            |
| ECFMC2A | Fluid properties; Fluid statics; Fluid flow; Flow in pipes; Flow     |
|         | measurement; Open channel flow; Introduction to pumps.               |
|         | Soil Mechanics 2                                                     |
|         | Water in soils; Measurement of shear strength: shear strength of     |
| ECSME2A | soil, soil pressure on retaining walls, Stability of slopes, Bearing |
|         | capacities of foundations, Deep foundations, Consolidation           |
|         | settlement; Site investigation.                                      |
|         | Structural Analysis 4                                                |
|         | Slope deflection; Clapeyron's three moment theorem; Bending          |
| ECSAN4A | moment distribution; Plastic collapse mechanisms; Strain energy      |
|         | (Virtual work); Laboratory work and computer applications.           |
|         | Transportation Engineering 2                                         |
|         | Earthworks design; Pavement materials, Asphalt and Bitumen,          |
| ECTEN2A |                                                                      |
|         | pavement materials; Pavement design and management;                  |
|         | Surfacing; Drainage.                                                 |
|         | SEMESTER 6                                                           |
|         | Workplace Based Learning 1                                           |
|         | Giving the students work based learning experience in as many        |
|         | aspects related to Civil Engineering as possible. This would imply   |
| ECEXL1A | exposure to most of the topics listed below. The minimum             |
|         | requirement is that a student must acquire an acceptable level of    |
|         | proficiency in at least four (4) of the following major seven (7)    |
|         | categories: Administration; Drawing; Surveying; Design;              |
|         | Contracts; Construction supervision; Materials testing.              |
|         |                                                                      |

| Syllabi:<br>DIPLOMA: CIVIL ENGINEERING (Extended 4 year programme)<br>(Course code: DE0811) |                                                               |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| Module                                                                                      | Module Description                                            |  |  |
| Code                                                                                        |                                                               |  |  |
|                                                                                             | SEMESTER 1                                                    |  |  |
|                                                                                             | Foundation Chemistry 1                                        |  |  |
| AAXCH1A                                                                                     | Atoms, molecules & ions; Stoichiometry; Reactions in aqueous  |  |  |
| ААЛСПІА                                                                                     | solution; Rate and extent of reactions; Chemical equilibrium; |  |  |
|                                                                                             | Acids, bases and salts; Electrochemistry.                     |  |  |
| AMXMA1A                                                                                     | Foundation Mathematics 1                                      |  |  |

|             | Intro to Algebra, Expressions & equations, Linear & simultaneous  |
|-------------|-------------------------------------------------------------------|
|             | equations, Polynomial equations, Matrix algebra, Hyperbolic       |
|             | functions.                                                        |
|             | Foundation Physics 1                                              |
| ΑΡΧΡΗ1Α     | Mechanics: Force and Newton's laws; Momentum and impulse;         |
| АРАРПІА     | Vertical projectile motion in one dimension; Work, energy &       |
|             | power; Doppler effect.                                            |
|             | SEMESTER 2                                                        |
| AAXCH2A     | Foundation Chemistry 2                                            |
| AAXCHZA     | Organic molecules; The chemical industry.                         |
|             | Foundation Mathematics 2                                          |
| ΑΜΧΜΑ2Α     | Polynomial equations, Partial fractions, Trigonometry (radian     |
| AIVIAIVIAZA | measure), Binomial series, Functions, Intro to differentiation,   |
|             | Intro to integration.                                             |
|             | Foundation Physics 2                                              |
| АРХРН2А     | Electrostatics; Electric circuits; Electrodynamics; Optical       |
| AFAFRZA     | phenomena; Properties of materials; Emission and absorption       |
|             | spectra.                                                          |
|             | Foundation Drawing 1                                              |
|             | Letter and number notation; Line notation; Handling of apparatus; |
| EMXDR1A     | Measurement notation; Geometrical construction; Orthographic      |
|             | projections; Arcs of penetration and developments; Detailed       |
|             | works drawing; Composite drawings.                                |

| Syllabi:<br>ADVANCED DIPLOMA: CIVIL ENGINEERING<br>(Course code: AD0810) |                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Module<br>Code                                                           | Module Description                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                          | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                       |  |
| ECMAT4A                                                                  | Civil Engineering Materials<br>Concrete technology; Asphalt technology; Bitumen technology;<br>Steel technology; Timber technology.                                                                                                                                                                                                                                                              |  |
| ECHTE4A                                                                  | Highway and Traffic Engineering<br>Traffic surveys; Traffic characteristics and flow theory; Traffic<br>design; Traffic management and urban works; Traffic safety;<br>Statistical methods; Parking studies; Systems and structures; TSM;<br>TDM traffic impact studies; Traffic control and forms of signing;<br>Signals and ATC systems; Interchange and intersection capacity<br>and Project. |  |
|                                                                          | Structural Analysis                                                                                                                                                                                                                                                                                                                                                                              |  |

| ECSTR4A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECJIK4A | Virtual work; Arches- 3-pinned, 2-pinned and fixed: Rectangular;<br>Portals; Segmental and Parabolic; Influence lines: Frames; Arches<br>and Portals; Space frames; Suspension bridges; Cables and<br>Stiffening girders; Computer applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ECWWE4A | Water and Wastewater Engineering<br>Water and Wastewater Properties; Treatment Processes;<br>Treatment Plant Design; Water Recycling and Reuse; Recovery<br>and Conservation; Environmental Aspects; Plant- Operation and<br>Management.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ECENS4A | Environmental Studies<br>To understand the planning and design of a civil engineering<br>project in order to identify potential fatal flaws such as<br>unavailability of technical and scientific information; To<br>demonstrate the knowledge on understanding the Interested and<br>Affected parties (I&APs) of a proposed civil engineering<br>development, during the scoping phase of the EIA; To be able to<br>identify the environmental specialists (geologist, botanist,<br>economist, etc.) needed for a particular civil engineering project<br>or development; To be able to integrate the findings of the<br>environmental specialist with other available information and<br>synthesized into an Environmental Impact Report (EIR); To be able<br>to understand the Authority review and decision making process.<br><u>Civil Engineering Research Methodology</u><br>Introduction to Research and the Research Process; Research |
| ECREM4A | Ethics and Integrity; Introduction to Quantitative Research, Study<br>Designs and Methods; Analysis and Interpretation of Quantitative<br>Data; Introduction to Qualitative Research; Study Designs and<br>Methods; Analysis and Interpretation of Qualitative Data;<br>Literature survey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ECEDE4A | Earthworks Design<br>Materials selection; Design and construction of embankments;<br>Design and construction of cuttings; Environmental impact<br>control; Problem soils: Collapsible soils and expansive soils;<br>Compaction equipment and techniques; Other soil improvement<br>techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | Steel and Reinforced Concrete Design<br>To design structural steel connections in accordance with SABS<br>0162-1; To design thin, cold-formed steel structural elements to<br>SANS 10162-2; To design a complete heavy industrial building that<br>incorporates crane gantry girders and composite steel-concrete<br>elements with reference to relevant design codes; To analyse to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 5000044  |                                                                                                                                   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|
| ECSRD4A  | reinforced concrete elements and structures to determine forces,<br>reactions, stresses and bending moments; To design reinforced |
|          | concrete slabs (flat, waffle, ribbed and hollow), corbels, deep                                                                   |
|          | beams and shear walls; To design silos and water retaining                                                                        |
|          | structures; To utilise computer software packages (PROKON and                                                                     |
|          | AUTOCAD) for analysis, design and detailing of a design project.                                                                  |
|          | Railway Engineering                                                                                                               |
|          | Introduction to railways; Functions of railway track components                                                                   |
|          | (Signalling, Switches and Crossings; Rail Joints and Welding);                                                                    |
| ECRWE4A  | Components of Track Structure; Manual and Mechanised                                                                              |
|          | Maintenance; Geometric Design of Railways; Railway Safety and                                                                     |
|          | Derailment Investigation.                                                                                                         |
|          | Reticulation Design                                                                                                               |
|          | Hydraulic principles; Design parameters; Ancillary works;                                                                         |
| ECRED4A  | Pumping installations; System operation; Water management;                                                                        |
|          | Waste management; Environmental aspects and design project.                                                                       |
|          | Business Development in the Civil Engineering Environment                                                                         |
|          | Structure of the South African Economy; Business opportunities in                                                                 |
|          | the build environment; SMME and enterprise development; Role                                                                      |
|          | of government and programmes in business development;                                                                             |
|          | Government and private sector budgeting and funding processes;                                                                    |
| ECBDC4A  | BBBEE requirements; PPP; business (organisation) models,                                                                          |
|          | Ownership, shareholding, etc., Legal requirements, registration;                                                                  |
|          | Company taxes; Financial statements and interpretation; Project                                                                   |
|          | and company funding methods; Planning and control; Project and                                                                    |
|          | company viability / feasibility; Company risks; Insurance.                                                                        |
|          | Management Tools and Techniques                                                                                                   |
|          | Management Tools and Techniques For: Project Integration                                                                          |
|          | Management, Project Scope Management, Project Time                                                                                |
| ECMTT4A  | Management, Project Cost Management, Project Quality                                                                              |
|          | Management, Project Human Resource Management, Project                                                                            |
|          | Communication Management, Project Risk Management, Project                                                                        |
|          | Procurement Management and Project Stakeholder                                                                                    |
| <u> </u> | Management.                                                                                                                       |
|          | Civil Engineering Research Project                                                                                                |
| ECREP4A  | Data collection according to prescribed specifications; Validation                                                                |
| ECKEP4A  | of results, discussion and conclusions; and Dissemination of research findings by means of a research report and presentation.    |
|          | research munities by means of a research report and presentation.                                                                 |

## Syllabi: POSTGRADUATE DIPLOMA: CIVIL ENGINEERING

| (Course code: PG0810) |                                                                                                                                     |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Module                | Module Description                                                                                                                  |
| Code                  |                                                                                                                                     |
|                       | SEMESTER 1                                                                                                                          |
|                       | Environmental Engineering                                                                                                           |
|                       | Water Resources management; Climate Change; Environmental                                                                           |
| ECEEN5A               | Engineering Problems, their Causes and sustainability; Engineered                                                                   |
|                       | Environmental systems; Renewable and Non-Renewable Energy;                                                                          |
|                       | Green Engineering.                                                                                                                  |
|                       | Geotechnical Engineering<br>Soil mechanics relating to foundations; Types of foundations and                                        |
|                       | their applications; Shallow foundations; Mat foundations; Pile                                                                      |
|                       | foundations; Drilled-piers and caisson foundations; Foundations                                                                     |
| ECGTE5A               | on problem soils; Lateral earth support; Kinematics and Strain;                                                                     |
|                       | Stress in soils; Governing Equations of Continua; Infinitesimal                                                                     |
|                       | Elasticity Constitutive Theory; Poro-elastic Theory; Introduction to                                                                |
|                       | Finite Element Methods; Strong form, weak form of governing                                                                         |
|                       | equations; element formulations; Iso-parametric Elements and                                                                        |
|                       | Gauss Integration;                                                                                                                  |
|                       | Project and Construction Management                                                                                                 |
|                       | Project management theory and requirements. The project and                                                                         |
|                       | construction stages; Types of contracts, contract documentation                                                                     |
|                       | and conditions of contract; Procurement processes and                                                                               |
|                       | requirements; government development and social objectives                                                                          |
| ECPMC5A               | (requirements); Estimating and tendering; Site inspection, site<br>overheads; pre-constructing planning – site layout and           |
|                       | overheads; pre-constructing planning – site layout and organization, construction programme, etc.; Plan and keeping                 |
|                       | within time and budget, managing delays, disputes and on-site                                                                       |
|                       | problems; Manage quality control, complying with health and                                                                         |
|                       | safety; communication with stakeholders; managing material and                                                                      |
|                       | equipment; payments and claims; handover and closing out.                                                                           |
|                       | Research Project in Civil Engineering (Module 1)                                                                                    |
|                       | The concept and philosophy of research; Research topic; Identify                                                                    |
| ECRPX5A               | and define a project title; Objectives, Research problem and                                                                        |
|                       | problem statement, Hypothesis statement and Research                                                                                |
|                       | proposal; Data bases; Categories of journals; Impact factor; Hirsch                                                                 |
|                       | Index; Proposal writing (detailed analysis); Relevance of research                                                                  |
|                       | to society; Time management; Effective technical communication;                                                                     |
|                       | Research proposal for project funding; Plagiarism.                                                                                  |
|                       | SEMESTER 2                                                                                                                          |
|                       | Structural Engineering                                                                                                              |
| ECSTE5A               | Analysis of plates and simple shells; Introduction to structural dynamic; Plastic analysis of beams and frames; Yield line analysis |
| ECSTESA               | uynamic, Plasuc analysis of Deams and Irames; field line analysis                                                                   |

|         | of slabs; Properties of fresh (rheology) and hardened (mechanical |
|---------|-------------------------------------------------------------------|
|         | and durability) concrete; Sustainable concrete (concrete and      |
|         | environment); laboratory practicals; Investigational project.     |
|         | Transportation Engineering                                        |
| ECTEN5A | Transport models; Travel demand analysis and Transport policy;    |
|         | Traffic Design; Geometric Design & Safety and Pavement Design     |
|         | & Maintenance.                                                    |
|         | Water Engineering                                                 |
|         | Hydrodynamic principles to solve complex problems on static and   |
|         | moving fluids; Operating principles of hydraulic machinery in the |
|         | design of pumping stations, structures for surge protection and   |
| ECWEN5A | hydropower plants; Complex problems on varied flow in channels;   |
|         | Hydraulic structures design such as culverts, stilling basins and |
|         | drop structures; Groundwater and surface water resources for      |
|         | resources planning; Water demand through reservoir design and     |
|         | operation; Integrated water resources management.                 |
|         | Research Project in Civil Engineering (Module 2)                  |
| ECRPY5A | Experimental design, Thesis writing, Data interpretation and      |
|         | analysis: Data capture and validation; Copyright and plagiarism;  |
|         | Fundamentals of research project management; Presentation.        |

## **11.4 ELECTRICAL ENGINEERING: ELECTRONIC**

| Syllabi:<br>DIPLOMA IN ELECTRICAL ENGINEERING: ELECTRONIC<br>(3 year programme) (Course code: DI0823) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module<br>Code                                                                                        | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                       | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| НКСОХ1А                                                                                               | Applied Communication Skills 1.1<br>Communication theory: what is meant by communication;<br>elements common to all forms of communication; Reading for<br>academic purpose: what it means to read a written text<br>purposefully; Writing process and referencing: writing requires<br>knowledge of grammar, punctuation, spelling, style, structure and<br>audience; Listening process: why people fail to listen; the different<br>types of listening; aspects of intercultural listening, Creative<br>thinking, critical thinking and disability communication: critical<br>thinking.                                                                                                                                                                                                     |
| EEESK1A                                                                                               | <b>Engineering Skills 1</b><br>The Engineering Profession: Different types of engineering.<br>Mechanical, electrical, civil, chemical, computer etc. The<br>engineering team; artisans, technicians, technologists and<br>engineers. Engineering Teamwork: Engineering design.<br>Teamwork versus group work. Basic principles of; engineering<br>project management (plan, organise, lead and control), project<br>costing, budgeting and resource management. What is a business<br>plan? Engineering and the Environment: social responsibility,<br>environmental impact, natural resources, sustainability of the<br>engineering activity. Legal and safety considerations. Ethics in<br>Engineering: professional ethics, responsibility, engineering<br>norms, ECSA and their function. |
| EPEEN1A                                                                                               | <b>Electrical Engineering 1</b><br>Electrical Principles: The electron theory, Heat, Magnetism,<br>Friction, Pressure, Light, Chemical Action, Batteries, International<br>system of measurement. Basic Electrical Concepts: The electrical<br>circuit, Electrical current flow, Electrical current, Electromotive<br>force and voltage, Definitions of electric, magnetic and other SI<br>units, Resistance, Resistors. Network Theorems in Direct Current<br>Circuits: Kirchhoff's laws, Superposition theorem, Thevenin<br>theorem, Norton's Theorem, Star-Delta and delta conversion,                                                                                                                                                                                                     |

|         | Delta-Star conversion, Star-delta conversion. Electro Magnetism:<br>The magnetic field, Electromagnetic Force on a current-carrying<br>conductor, Electromagnetic induction, Lenz's law, Faraday's law.<br>Inductance in Direct Current Circuits: Inductive circuits,<br>Inductance, Current growth in an inductive circuit, Current decay<br>in an inductive circuit, Energy stored in an inductor, Types of<br>inductors. Capacitance in Direct Current Circuits: Capacitors,<br>Capacitance, Series capacitor circuit, Parallel capacitor circuits.<br>Parallel Magnetic Cores: Parallel magnetic circuits, electrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -       | analogy, series and parallel in magnetic circuits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ASICT1A | ICT Skills 1<br>Recognizing Computers; Using current versions of Microsoft<br>Windows Professional; Common Elements; Microsoft Word;<br>Microsoft Excel; Microsoft PowerPoint; Microsoft Outlook,<br>getting connected and using the Internet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AMMAT1A | Mathematics 1<br>Binomial expansion, radian measure and limits of functions:<br>Binomial theorem, Radian measure. Applications of radian<br>measure. Differentiation techniques: Limits of functions,<br>Differentiation from first principles, Derivatives of polynomials &<br>product rule, The quotient and chain rules, Derivatives of trig<br>functions, Derivatives of exponential & log functions, Higher order<br>derivatives, Implicit differentiation, Logarithmic differentiation,<br>Applications. Integration techniques: Integration (Indefinite<br>integrals), Definite integrals, Area enclosed by two curves,<br>Simpson's rule. Vectors: Rep & magnitude of vectors. Resolving<br>vectors, Unit vectors and direction vectors, Scalar multiplication,<br>addition and sub, Dot product, the angle between two vectors and<br>work done, Determinant of a 2 x 2 matrix. Cross product and the<br>moment of a vector. Complex numbers: Rep. of complex numbers<br>and operations, Equality of complex numbers, Argand diagram,<br>polar form & De Moivre's, Calculating roots. |
| ΑΡΗΥS1Α | <b>Physics 1</b><br>Units of measurement, Waves and sound, Principles of Linear<br>Superposition and Interference, Electromagnetic waves,<br>Interference and Wave nature of light, Reflection of Light: Mirrors,<br>Refraction of Light, Lenses and optical instruments, Vectors and<br>scalars, Kinematics in one dimension, Forces and Newton's Law of<br>Motion, Work and Energy, Impulse and Momentum, Electric<br>Forces and Electric Fields, Electric Potential and Potential Energy,<br>Electric circuits, Fluids, Temperature and heat, Transfer of heat,<br>Nuclear Physics and Radioactivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | Social Intelligence 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| AAECH1A | Leadership styles: Democratic, Autocratic, Consensus etc.<br>Economic systems of governance: Capitalism, Socialism and<br>Communism. Etiquette in society and the workplace. Soft skills,<br>Cultural influences. Success in Engineering: Professionalism,<br>Ethics, Responsibility, Discipline, Time management, Acquiring<br>information and independent learning.<br>Engineering Chemistry 1<br>Matter and measurement; Atoms; Molecules and ions; Formulas,<br>Equations and moles; Chemical reactions in aqueous solution;<br>Periodicity and atomic structure; Ionic bonds; Covalent bonds and<br>molecular structure; Chemical equilibrium; Acids and bases;<br>Organic chemistry.                                                     |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| НКСОУ1А | Applied Communication Skills 1.2<br>Social Intelligence: Characteristics of Social Intelligence;<br>Paragraphing: The structure of a paragraph, Elements of a<br>Paragraph, Report writing: Different types of reports, Purpose of<br>a report, Perception: What does perception involve? Facts vs<br>Opinions: Facts, opinions. Subjectivity and Objectivity:<br>Introduction, Subjectivity, objectivity. Denotations and<br>Connotations: Denotation, connotation. Bias: Age Bias, Belief<br>system or Religious Bias, Disability, Visual Literacy: Different types<br>of visual literacy. Graphics: Tables, Bar Graphs, Histogram, Pie<br>Chart, Line Graph, Pictogram, and Flow Chart. Advertisements:<br>Examples of Figurative language. |
| EECOA2A | <u>Computing Applications 2</u><br>Navigating EECOA2A on VUTela, Laboratory rules & guidelines.<br>SIMetrix Software: Working principles, Interfaces, creating<br>electronic circuits, simulation, graphs, measurements. Microsoft<br>Word 2016: Working principles, creating engineering documents,<br>navigating word, using operations. Microsoft Excel 2016: Working<br>principles, creating engineering spreadsheets, navigating excel to<br>solve engineering problems, using operations for engineering<br>applications.                                                                                                                                                                                                                |
| EIDSY1A | <b>Digital Systems 1</b><br>Digital and Analogue Quantities: Binary Digits, Logic Levels, Digital<br>Waveforms Basic Logic Functions. Number Systems, Operations<br>and Codes: Decimal Numbers, Binary Numbers, Decimal-to-Binary<br>Conversion, Binary Arithmetic, Compliments of Binary Numbers,<br>Signed Numbers, Arithmetic Operations with Signed Numbers,<br>Hexadecimal Numbers, Octal Numbers, Binary Coded Decimal<br>(BCD), Digital Codes, Error Codes. Logic Gates: The inverter, The<br>AND gate, The OR gate, The NAND gate, The NOR gate and the                                                                                                                                                                                |

|         | Exclusive-OR and Exclusive-NOR gate, Fixed-Function Logic Gates.<br>Boolean Algebra and Logic Simplifications: Boolean Operations<br>and Expressions, Laws and Rules of Boolean Algebra, DeMorgan's<br>Theorems, Boolean Analysis of Logic Circuits, Logic Simplifications<br>using Boolean Algebra, Standard Forms of Boolean Expressions,<br>Boolean Expressions and Truth Tables, The Karnaugh Map,<br>Karnaugh Map SOP Minimization, Karnaugh Map POS<br>Minimization. Combinational Logic Analysis: Basic Combinational<br>Logic Circuits, Implementing Combinational Logic, The Universal<br>Property of NAND and NOR gates, Combinational Logic using<br>NAND and NOR gates, Pulse Waveform Operation. Functions of<br>Combinational Logic: Half and Full Adders, Parallel Binary Adders,<br>Ripple Carry and Look-Ahead Carry Adders, Comparators,<br>Decoders, Encoders, Code Converters, Multiplexers (Data<br>Selectors), De-multiplexers, Parity Generators/Checkers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPEEN2A | <b>Electrical Engineering 2</b><br>Single Phase AC Circuits: Series Impedance Circuits, AC Voltage Diver, Components of current, Admittance, Parallel impedance circuits, Current divider. Power and Power Factor Correction: Active (Real) power, Power in a resistive ac circuit, Power in an active ac circuit, Power in a capacitive ac circuit, Peak and average power, the complex power triangle, Complex power, Reactive power, Power factor, Disadvantage of a low power factor, causes of low power, Power factor correction, Equipment used for power factor improvement, Importance of power factor improvement, Calculations on power factor improvement. Network Theorems in AC Circuits: Kirchhoff's laws, Superposition theorem, Thevenin theorem, Norton's Theorem, Star-Delta and delta conversion, Delta-Star conversion, Star-delta conversion, Maximum power transfer theorem. Resonance: Effect of varying frequency in series ac circuits, Frequency effect on the circuit impedance, Current at resonance, Resonance rise in voltage, Energy transfer between the inductor and capacitor, Resonant frequency in series ac circuits, Tuning for resonance, Q-factor of a series resonant circuit, Practical parallel resonant circuit, Complex Waves and Harmonics: Integration of waveforms, Production of harmonics, Effect of reactance in complex circuits, Composition of complex waves, Power and power factor of non-sinusoidal waves, Resonance as a result of non-sinusoidal waves, Addition and subtraction of non-sinusoidal waveforms. |
| AMMAT2A | Mathematics 2<br>Differentiation: Inverse trig functions, Hyperbolic functions,<br>Inverse hyperbolic functions, Parametric equations, Maxima and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|         | minima, Partial differentiation, Small changes, Rate of change.<br>Integration: Revision of integration, Use of formulae sheet,<br>Inverse functions, Partial fractions, Partial fractions, Integration<br>by parts, Trig. & hyperbolic substitutions, t-formulae, Mean and<br>RMS values. Differential Equations: Differential eq., separation,<br>Using the integrating factor, Applications, Homogeneous<br>differential equations. Matrix Algebra: Operations with matrices,<br>Inverse of a matrix, solve equations using inverse, Cramer's rule,<br>Eigenvalues and –vectors. Probability and Statistics: Data<br>representation, Data summaries, Normal distribution, Conf.<br>intervals, error est. Conf. intervals, error est. Hypothesis testing.                                                                                                                                                                                                                                       |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEELE1A | <b>Electronics 1</b><br>Introduction to Electronics: The Atom, Materials Used in Electronics, Current in Semiconductors, N-Type and P-Type Semiconductors, the PN Junction. Diodes and Applications: Diode Operation, Voltage-Current (V-I) Characteristics of a diode, Diode Models, Half-Wave Rectifiers, Full-Wave Rectifiers, Power Supply Filters and Regulators, Diode Limiters and Clampers, Voltage Multipliers, The Diode Datasheet, Troubleshooting. Special-Purpose Diodes: The Zener Diode, Zener Diode Applications, The Varactor Diode, Optical Diodes, Other Types of Diodes, Troubleshooting. Bipolar Junction Transistors: BJT Structure, Basic BJT Operation, BJT Characteristics and Parameters, The BJT as a Amplifier, The BJT as a Switch, The Phototransistor, Transistor Categories and Packaging, Troubleshooting. Transistor Bias Circuits: The DC Operating Point, Voltage-Divider Bias, Other Bias Methods, Troubleshooting.                                          |
| EEWPR1A | Project 1 (WIL - Electronics)<br>Rules and safety principles that apply in laboratories, including<br>relevance and adherence to the OHS act. General theory on<br>soldering including wetting, flux, solder chemistry, soldering iron<br>types and usage and soldering technique. Preparing, drilling, de-<br>burring and cleaning of pre-set solder course PCB. Insert and<br>solder components too specification. Use of high-speed drilling<br>machines, pliers, cutters, strippers, de-soldering equipment to<br>produce quality workmanship on own project. Design and plan<br>circuit layout for neatness, efficiency and reliable use. Build,<br>test, and resolve problems for this project before presentation.<br>Use laser toner transfer method to reproduce CAD designed<br>image onto PCB copper. Etch using Ferric Chloride and clean<br>surface features. Drill holes. Bend and place components before<br>soldering. Test and calibrate circuit including resolution of faults. |

|         | Install electrical board into product enclosure with heatsink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | attached and finalise for use and presentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EESPA1A | Safety Principles and Law 1<br>Importance of health and safety: What is safety and health<br>concepts as indicated in the OHS Act, Fundamental safety<br>concepts and terms: Fundamental safety terms, legal<br>appointments as per the OHS Act, duties of the legal appointees<br>as per the OHS Act, safety awareness and fire training, What is<br>hazards and risk in the workplace: What is a hazard, what is a risk,<br>what is the difference between a hazard and a risk, identification<br>of main six hazards in the workplace, occupational hazards,<br>difference between an accident and an incident: general<br>principles of control and risk reduction, safe systems of work,<br>permit-to-work systems, emergency procedures and first-aid,<br>Principles of hazard and risk control: What is a risk assessment, Risk<br>assessment and risk management, Tools and Machinery: Tool and<br>machine hazards, Principles of safeguarding powered and driven<br>machines, point of operation safeguards, controls for hand toll<br>hazards, portable power tool controls, Electrical safety: What do I<br>need to know about electricity, what kind of injuries result from<br>electrical current, electrical shock hazards, arc flash, control of<br>electrical hazards, electrical safety-related work practices, Noise<br>and vibration: Sound and noise, hearing, hazards of noise,<br>exposure standard for noise, engineering controls for noise, noise<br>measurement, vibrations of the human body or parts of the<br>human body. |
| EIPRI1A | <b>Process Instrumentation 1</b><br>Introduction: Measurement Standards, Functional elements of<br>Instruments, Static characteristics of instruments, Instrument<br>errors, Industrial instrumentation schematics. Pressure<br>Measurement: Introduction and definitions, Pressure in a Liquid,<br>Pressure measurement with manometers, measuring pressure<br>with elastic structures, measuring pressure with force balance<br>gauges, Measuring pressure with DP-cell, Strain gauges. Flow<br>Measurement: Introduction, Derivation of the flow equation,<br>Differential pressure method of measuring flow, Other flow<br>meters. Level Measurement: Direct methods, indirect methods.<br>Temperature Measurement: Introduction, Expansion and<br>pressure thermometers, Resistance thermometers,<br>Thermocouple thermometers, Thermistor thermometers. Process<br>Control: Introduction, Control schemas, PID controllers,<br>Pneumatic control valves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| АРНҮР2А | <b>Physics 2 Practical</b><br>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors<br>in series and in parallel, RC Circuits. Magnetic Fields, Force on a<br>moving charge, Particle motion in a magnetic field, Mass<br>spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,<br>Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,<br>Transformers. Alternating Current Circuits, Capacitive Reactance,<br>Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,<br>Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,<br>The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of<br>gas, Diffusion. Thermodynamics, Thermodynamic Systems, Zeroth<br>Law, First law of thermodynamics, Thermal processes, Specific<br>heat capacities, Second Law of Thermodynamics, Heat engines,<br>Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X<br>Rays, Lasers. Radiation, Ionising radiation, Nuclear Energy and<br>Elementary Particles, Biological Effects of Ionizing Radiation,<br>Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors,<br>Nuclear Fusion. Kinematics in two dimensions, Displacement<br>velocity and acceleration, Equations, Projectile motion. Uniform<br>Circular Motion, Acceleration, Centripetal force, Rotational<br>Kinematics, Rotational Dynamics. Simple Harmonic motion and<br>Elasticity. |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| АРНҮТ2А | Physics 2 Theory<br>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors<br>in series and in parallel, RC Circuits. Magnetic Fields, Force on a<br>moving charge, Particle motion in a magnetic field, Mass<br>spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,<br>Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,<br>Transformers. Alternating Current Circuits, Capacitive Reactance,<br>Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,<br>Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,<br>The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of<br>gas, Diffusion. Thermodynamics, Thermodynamic Systems, Zeroth<br>Law, First law of thermodynamics, Thermal processes, Specific<br>heat capacities, Second Law of Thermodynamics, Heat engines,<br>Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X<br>Rays, Lasers. Radiation, Ionising Radiation, Nuclear Energy and<br>Elementary Particles, Biological Effects of Ionizing Radiation,<br>Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors,                                                                                                                                                                                                                                                                                           |

|         | Nuclear Fusion. Kinematics in two dimensions, Displacement<br>velocity and acceleration, Equations, Projectile motion. Uniform<br>Circular Motion, Acceleration, Centripetal force, Rotational<br>Kinematics, Rotational Dynamics. Simple Harmonic motion and<br>Elasticity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | SEMESTER 3 Applied Communication Skills 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| НКСОХ2А | Introduction to Group Dynamics: Show understanding of different<br>group characteristics, Communication Theory: Communication<br>Model, Communication Barriers, Communication styles in<br>workplace, PowerPoint Presentations: Planning and preparation<br>of a presentation (Audience, Language, Knowledge of topics, Level<br>of education, Social variables, Values, Needs and Size of Audience,<br>Non-verbal and Intercultural Communication: Introduction to<br>Non-verbal Communication, Logic and Reasoning: Conceptualise<br>vital terminology uses in argumentative writing, construct a<br>logically sound and well- reasoned argument, write and present<br>logical arguments, Meetings and Interviews: Introduction of<br>meetings, Types of meetings.                                                                                                                                                                                                                                                                                                                               |
| EIDSY2A | <b>Digital Systems 2</b><br>Latches Flip-Flops and Timers: Latches, Flip-Flops, Flip-Flop<br>Operating Characteristics, Flip-Flop Applications, One-Shots, the<br>a-stable multi-vibrator. Shift Registers: Shift Register Operation,<br>Types of Shift Register, Bidirectional Shift Registers, Shift Register<br>Counters, Shift Register Applications. Counters: Finite State<br>Machines, Asynchronous Counter Operation, Synchronous<br>Counter Operation, Up/Down Synchronous Counters, Design of<br>Synchronous Counters, Cascaded Counters, Counter Decoding,<br>Counter Applications. Data Storage: Semiconductor Memory<br>Basics, The Random-Access Memory (RAM), Read-Only Memory<br>(ROM), Programmable Rom, The Flash Memory, Memory<br>Expansion, Special Types of Memories, Magnetic and Optical<br>Storage, Memory Hierarchy, Cloud Storage. Signal Conversion and<br>Processing: Analogue-to-Digital Conversion, Methods of<br>analogue-to-Digital Conversion, Methods of Digital -to- analogue<br>Conversion, Digital Signal Processing, The Digital Signal Processor<br>(DSP). |
| EEELE2A | Electronics 2<br>BJT Amplifiers: Amplifier Operation, Transistor Models, the<br>Common-Emitter Amplifier, the Common-Collector Amplifier, the<br>Common-Base Amplifier, Multistage Amplifiers, the Differential<br>Amplifier. Power Amplifiers: The Class A Power Amplifier, The<br>Class B and Class AB Push-Pull Amplifiers, The Class C Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|         | Amplifier. Field Effect Transistors: The JFET, JFET Characteristics<br>and Parameters, JFET Biasing, The Ohmic Region, The MOSFET,<br>MOSFET Characteristics and Parameters, MOSFET Biasing, The<br>IGBT. FET Amplifiers and Switching Circuits: The Common-Source<br>Amplifier, The Common-Drain Amplifier, The Common-Gate<br>Amplifier, The Comson-Drain Amplifier, MOSFET Analog<br>Switching, MOSFET Digital Switching. Amplifier Frequency<br>Response: Basic Concepts, The Decibel, Low-Frequency Amplifier<br>Response, High-Frequency Amplifier Response, Total Amplifier<br>Frequency Response. Thyristors: The Four-Layer Diode, The<br>Silicon-Controlled Rectifier (SCR), SCR, Applications, The Diac and<br>Triac , The Silicon-Controlled Switch (SCS), Programmable Uni-<br>junction Transistor (PUT).                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Project 2 (WIL - Electronic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EEWPR2A | Introduction to microcontrollers (uC) in general and their<br>pervasive use in industry and commercial environments.<br>Introduction to uC Assembler, the C programming language and<br>the high-level Flowcode programming language. Revisit of binary<br>principles and number systems. Introduction to the Arduino<br>development board. Programming interface. Pin layout. On-<br>board peripherals. Possible usage scenarios using examples from<br>hobbyists, experimenters and professional applications.<br>Introduction to using flowcharts principle to define the logic for<br>instructing a controller to execute sequenced instructions.<br>Definition of logical blocks, inputs, outputs, decisions, macros,<br>loops, variables, interrupts and their use in the Flowcode 8<br>environment. Indicate direct linkage of Flowcode 8 blocks to C-<br>code. Schematic connection diagrams generated using 'Fritzing'<br>(freeware Arduino application). Multiple projects to program<br>simulate and execute on hardware given with time constraint.<br>Marks awarded for Program Structure, Simulation, Connection<br>Diagrams and Hardware Functioning after program download<br>(this covers all aspects of semesters learning and application<br>thereof). |
| EECAD1A | Electrical CAD 1<br>Introduction to Computer-Aided Design (CAD) concepts, EAGLE<br>origins and current environment, project structure, file locations,<br>creation of industry standard schematic diagrams, PCB creation,<br>component placement and routing. The use custom libraries,<br>output file generation for manufacture. Fusion 360. Creating new<br>project linked and 3D parts for each EAGLE component used. The<br>upload "push" of these updates to Fusion. Using Fusion to<br>visualize the PCB layout as well as other parts of design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|         | Mathematics 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMMAT3A | Mathematics 3<br>Application of Integration: Volumes of solids of revolution, Length<br>of Curves, Double Integrals: Iterated Integrals & Fubini's theorem,<br>Double Integrals, Polar Coordinates. First Order Differentiation<br>Equations: Exact DE, Homogeneous DE, Bernoulli DE, Applications<br>(Excluding Newton's Law of Cooling), D-Operator Methods.<br>Numerical Solutions of First Order Differential Equations: Euler's<br>method, Runge-Kutta order 2, Runge-Kutta order 4. Operator D<br>Methods/Undetermined coefficients: Complementary Solutions,<br>D-operator & Inverse, binomial or long division method, Theorem<br>1, Theorem 2, Theorem 3, Special cases, General solution,<br>Applications. Laplace Transform, and Table of transforms.<br>(Derivation from first principles not for examination purposes),<br>First shifting property, Laplace transforms of derivatives, Inverse<br>Laplace Transforms using tables, Laplace Transforms of<br>discontinuous functions, Inverse Laplace Transforms of<br>discontinuous functions, Solution of differential equations,<br>Application to electric circuits, Application to beams. Fourier<br>Series: Periodic functions and harmonics, sketching of graphs and<br>determining Fourier Series, Series with period 2l, Even and Odd<br>functions, Full range and Half range series, Numerical Harmonic<br>Analysis. |
| EEECO2A | Electronic Communication 2<br>Introduction to radio frequency communication; Radio frequency<br>components; Resonance; Modulation AM FM and phase; Radio<br>wave propagation; Basic antenna theory and dB's.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EIENP1A | Engineering Programming 1<br>Introduction to programming: different languages, first program,<br>integer variables, numbers and operators, characters, flow<br>control, input and output. Advanced Flow Control and Data<br>Aggregates: if and else, more types, loops, Boolean algebra,<br>vectors, initiators: simple arrays, multidimensional arrays,<br>structures and why we need them. Extending Expressive Power:<br>pointers, functions and memory. Accessing Different kinds of<br>Data: arrays of pointers, conversions, strings, and namespaces.<br>Object Programming Essentials: basic concepts, a class, static<br>components, and objects vs pointers inside objects. Inheritance:<br>class hierarchy, inheritance and type compatibility, polymorphism<br>and virtual methods, objects as parameters and dynamic casting,<br>various supplements, constant keyword. Exceptions: to errors in<br>human, throw statement, categorizing exceptions, catching<br>exceptions. Operators and Enumerated types: overloading<br>operators, enumerated types.                                                                                                                                                                                                                                                                                                                       |

|         | Management 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BHMAN1A | Organizational structure and design, Organizational change and<br>learning, Motivating for performance, The dynamics of<br>leadership, Groups and teams in organizations; Operating<br>strategies; Forecasting; Process planning and designing; Trade-off<br>analysis; Automated processes; Allocating resources with LP;<br>Decision trees; Facility location; Aggregate planning; Master<br>production schedules; Inventory systems; Material requirements<br>planning and Lot-sizing for MRP and CRP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EINET1A | <b>Networks 1</b><br>Introduction – Exploring the Network: Global Connectivity,<br>Networking Today, LANs, WANs, and the Internet, Components of<br>a Network, The Network as a data communications platform, The<br>changing Network Environment. Configuring a Network Operating<br>System: The IOS, Basic Configurations, Network Addressing<br>Schemes. Network Protocols and Communications: The Rules of<br>Communications, Protocols and Standards, How Data moves in a<br>Network. Network Access: Physical layer Protocols, Network<br>Media, Data Link Layer Protocols, Media Access Control. Ethernet:<br>Ethernet Protocol, Address Resolution Protocol, LAN Switches<br>Network Layer: Network Layer Protocols, Routing Principles, what<br>is a Router, Configuring Routers. IP Addressing: IPV4 and IPV6<br>Addressing, Connectivity, ICMP. Sub netting IP Networks: Sub<br>netting of IPV4 Networks, Addressing Schemes, Structured<br>Design, Design Considerations for IPV6. Transport Layer:<br>Transport layer Protocols, TCP and UDP Characteristics and<br>Operation. Application layer: Application layer Protocols, Well-<br>known Application Layer Protocols and Services, HTTP, DHCP,<br>DNS, SMTP etc. Build a Small Network: Network Design, Network<br>Security, Network performance, Troubleshooting. |
|         | SEMESTER 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| НКСОҮ2А | Applied Communication Skills 2.2<br>Interpersonal Skills in the Workplace: Group Dynamics, Conflict<br>Resolution, Persuasion, Negotiation, Mediation, the Business<br>Plan: Introduction to the business plan, Marketing your new<br>business; Intellectual Property; How to obtain funding for your<br>small business; The Business Pitch, Disability Etiquette: Definition<br>of disability and disablism, Different depictions of disability,<br>Words to describe different disabilities, Disability in South Africa,<br>Models of disability; Disability Etiquette, Job advertisement,<br>Curriculum Vitae and Cover letter: Analysing job advertisements;<br>aligning your skills with job advertisements; Designing a<br>professional curriculum vitae; Online job applications, Drafting a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|         | cover letter, Written Messages: E-mail etiquette; Writing Styles;                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Memoranda, Business Letters; The News Article.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | Electronics 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EEELE3A | Advanced voltage regulators; Amplification theory and applications; Oscillators; Power amplifiers; Passive filter design and Noise.                                                                                                                                                                                                                                                                                                                                                                                                        |
| EEWPR3A | Project 3 (WIL - Electronic)<br>General-purpose sensors used in commercial and industrial<br>processes (light, temperature, humidity, pressure, flow, speed,<br>distance). Storing calibration parameters and set points.<br>Storage of time-logged data sets. Real Time Clocks & Calendar<br>(Time Control) Hardware RTCC (Real Time Clock & Calendar)<br>either as on-board peripheral or external device. Software defined<br>RTCC and use. Using uC for the control of 1) DC motors 2) Servo<br>motors 3) Stepper motors 4) AC motors. |
|         | Digital Communication 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EEDCO2A | Differentiation between analogue and digital signals, spread spectrum systems, digital modulation, noise and interference, compression and error detection and communication networks and protocols.                                                                                                                                                                                                                                                                                                                                       |
| EECAD2A | Electrical CAD 2<br>Develop project using EAGLE and Fusion. Translating multiple<br>boards from EAGLE to Fusion part blocks. Stacking and linking<br>connected boards in Fusion. Connecting peripheral boards using<br>cables and connectors. Layout of individual's development<br>boards and peripherals. Fusion CAMUse CAM processing to 3D<br>print designed supports, brackets and mountings for idealized<br>design.                                                                                                                 |
| EEMET3A | Measurement Technology 3<br>Definitions Measurement; Units Standards and Concepts Data<br>analysis; Instrument selection; DC measurements; AC<br>measurement; Signal sources; Oscilloscopes; Frequency<br>measurement; Frequency domain instruments; Logic analyzers;<br>Null balanced instruments.                                                                                                                                                                                                                                        |
| EEPEL3A | <b>Power Electronics 3</b><br>Industrial Control Elements: The Elements of Logic Control,<br>switches as Input Devices, Relays as Logic Devices, Solid State<br>Logic Gates. Designing Logic Control Systems Using Relays and<br>Solid state devices: Classification Control System. Programmable<br>Logic Controllers: Introducing the PLC, Input-Output Section,<br>Input Cards, Output Cards, Input-Output Racks, Addressing<br>Method, the processor, Input Image File (IIF), Output Image File                                        |

|         | <ul> <li>(OIF), The User Program Memory, The Variable Data Memory, The Central Processing Unit (CPU). Programmable Logic Controllers</li> <li>(PLC) Instructions I: Examine-On/Off Instruction, Output-Energize instruction, Rung Definition, Decision Logic of the CPU. Programmable Logic Controllers (PLC) Instructions II: Counters, Up-Down Counters, Timers, Timer-On-Delay (TON) operation, Timer-Off-Delay (TOF) operation. Programmable Logic Controllers</li> <li>(PLC) Instructions III: Latch and Unlatch Instructions, Immediate Input and Output instructions, Immediate Input Instruction, Master Control Reset Instruction. Programmable Logic Controllers (PLC) Analog Data: Analog Data handling, Analog Input Card, Analog Input Card Operation, Analog Output Card, Analog Output Card Construction. Network Considerations: Supervisory Control and Data Acquisition (SCADA), Requirements of SCADA systems. Input Devices for Analog Data: Displacement, Pressure, Temperature, Measurements using a strain gauge, Tachometers, Moisture Content (Humidity), Light, Flow rate, Power, Shaft position measurement. Complete system design: One complete project design solution.</li> </ul> |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EICSY2A | Mathematical Foundation: Basic control system concepts, open-<br>loop and closed-loop system, Block Diagrams: Block diagram<br>terminologies, Block diagram reduction rules, Modelling: Derive<br>the differential equation of RLC circuits, Stability: Define the<br>stability criteria of control systems, Time Domain Analysis: Define<br>Test signals and their transfer functions, Derive the steady state<br>error for unity feedback system, Frequency Domain Analysis:<br>Define frequency domain analysis of linear control systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EIENP2A | Engineering Programming 2<br>The Analysis Model of a system: selection of an appropriate<br>model. Iterative System Build: Select and Prepare a use case for<br>design and/or code; Use Case Design; Perform Class Design; Code<br>and Unit Test a use case using the build tools as defined in the<br>Architecture document; Integrate and test: the use case with all<br>other use cases in the build. Principles of Database Design: The<br>Logical Data model is transformed into a physical Data Base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EIPRI2A | Process Instrumentation 2<br>High and medium vacuum measurement, Introduction, Ionization<br>gauges, Hot- filament ionization vacuum gauge, Undesirable<br>feature, Cold cathode ionization vacuum gauge Electronic<br>pressure detectors and transmitters, Introduction, Resistance<br>strain gauge, Theory, Gauge factor "S", Construction of strain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|         | gauges, Fine wire gauge cemented on a paper backing Flow            |
|---------|---------------------------------------------------------------------|
|         | measurement, Introduction, Types of flow, Streamlined flow,         |
|         | Turbulent flow, Helical-turbulent flow, Pulsating flow, Planning a  |
|         | flow installation, The flow equation, Modification of the flow      |
|         | formula level measurement, Introduction, Selection of a             |
|         | measurement system, Capacitive level measurement system,            |
|         | Operation of capacitive system, Factors which determine the di-     |
|         | electric constant, Installation requirements and practical          |
|         | consideration, temperature measure, Temperature                     |
|         | measurement: Introduction, Resistance thermometer measuring         |
|         | method, Measurement circuits, Application notes, Potentiometer      |
|         | circuits, Operating principles, programmable controllers,           |
|         | Introduction to programmable controllers, Definition of a           |
|         | programmable controllers, Components of a programmable              |
|         | controller, Power supply, Control unit, Read-only memory (ROM),     |
|         | Random access memory, Central processing unit, Internal             |
|         | operation of the control unit, Input modules, controllers and       |
|         | control elements Introduction to Practical controllers and          |
|         | elements, Control stations, Remote-set stations, Cascade stations,  |
|         | Ratio-stations, Computer-set stations, Integral saturation, Control |
|         | valves.                                                             |
|         | Digital Control Systems 1                                           |
|         | Introduction to Networks: Introduction, Analogue                    |
|         | Communication Systems, Instrumentation and Control Systems,         |
|         | Digital Communication Systems, Serial and Parallel                  |
|         | Communication, Classifying Communication. Communication             |
|         | Mediums: Optical Fibers for Data Transmission, Radio/Wireless       |
|         | Communication, and Wireless Ethernet. Communication                 |
|         | Protocols: Introduction, Packet-Switching vs Circuit-Switching,     |
|         | Data transfer path - ISO/OSI 7-layer model, Ethernet, Ethernet &    |
|         | the 7-layer ISO/OSI model, and transmission control                 |
| EIDCS1A | protocol/internet protocol (TCP/IP). Industrial Networks or Field   |
| LIDCJIA | busses: Introduction, Industrial applications, Predecessors of the  |
|         | modern Fieldbus, Digital Communication Plus 4 - 20 mA, Highway      |
|         | Addressable Remote Transmitter (HART), Operation of HART,           |
|         | Modbus for Factory Automation, Current Fieldbus Standards,          |
|         | Fieldbus. Profinet: Introduction, Redundant Profibus/Ethernet,      |
|         | and Profisafe. Foundation Fieldbus: Introduction, H1 Level,         |
|         | Foundation Fieldbus H1 Level Topology, Foundation Fieldbus          |
|         | Model, Producer/Consumer Model (Publish/Subscribe), Standard        |
|         | Function Blocks in FF Devices. Devicenet & Controlnet: History and  |
|         | development of Devicenet, Topology and Connectors,                  |
|         | Connections, Installation rules, Power Supplies, Potential Power    |

|         | Supply Problems, Bus Operation, Data Structure. Interbus & AS-I<br>Bus: Interbus Protocol Efficiency, Interbus Shift Registers, Interbus<br>System Performance, Interbus Sub-Buses, Redundancy with<br>Interbus, The Actuator-Sensor Interface (AS-I BUS), AS-I Physical<br>Layer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | SEMESTER 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EEOEL3A | <b>Opto-Electronics 3</b><br>Principals, Advantages, Disadvantages, Simple Calculations,<br>Practical Applications, Future of Optoelectronics. Reflection,<br>Refraction, Snell's Law, Numerical Aperture, Calculations,<br>Structure of Fiber, Losses, Optical Power and Calculations,<br>Dispersion, Semiconductors, Transmission Systems, Modulation ,<br>Demodulation, SNR, Mixers and Multiplexing, Single Mode Fiber,<br>Multimode Fiber, Manufacturing Processes and Techniques,<br>Plastic Optic Fiber cables, Types, Construction and Characteristics<br>of Cables, Types of Ducted Cables, Installation Possibilities, Light<br>Sources, Conversions, LEDs, Laser Diodes, Gain-guided and Index-<br>guided, Conversions, Optical Receiver, Fiber Amplifiers,<br>Connectors, Couplers, Fiber Joining, Techniques, Splicing, Local<br>and Long-Distance Networks, Telephone Networks, Data<br>Networks, Design Optic Fiber Cable System, Optical Path Loss<br>Budget, Installation Techniques, Testing Optic Fiber, Test<br>Equipment, OTDR Calculations, Markets, Development Trends,<br>Lasers and Amplifiers, Fiber Cables, Transmission Systems,<br>Industry, Military, Government, Medicine. |
| EEWPR4A | Project 4 (WIL - Electronic)<br>Peculiarities of a project management; Preparing yourself for<br>doing a project; Project Planning; Project Goals; Project<br>Schedule; Project Deliverables; Properties of a good project<br>report; Human Resource Plan; Communications Plan; Risk<br>Management Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EEMIC3A | Microwave Communication 3<br>Microwave fundamentals; Microwave transmission lines;<br>Impedance matching using the Smith chart; Microwave<br>components; Microwave generations and Microwave<br>applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EERAD3A | Radio Engineering 3<br>Angle Modulation: Introduction to Angle Modulation; Frequency<br>Modulation; Phase Modulation; The Angle Modulation Spectrum;<br>FM and Noise; FM Stereo; FM Measurements. Receivers:<br>Introduction to Receivers; Receiver Topologies; Receiver<br>Characteristics; Demodulators; Communication Receivers;<br>Transceivers; Receiver Measurements. Antennas: Introduction to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|         | Antennas; Simple Antennas; Antenna Characteristics; Other<br>Simple Antennas; Antenna Matching; Antenna Arrays; Reflectors;<br>Cellular and PCS (Personal Communication System) Antennas;<br>Antenna Test Equipment. Cellular Radio: Introduction to Cellular<br>Radio; Advanced Mobile Phones; AMPS Control Systems; Security<br>and Privacy; Cellular Phones; Cell Site Equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EETXR3A | Transmission 3 (Radio Frequency)<br>Radio Frequency Circuits: Introduction to Radio Frequency<br>Circuits; High-Frequency Effects; Tuned Radio-Frequency<br>Amplifiers; Single-Tuned Class A (Transformer Coupled with<br>Tuned Primary) Amplifiers; Single-Tuned Class A (Transformer<br>Coupled with Tuned Secondary) Amplifiers; Double-Tuned<br>Transformer-Coupled Amplifiers; Neutralization. Transmitters:<br>Introduction to Transmitters; Transmitter Requirements;<br>Transmitter Topologies; FM Transmitters; Transmitter Power<br>Measurements. Transmission Lines: Introduction to Transmission<br>Lines; Characteristic Impedance; Velocity Factor; Reflections; EM<br>Propagation on Transmission Lines; Standing Waves; Variation of<br>Impedance Along a Transmission Line; Characteristics of Open and<br>Shorted Transmission Lines; Transmission Line Losses. Satellites &<br>Radio Frequency Propagation: Electromagnetic waves; Free-<br>space propagation; Mobile / portable communication; Repeaters<br>& Cellular systems; Introduction to Satellites; Satellite Orbits;<br>Geostationary Satellites; Application of Geostationary Satellites;<br>Satellites in Low- and Medium Earth Orbits. |
| EEPEL4A | Power Electronics 4<br>AC drivers; DC drives; Inverters; Multilevel inverters; FACTS;<br>Power conversion applications and Resonant conversion<br>techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EIENP3A | Engineering Programming 3<br>A Senior Level Certified Object Orientated Programming Course<br>selected out of the mainstream Object Orientated Courses such<br>as CPS - C++ Certified Senior Programmer or The Equivalent<br>Certified Java Course or the equivalent C Programming course<br>such as CLS - C Certified Senior Programmer Certificate or an<br>appropriate level web-based development course, depending on<br>the programming demands of Software Engineering Project.<br>Sample Curriculum for CPS - C++ Certified Senior Programmer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | SEMESTER 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EEEXL1A | Experiential Learning 1<br>Safety, company procedures, tools, components.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EEEXL2A | Experiential Learning 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|         | Measurement procedures, calibration methods and procedures, installation and commissioning procedures and methods. |
|---------|--------------------------------------------------------------------------------------------------------------------|
| EEPRJ4A | Engineering Project 4<br>Industrial problem solving and documentation.                                             |

|                                                   | Syllabi:                                                         |  |
|---------------------------------------------------|------------------------------------------------------------------|--|
| DIPLOMA IN ELECTRICAL ENGINEERING: ELECTRONIC     |                                                                  |  |
| (Extended 4 year programme) (Course code: DE0863) |                                                                  |  |
| Module                                            | Module Description                                               |  |
| Code                                              |                                                                  |  |
|                                                   | SEMESTER 1                                                       |  |
|                                                   | Foundation Chemistry 1                                           |  |
| AAXCH1A                                           | Atoms, molecules & ions; Stoichiometry; Reactions in aqueous     |  |
| ААЛСНІА                                           | solution; Rate and extent of reactions; Chemical equilibrium;    |  |
|                                                   | Acids, bases and salts; Electrochemistry.                        |  |
|                                                   | Foundation Mathematics 1                                         |  |
| AMXMA1A                                           | Intro to Algebra, Expressions & equations, Linear & simultaneous |  |
|                                                   | equations, Polynomial equations, Matrix algebra, Hyperbolic      |  |
|                                                   | functions.                                                       |  |
|                                                   | Foundation Physics 1                                             |  |
| АРХРН1А                                           | Mechanics: Force and Newton's laws; Momentum and impulse;        |  |
|                                                   | Vertical projectile motion in one dimension; Work, energy &      |  |
|                                                   | power; Doppler effect.                                           |  |
|                                                   | SEMESTER 2                                                       |  |
| ААХСН2А                                           | Foundation Chemistry 2                                           |  |
|                                                   | Organic molecules; The chemical industry.                        |  |
|                                                   | Foundation Mathematics 2                                         |  |
| ΑΜΧΜΑ2Α                                           | Polynomial equations, Partial fractions, Trigonometry (radian    |  |
|                                                   | measure), Binomial series, Functions, Intro to differentiation,  |  |
|                                                   | Intro to integration.                                            |  |
|                                                   | Foundation Physics 2                                             |  |
| АРХРН2А                                           | Electrostatics; Electric circuits; Electrodynamics; Optical      |  |
|                                                   | phenomena; Properties of materials; Emission and absorption      |  |
|                                                   | spectra.                                                         |  |

| Syllabi:<br>ADVANCED DIPLOMA IN ELECTRICAL ENGINEERING:<br>ELECTRONIC ENGINEERING (Course code: AD0823) |                    |
|---------------------------------------------------------------------------------------------------------|--------------------|
| Module<br>Code                                                                                          | Module Description |

#### **SEMESTER 1**

#### Electrical Engineering Project (Electronic)

Research Methodology: Introduction to Research methodology. Research topics, Different types of research, All research concepts and outputs, Referencing. Project Proposal: Discussion of the project proposal. Introduction: (Background, Purpose, Problem). Problem statement, Sub problems, Hypothesis, Assumptions, Delimitations, Definition of terms, Importance of the project, Overview of the project and summary. Literature Review: Introduction to literature study, Background of the topic being researched. Relevance of literature used for the study. Evidence of researched literature to address the components of the project. Citations and referenced used with research literature with reference to the VUT referring documentation. Sub-Problem 1 chapter: Introduction relevant to identified sub problem 1, Restatement of what the sub problem 1 is that need to be solved, Restatement of the hypothesis associated with the stated sub problem 1, Theory, relevant laws, fundamentals applicable to the stated sub problem 1, Methods, methodology used as well as what resources used to solve the sub problem1, Results obtained through tests, analysis and interpretation of the obtained data, EEPRO4A Discussion of the results (explanations and evaluation of the data obtained), Testing of the hypothesis, Summary of what was discussed in the chapter. Sub-Problem 2 chapter: Introduction relevant to identified sub problem 2, Restatement of what the sub problem 2 is that need to be solved, Restatement of the hypothesis associated with the stated sub problem 2, Theory, relevant laws, fundamentals applicable to the stated sub problem 2. Methods, methodology used as well as what resources used to solve the sub problem2, Results obtained through tests, analysis and interpretation of the obtained data. Discussion of the results (explanations and evaluation of the data obtained), Testing of the hypothesis, Summary of what was discussed in the chapter. Final chapter: Summary of the identified problem statement and sub problems, Findings and deductions, Meaning and implications of the research that was conducted, Re-assessment of the original identified problems, Recommendations, Fields for further studies. Final project demonstration: Presentation of the identified problem and sub problems, technologies used and how was the final solution obtained, Final project hardware layout, Demonstration of the solution, Questions and answers (Moderator/Examiners). EIREM4A Engineering Research Methods (Electronic)

|         | Aspects of research: Introduction, importance of research,<br>elements of research, defining research, dimensions of research,<br>what research is not, nature of research and ethical requirements<br>for researchers. Types of Research: Introduction, basic and<br>applied research and research as per discipline or technical group.<br>Sources of topics for scientific research: Introduction, starting<br>point for research, sources of research topics or problems, when<br>a topic is not a research problem and determining the suitability<br>of a research problem. Demarcating of the research problem:<br>Introduction, selecting a subject for research, posing a research<br>problem as statement and steps in problem demarcation and<br>formulation. Formulating a hypothesis: Introduction, defining a<br>hypothesis, inductive and deductive hypothesis, variables and<br>examples of formulated hypothesis. Writing a research proposal:<br>Introduction, defining a research proposal, value of a research<br>proposal, types of research proposals and components of the<br>research proposal. Basic reading techniques for the literature<br>review: Introduction, what to include in a review of the relevant<br>research topic literature and the steps in doing literature review.<br>Methods for collecting data: Introduction, research instruments,<br>primary and secondary data and research methodology used to<br>manage collected data. Literature review (Chapter 2):<br>Introduction, provide evidence of a research for information and<br>referencing techniques, inclusion of recent literature, relevance of<br>collected information, how to interpret the collected information<br>and relevant information associated with each identified sub<br>problem. |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEAEL4A | <u>Electronics</u><br>Advanced biasing; Universal preamplifier; Three stage semi-<br>power amplifier signal sources and Signal processing; Power<br>amplifier; Power supply; RF coil; Differential amplifier; Dual-gate<br>MOSFET and Power MOSFET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | Radio Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EERAD4A | Theory and design of radio frequency amplifiers (all classes);<br>Radio frequency transmission and systems; Measurements;<br>Theory and design of antennas and Utilisation of CAD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| EIDSP4A | <b>Digital Signal Processing</b><br>Understand linear discrete-time systems. Sampling of analogue<br>signals. Differential equations. Convolution summation. Z-<br>Transform manipulation. Frequency response. Digital Fourier<br>transform techniques. Design active filter circuits for application<br>in digital circuits. Solve broadly defined digital signal analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|         | problems. Apply scientific engineering knowledge to solve digital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | signal processing design problems. Design signal processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | circuits for use in control systems found in industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EISPC4A | Signal Processing<br>Signal Spectra: Determine the frequency spectrum of a signal<br>using the trigonometric Fourier expansion, determine the<br>frequency spectrum of a signal, using the complex Fourier series.<br>Filter Transmission: Determine the frequency response and<br>transfer functions of networks, define the frequency response of<br>low pass filters, high pass filters, band pass filters and band reject<br>filters. Network Analysis: Determine the transfer functions of<br>passive networks, determine the transfer functions of active<br>networks. Butterworth Filters: Determine the order requirement<br>from the filter design specifications, determine the transfer<br>function from the filter design specifications, realize the designed<br>filter in hardware. Chebychev Filters: Determine the order<br>requirement from the filter design specifications, determine the<br>transfer function from the filter design specifications, realize the<br>designed filter in hardware. Project: Low Pass Butterworth Filter<br>designs: The student need to design two low pass Butterworth<br>filters. The first design is for a 4th order and the second design |
|         | must be for a 5th order filter Butterworth filter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AMAEM4A | Advanced Engineering Mathematics<br>Mathematical skills using: Applications of integration; Laplace<br>transform; First order differential equations and D-operators and<br>Two dimensional Laplace equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BHEMN4A | Engineering Management<br>Contracts, Tenders, Planning techniques, Financial planning and<br>control, Labor, Plant and materials, Scheduling, Budgets Cash flow<br>and cost control, Labor law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | Microwave Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EEAMI4A | Design of microwave amplifiers and circuits using S parameters;<br>Micro-strip design; Design of microwave antennae; Microwave<br>measurements; Industrial applications and Utilisation of CAD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EEAOE4A | <b>Opto-Electronics</b><br>History of Opto-electronics; Transmitting and receiving devices;<br>Manufacturing of cables and connectors; Opto-electronic<br>communication system and Test equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EESAT4A | Satellite Communication<br>History of satellite communication; Orbital parameters; Link<br>design; Platform and payload; Space environment and Launches<br>and deployment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| FICIAAA | Circuit Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | First order circuits: Determine the zero input response of first<br>order circuits, determine the zero state response of first order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | circuits, find the total response of first order circuits in terms of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | the natural response and the steady state response. Second order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | circuit and determine its step response.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | Digital Control Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | Sampled Data Systems: Describe the basic elements of a digital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | control system and the fundamental process of sampling a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | continuous signal, express the input output relationship of digital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | systems in terms of difference equations, define the impulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | function and step function, determine the z transform of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | important time functions and use z-transform techniques to solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EIDCS4A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | by means of the root locus. Digital Controller Design: Improve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EICIA4A | <b>Digital Control Systems</b><br>Sampled Data Systems: Describe the basic elements of a digital control system and the fundamental process of sampling a continuous signal, express the input output relationship of digital systems in terms of difference equations, define the impulse function and step function, determine the z transform of important time functions and use z-transform techniques to solve difference equations. Transfer Functions: Visualize the sampling process to be composed of an ideal sampling action followed by a hold action, determine the transfer function of discrete cascaded systems and feedback systems, and obtain the transfer function of a plant preceded by a zero-order hold device. Time Domain Analysis: Analyse the transient behavior of a prototype second order continuous system, map between values in the s plane and the z plane, judge the response of discrete systems by relating the essential discrete characteristics to the properties of a similar and more familiar continuous system, view the transient response of discrete systems in terms of the position of the roots of the characteristic equation in the z plane and determine the steady state behaviour of digital control systems. Stability Analysis: Use the Jury test to judge the stability of discrete control systems and prescribe the set of conditions that will guarantee stable operation of a digital control system. Root Locus Techniques: Construct the root locus from the characteristic equation of a system and analyse transient and stability behaviour of systems |

| system response with controller design based on root locus        |
|-------------------------------------------------------------------|
| methods, determine digital forms of the PID control algorithm and |
| realize PID controllers. Project: Level Control: To complete this |
| project, students will be required to construct a circuit         |
| representing a water level control system with various            |
| parameters to simulate PID control.                               |

| Syllabi:<br>POSTGRADUATE DIPLOMA IN ELECTRICAL ENGINEERING:<br>ELECTRONIC ENGINEERING (Course code: PG0823) |                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Module                                                                                                      | Module Description                                                                                                                                                                                                                                                                                                                                                             |  |
| Code                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                |  |
| COMPULSORY MODULES                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             | Engineering Research Project<br>Project Identification, Project proposal, Literature study,<br>Conceptual design, Functional design, Implementation, Testing<br>and data analysis, Oral presentation and Documentation.<br>Research Statistics<br>This module develops the student's knowledge and skill in the<br>application of basic mathematics; Statistics in management; |  |
|                                                                                                             | Exploratory data analysis; Statistical models for forecasting and planning. How to perform basic mathematical calculations; Setting the statistical scene; Exploratory data analysis & application on Excel; Statistical models for forecasting and planning; Basic probability concepts & Probability distributions and Inferential statistics.                               |  |
|                                                                                                             | ELECTIVES                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                             | Advanced Measurement Technology<br>Intelligent metering systems, Propagation losses, Load<br>management, Data acquisition, Energy consumption patterns,<br>Global positioning system, Harmonic distortion in electrical<br>systems.                                                                                                                                            |  |
|                                                                                                             | Alternative Energy Feasibility                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                             | Energy Management<br>Safety and Legislation of Alternative Energy Installations,<br>Commissioning of Installations.                                                                                                                                                                                                                                                            |  |
|                                                                                                             | <u>Microwave Design</u><br>Design of microwave amplifiers and circuits using S parameters;<br>Micro-strip design; Design of microwave antennae; Microwave<br>measurements; Industrial applications and Utilisation of CAD.                                                                                                                                                     |  |

#### Energy Efficiency Management

Conduct an energy audit, Energy audit instrumentation, Energy codes, Energy standards and protocols, Electric and energy rate structure, Economic analysis and life cycle cost, Lighting improvement and Industrial systems.

### 11.5 ELECTRICAL ENGINEERING: POWER

| Syllabi:                                 |                                                                                                                                            |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| DIPLOMA IN ELECTRICAL ENGINEERING: POWER |                                                                                                                                            |  |
|                                          | (3 year programme) (Course code: DI0824)                                                                                                   |  |
| Module                                   | Module Description                                                                                                                         |  |
| Code                                     |                                                                                                                                            |  |
| SEMESTER 1                               |                                                                                                                                            |  |
|                                          | Applied Communication Skills 1.1                                                                                                           |  |
|                                          | Communication theory: what is meant by communication;                                                                                      |  |
|                                          | elements common to all forms of communication; Reading for                                                                                 |  |
|                                          | academic purpose: what it means to read a written text                                                                                     |  |
| HKCOX1A                                  | purposefully; Writing process and referencing: writing requires                                                                            |  |
|                                          | knowledge of grammar, punctuation, spelling, style, structure and<br>audience; Listening process: why people fail to listen; the different |  |
|                                          | types of listening; aspects of intercultural listening, Creative                                                                           |  |
|                                          | thinking, critical thinking and disability communication: critical                                                                         |  |
|                                          | thinking.                                                                                                                                  |  |
|                                          | Engineering Skills 1                                                                                                                       |  |
|                                          | The Engineering Profession: Different types of engineering.                                                                                |  |
|                                          | Mechanical, electrical, civil, chemical, computer etc. The                                                                                 |  |
|                                          | engineering team; artisans, technicians, technologists and                                                                                 |  |
|                                          | engineers. Engineering Teamwork: Engineering design.                                                                                       |  |
|                                          | Teamwork versus group work. Basic principles of; engineering                                                                               |  |
| EEESK1A                                  | project management (plan, organise, lead and control), project                                                                             |  |
|                                          | costing, budgeting and resource management. What is a business                                                                             |  |
|                                          | plan? Engineering and the Environment: social responsibility,                                                                              |  |
|                                          | environmental impact, natural resources, sustainability of the                                                                             |  |
|                                          | engineering activity. Legal and safety considerations. Ethics in                                                                           |  |
|                                          | Engineering: professional ethics, responsibility, engineering                                                                              |  |
|                                          | norms, ECSA and their function.                                                                                                            |  |
|                                          | Electrical Engineering 1                                                                                                                   |  |
| EPEEN1A                                  | Electrical Principles: The electron theory, Heat, Magnetism,<br>Friction, Pressure, Light, Chemical Action, Batteries, International       |  |
|                                          | system of measurement. Basic Electrical Concepts: The electrical                                                                           |  |
|                                          | circuit, Electrical current flow, Electrical current, Electromotive                                                                        |  |
| L                                        | circuit, Electrical current now, Electrical current, Electromotive                                                                         |  |

|         | force and voltage, Definitions of electric, magnetic and other SI<br>units, Resistance, Resistors. Network Theorems in Direct Current<br>Circuits: Kirchhoff's laws, Superposition theorem, Thevenin<br>theorem, Norton's Theorem, Star-Delta and delta conversion,<br>Delta-Star conversion, Star-delta conversion. Electro Magnetism:<br>The magnetic field, Electromagnetic Force on a current-carrying<br>conductor, Electromagnetic induction, Lenz's law, Faraday's law.<br>Inductance in Direct Current Circuits: Inductive circuits,<br>Inductance, Current growth in an inductive circuit, Current decay<br>in an inductive circuit, Energy stored in an inductor, Types of<br>inductors. Capacitance in Direct Current Circuits: Capacitors,<br>Capacitance, Series capacitor circuit, Parallel capacitor circuits.<br>Parallel Magnetic Cores: Parallel magnetic circuits, electrical<br>analogy, series and parallel in magnetic circuits.                                                                                                                        |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | ICT Skills 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ASICT1A | Recognizing Computers; Using current versions of Microsoft<br>Windows Professional; Common Elements; Microsoft Word;<br>Microsoft Excel; Microsoft PowerPoint; Microsoft Outlook,<br>getting connected and using the Internet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Mathematics 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AMMAT1A | Binomial expansion, radian measure and limits of functions:<br>Binomial theorem, Radian measure. Applications of radian<br>measure. Differentiation techniques: Limits of functions,<br>Differentiation from first principles, Derivatives of polynomials &<br>product rule, The quotient and chain rules, Derivatives of trig<br>functions, Derivatives of exponential & log functions, Higher order<br>derivatives, Implicit differentiation, Logarithmic differentiation,<br>Applications. Integration techniques: Integration (Indefinite<br>integrals), Definite integrals, Area enclosed by two curves,<br>Simpson's rule. Vectors: Rep & magnitude of vectors. Resolving<br>vectors, Unit vectors and direction vectors, Scalar multiplication,<br>addition and sub, Dot product, the angle between two vectors and<br>work done, Determinant of a 2 x 2 matrix. Cross product and the<br>moment of a vector. Complex numbers: Rep. of complex numbers<br>and operations, Equality of complex numbers, Argand diagram,<br>polar form & De Moivre's, Calculating roots. |
| APHYS1A | Physics 1<br>Units of measurement, Waves and sound, Principles of Linear<br>Superposition and Interference, Electromagnetic waves,<br>Interference and Wave nature of light, Reflection of Light: Mirrors,<br>Refraction of Light, Lenses and optical instruments, Vectors and<br>scalars, Kinematics in one dimension, Forces and Newton's Law of<br>Motion, Work and Energy, Impulse and Momentum, Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|         | Forces and Electric Fields, Electric Potential and Potential Energy,   |
|---------|------------------------------------------------------------------------|
|         | Electric circuits, Fluids, Temperature and heat, Transfer of heat,     |
|         | Nuclear Physics and Radioactivity.                                     |
|         | Social Intelligence 1                                                  |
|         | Leadership styles: Democratic, Autocratic, Consensus etc.              |
|         | Economic systems of governance: Capitalism, Socialism and              |
| EESIN1A | Communism. Etiquette in society and the workplace. Soft skills,        |
|         | Cultural influences. Success in Engineering: Professionalism,          |
|         | Ethics, Responsibility, Discipline, Time management, Acquiring         |
|         | information and Independent learning.                                  |
|         | SEMESTER 2                                                             |
|         | Applied Communication Skills 1.2                                       |
|         | Social Intelligence: Characteristics of Social Intelligence;           |
|         | Paragraphing: The structure of a paragraph, Elements of a              |
|         | Paragraph, Report writing: Different types of reports, Purpose of      |
|         | a report, Perception: What does perception involve? Facts vs           |
|         | Opinions: Facts, opinions. Subjectivity and Objectivity:               |
| HKCOY1A | Introduction, Subjectivity, objectivity. Denotations and               |
|         | Connotations: Denotation, connotation. Bias: Age Bias, Belief          |
|         | system or Religious Bias, Disability, Visual Literacy: Different types |
|         | of visual literacy. Graphics: Tables, Bar Graphs, Histogram, Pie       |
|         | Chart, Line Graph, Pictogram, and Flow Chart. Advertisements:          |
|         | Examples of Figurative language.                                       |
|         | Computing Applications 2                                               |
|         | Navigating EPCOA2A on VUTela, Laboratory rules & guidelines.           |
|         | SIMetrix Software: Working principles, Interfaces, creating            |
|         | electronic circuits, simulation, graphs, measurements. Microsoft       |
| EPCOA2A | Word 2016: Working principles, creating engineering documents,         |
|         | navigating word, using operations. Microsoft Excel 2016: Working       |
|         | principles, creating engineering spreadsheets, navigating excel to     |
|         | solve engineering problems, using operations for engineering           |
|         | applications.                                                          |
|         | Digital Systems 1                                                      |
|         | Digital and Analogue Quantities: Binary Digits, Logic Levels, Digital  |
|         | Waveforms Basic Logic Functions. Number Systems, Operations            |
|         | and Codes: Decimal Numbers, Binary Numbers, Decimal-to-Binary          |
|         | Conversion, Binary Arithmetic, Compliments of Binary Numbers,          |
| EIDSY1A | Signed Numbers, Arithmetic Operations with Signed Numbers,             |
|         | Hexadecimal Numbers, Octal Numbers, Binary Coded Decimal               |
|         | (BCD), Digital Codes, Error Codes. Logic Gates: The inverter, The      |
|         | AND gate, The OR gate, The NAND gate, The NOR gate and the             |
|         | Exclusive-OR and Exclusive-NOR gate, Fixed-Function Logic Gates.       |
|         | Boolean Algebra and Logic Simplifications: Boolean Operations          |

|         | and Expressions, Laws and Rules of Boolean Algebra, DeMorgan's                                                                    |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|
|         | Theorems, Boolean Analysis of Logic Circuits, Logic Simplifications                                                               |
|         | using Boolean Algebra, Standard Forms of Boolean Expressions,                                                                     |
|         | Boolean Expressions and Truth Tables, The Karnaugh Map,                                                                           |
|         | Karnaugh Map SOP Minimization, Karnaugh Map POS                                                                                   |
|         | Minimization. Combinational Logic Analysis: Basic Combinational Logic Circuits, Implementing Combinational Logic, The Universal   |
|         | Property of NAND and NOR gates, Combinational Logic using                                                                         |
|         | NAND and NOR gates, Pulse Waveform Operation. Functions of                                                                        |
|         | Combinational Logic: Half and Full Adders, Parallel Binary Adders,                                                                |
|         | Ripple Carry and Look-Ahead Carry Adders, Comparators,                                                                            |
|         | Decoders, Encoders, Code Converters, Multiplexers (Data                                                                           |
|         | Selectors), De-multiplexers, Parity Generators/Checkers.                                                                          |
|         | Electrical Engineering 2                                                                                                          |
|         | Single Phase AC Circuits: Series Impedance Circuits, AC Voltage                                                                   |
|         | Diver, Components of current, Admittance, Parallel impedance                                                                      |
|         | circuits, Current divider. Power and Power Factor Correction:                                                                     |
|         | Active (Real) power, Power in a resistive ac circuit, Power in an                                                                 |
|         | active ac circuit, Power in a capacitive ac circuit, Peak and average power, the complex power triangle, Complex power, Reactive  |
|         | power, Power factor, Disadvantage of a low power factor, causes                                                                   |
|         | of low power, Power factor correction, Equipment used for power                                                                   |
|         | factor improvement, Importance of power factor improvement,                                                                       |
|         | Calculations on power factor improvement. Network Theorems                                                                        |
|         | in AC Circuits: Kirchhoff's laws, Superposition theorem, Thevenin                                                                 |
| EPEEN2A | theorem, Norton's Theorem, Star-Delta and delta conversion,                                                                       |
|         | Delta-Star conversion, Star-delta conversion, Maximum power                                                                       |
|         | transfer theorem. Resonance: Effect of varying frequency in                                                                       |
|         | series ac circuits, Frequency effect on the circuit impedance,                                                                    |
|         | Current at resonance, Resonance rise in voltage, Energy transfer between the inductor and capacitor, Resonant frequency in series |
|         | ac circuits, Tuning for resonance, Q-factor of a series resonant                                                                  |
|         | circuit, Practical parallel resonant circuit. Complex Waves and                                                                   |
|         | Harmonics: Integration of waveforms, Production of harmonics,                                                                     |
|         | Effect of reactance in complex circuits, Composition of complex                                                                   |
|         | waves, Power and power factor of non-sinusoidal waves,                                                                            |
|         | Resonance as a result of non-sinusoidal waves, Addition and                                                                       |
|         | subtraction of non-sinusoidal waveforms.                                                                                          |
|         | Electronics 1                                                                                                                     |
|         | Introduction to Electronics: The Atom, Materials Used in                                                                          |
| EEELE1A | Electronics, Current in Semiconductors, N-Type and P-Type Semiconductors, the PN Junction. Diodes and Applications: Diode         |
|         | Operation, Voltage-Current (V-I) Characteristics of a diode, Diode                                                                |
|         | operation, voltage-current (v-r) characteristics of a diode, blode                                                                |

|         | Models, Half-Wave Rectifiers, Full-Wave Rectifiers, Power Supply<br>Filters and Regulators, Diode Limiters and Clampers, Voltage<br>Multipliers, The Diode Datasheet, Troubleshooting. Special-<br>Purpose Diodes: The Zener Diode, Zener Diode Applications, The<br>Varactor Diode, Optical Diodes, Other Types of Diodes,<br>Troubleshooting. Bipolar Junction Transistors: BJT Structure,<br>Basic BJT Operation, BJT Characteristics and Parameters, The BJT<br>as an Amplifier, The BJT as a Switch, The Phototransistor,<br>Transistor Categories and Packaging, Troubleshooting. Transistor<br>Bias Circuits: The DC Operating Point, Voltage-Divider Bias, Other<br>Bias Methods, Troubleshooting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMMAT2A | <b>Mathematics 2</b><br>Differentiation: Inverse trig functions, Hyperbolic functions,<br>Inverse hyperbolic functions, Parametric equations, Maxima and<br>minima, Partial differentiation, Small changes, Rate of change.<br>Integration: Revision of integration, Use of formulae sheet,<br>Inverse functions, Partial fractions, Partial fractions, Integration<br>by parts, Trig. & hyperbolic substitutions, t-formulae, Mean and<br>RMS values. Differential Equations: Differential eq., separation,<br>Using the integrating factor, Applications, Homogeneous<br>differential equations. Matrix Algebra: Operations with matrices,<br>Inverse of a matrix, solve equations using inverse, Cramer's rule,<br>Eigenvalues and –vectors. Probability and Statistics: Data<br>representation, Data summaries, Normal distribution, Conf.<br>intervals, error est. Conf. intervals, error est. Hypothesis testing.                                                                                                                                                                                                                                                            |
| EESPA1A | Safety Principles and Law 1<br>Importance of health and safety: What is safety and health<br>concepts as indicated in the OHS Act, Fundamental safety<br>concepts and terms: Fundamental safety terms, legal<br>appointments as per the OHS Act, duties of the legal appointees<br>as per the OHS Act, safety awareness and fire training, What is<br>hazards and risk in the workplace: What is a hazard, what is a risk,<br>what is the difference between a hazard and a risk, identification<br>of main six hazards in the workplace, occupational hazards,<br>difference between an accident and an incident: general<br>principles of control and risk reduction, safe systems of work,<br>permit-to-work systems, emergency procedures and first-aid,<br>Principles of hazard and risk control: What is a risk assessment,<br>why do a risk assessment, how to conduct a risk assessment, Risk<br>assessment and risk management, Tools and Machinery: Tool and<br>machine hazards, Principles of safeguarding powered and driven<br>machines, point of operation safeguards, controls for hand toll<br>hazards, portable power tool controls, Electrical safety: What do I |

| r       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | need to know about electricity, what kind of injuries result from<br>electrical current, electrical shock hazards, arc flash, control of<br>electrical hazards, electrical safety-related work practices, Noise<br>and vibration: Sound and noise, hearing, hazards of noise,<br>exposure standard for noise, engineering controls for noise, noise<br>measurement, vibrations of the human body or parts of the<br>human body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | CHOICE MODULES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EMEDR1A | Engineering Drawing 1<br>Drawing instruments; Drawing skills; Object visualization and<br>drawing; sketch and drawing of chemical engineering process<br>equipment's using computer software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| АРНҮР2А | <b>Physics 2 Practical</b><br>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors<br>in series and in parallel, RC Circuits. Magnetic Fields, Force on a<br>moving charge, Particle motion in a magnetic field, Mass<br>spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,<br>Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,<br>Transformers. Alternating Current Circuits, Capacitive Reactance,<br>Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,<br>Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,<br>The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of<br>gas, Diffusion. Thermodynamics, Thermodynamic Systems, Zeroth<br>Law, First law of thermodynamics, Thermal processes, Specific<br>heat capacities, Second Law of Thermodynamics, Heat engines,<br>Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X<br>Rays, Lasers. Radiation, Ionising radiation, Nuclear Energy and<br>Elementary Particles, Biological Effects of Ionizing Radiation,<br>Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors,<br>Nuclear Fusion. Kinematics in two dimensions, Displacement<br>velocity and acceleration, Equations, Projectile motion. Uniform<br>Circular Motion, Acceleration, Centripetal force, Rotational<br>Kinematics, Rotational Dynamics. Simple Harmonic motion and<br>Elasticity. |
| АРНҮТ2А | <b>Physics 2 Theory</b><br>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors<br>in series and in parallel, RC Circuits. Magnetic Fields, Force on a<br>moving charge, Particle motion in a magnetic field, Mass<br>spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|         | Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,<br>Transformers. Alternating Current Circuits, Capacitive Reactance,<br>Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,<br>Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,<br>The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of<br>gas, Diffusion. Thermodynamics, Thermodynamic Systems, Zeroth<br>Law, First law of thermodynamics, Thermal processes, Specific<br>heat capacities, Second Law of Thermodynamics, Heat engines,<br>Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X<br>Rays, Lasers. Radiation, Ionising Radiation, Nuclear Energy and<br>Elementary Particles, Biological Effects of Ionizing Radiation,<br>Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors,<br>Nuclear Fusion. Kinematics in two dimensions, Displacement<br>velocity and acceleration, Equations, Projectile motion. Uniform<br>Circular Motion, Acceleration, Centripetal force, Rotational<br>Kinematics, Rotational Dynamics. Simple Harmonic motion and<br>Elasticity. |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | SEMESTER 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| НКСОХ2А | Applied Communication Skills 2.1<br>Introduction to Group Dynamics: Show understanding of different<br>group characteristics, Communication Theory: Communication<br>Model, Communication Barriers, Communication styles in<br>workplace, PowerPoint Presentations: Planning and preparation<br>of a presentation (Audience, Language, Knowledge of topics, Level<br>of education, Social variables, Values, Needs and Size of Audience,<br>Non-verbal and Intercultural Communication: Introduction to<br>Non-verbal Communication, Logic and Reasoning: Conceptualise<br>vital terminology uses in argumentative writing, construct a<br>logically sound and well- reasoned argument, write and present<br>logical arguments, Meetings and Interviews: Introduction of<br>meetings, Types of meetings.                                                                                                                                                                                                                                                                                                   |
| EPEEN3A | Electrical Engineering 3<br>Advanced Three Phase circuits, Inter Connectors, Components,<br>Basics of Illumination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EPEMA2A | Electrical Machines 2<br>Direct Current Machines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPSYS2A | Power Systems 2<br>Generation of Electricity – Power Stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| АММАТЗА | Mathematics 3<br>Application of Integration: Volumes of solids of revolution, Length<br>of Curves, Double Integrals: Iterated Integrals & Fubini's theorem,<br>Double Integrals, Polar Coordinates. First Order Differentiation<br>Equations: Exact DE, Homogeneous DE, Bernoulli DE, Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|         | (Excluding Newton's Law of Cooling), D-Operator Methods.<br>Numerical Solutions of First Order Differential Equations: Euler's<br>method, Runge-Kutta order 2, Runge-Kutta order 4. Operator D<br>Methods/Undetermined coefficients: Complementary Solutions,<br>D-operator & Inverse, binomial or long division method, Theorem<br>1, Theorem 2, Theorem 3, Special cases, General solution,<br>Applications. Laplace Transforms, and Table of transforms.<br>(Derivation from first principles not for examination purposes),<br>First shifting property, Laplace transforms of derivatives, Inverse<br>Laplace Transforms using tables, Laplace Transforms of<br>discontinuous functions, Inverse Laplace Transforms of<br>discontinuous functions, Solution of differential equations,<br>Application to electric circuits, Application to beams. Fourier<br>Series: Periodic functions and harmonics, sketching of graphs and<br>determining Fourier Series, Series with period 2l, Even and Odd<br>functions, Full range and Half range series, Numerical Harmonic<br>Analysis.                                                                                  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEELE2A | Electronics 2<br>BJT Amplifiers: Amplifier Operation, Transistor Models, the<br>Common-Emitter Amplifier, the Common-Collector Amplifier, the<br>Common-Base Amplifier, Multistage Amplifiers, the Differential<br>Amplifier. Power Amplifiers: The Class A Power Amplifier, The<br>Class B and Class AB Push-Pull Amplifiers, The Class C Power<br>Amplifier. Field Effect Transistors: The JFET, JFET Characteristics<br>and Parameters, JFET Biasing, The Ohmic Region, The MOSFET,<br>MOSFET Characteristics and Parameters, MOSFET Biasing, The<br>IGBT. FET Amplifiers and Switching Circuits: The Common-Source<br>Amplifier, The Common-Drain Amplifier, The Common-Gate<br>Amplifier, The Class D Amplifier, MOSFET Analog Switching,<br>MOSFET Digital Switching. Amplifier Frequency Response: Basic<br>Concepts, The Decibel, Low-Frequency Amplifier Response, High-<br>Frequency Amplifier Response, Total Amplifier Frequency<br>Response. Thyristors: The Four-Layer Diode, The Silicon-<br>Controlled Rectifier (SCR), SCR, Applications, The Diac and Triac ,<br>The Silicon-Controlled Switch (SCS), Programmable Uni-junction<br>Transistor (PUT). |
|         | CHOICE MODULE (Choose 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EIDSY2A | <b>Digital Systems 2</b><br>Latches Flip-Flops and Timers: Latches, Flip-Flops, Flip-Flop<br>Operating Characteristics, Flip-Flop Applications, One-Shots, the<br>a-stable multi-vibrator. Shift Registers: Shift Register Operation,<br>Types of Shift Register, Bidirectional Shift Registers, Shift Register<br>Counters, Shift Register Applications. Counters: Finite State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|         | Machines, Asynchronous Counter Operation, Synchronous<br>Counter Operation, Up/Down Synchronous Counters, Design of<br>Synchronous Counters, Cascaded Counters, Counter Decoding,<br>Counter Applications. Data Storage: Semiconductor Memory<br>Basics, The Random-Access Memory (RAM), Read-Only Memory<br>(ROM), Programmable Rom, The Flash Memory, Memory<br>Expansion, Special Types of Memories, Magnetic and Optical<br>Storage, Memory Hierarchy, Cloud Storage. Signal Conversion and<br>Processing: Analogue-to-Digital Conversion, Methods of<br>analogue-to-Digital Conversion, Methods of Digital -to- analogue<br>Conversion, Digital Signal Processing, The Digital Signal Processor<br>(DSP). |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BHMAN1A | Management 1<br>Organizational structure and design, Organizational change and<br>learning, Motivating for performance, The dynamics of<br>leadership, Groups and teams in organizations; Operating<br>strategies; Forecasting; Process planning and designing; Trade-off<br>analysis; Automated processes; Allocating resources with LP;<br>Decision trees; Facility location; Aggregate planning; Master<br>production schedules; Inventory systems; Material requirements<br>planning and Lot-sizing for MRP and CRP.                                                                                                                                                                                       |
| '       | Process Instrumentation 1<br>Introduction: Measurement Standards, Functional elements of<br>Instruments, Static characteristics of instruments, Instrument<br>errors, Industrial instrumentation schematics. Pressure<br>Measurement: Introduction and definitions, Pressure in a Liquid,<br>Pressure measurement with manometers, measuring pressure                                                                                                                                                                                                                                                                                                                                                          |

EIPRI1A

|         | Linear and angular motion; Momentum and impulse; Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | energy and power and Radial acceleration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | SEMESTER 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | Applied Communication Skills 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| НКСОҮ2А | Interpersonal Skills in the Workplace: Group Dynamics, Conflict<br>Resolution, Persuasion, Negotiation, Mediation, the Business<br>Plan: Introduction to the business plan, Marketing your new<br>business; Intellectual Property; How to obtain funding for your<br>small business; The Business Pitch, Disability Etiquette: Definition<br>of disability and disablism, Different depictions of disability,<br>Words to describe different disabilities, Disability in South Africa,<br>Models of disability; Disability Etiquette, Job advertisement,<br>Curriculum Vitae and Cover letter: Analysing job advertisements;<br>aligning your skills with job advertisements; Designing a<br>professional curriculum vitae; Online job applications, Drafting a<br>cover letter, Written Messages: E-mail etiquette; Writing Styles;<br>Memoranda, Business Letters; The News Article.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPSYS3A | Power Systems 3<br>Calculation and Theory of Transmission Systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EEPEL3A | <b>Power Electronics 3</b><br>Industrial Control Elements: The Elements of Logic Control,<br>switches as Input Devices, Relays as Logic Devices, Solid State<br>Logic Gates. Designing Logic Control Systems Using Relays and<br>Solid state devices: Classification Control System. Programmable<br>Logic Controllers: Introducing the PLC, Input-Output Section,<br>Input Cards, Output Cards, Input-Output Racks, Addressing<br>Method, the processor, Input Image File (IIF), Output Image File<br>(OIF), The User Program Memory, The Variable Data Memory, The<br>Central Processing Unit (CPU). Programmable Logic Controllers<br>(PLC) Instructions I: Examine-On/Off Instruction, Output-Energize<br>instruction, Rung Definition, Decision Logic of the CPU.<br>Programmable Logic Controllers (PLC) Instructions II: Counters,<br>Up-Down Counters, Timers, Timer-On-Delay (TON) operation,<br>Timer-Off-Delay (TOF) operation. Programmable Logic Controllers<br>(PLC) Instructions III: Latch and Unlatch Instructions, Immediate<br>Input and Output instruction, Master Control Reset Instruction,<br>Immediate Input Instruction, Master Control Reset Instruction,<br>Programmable Logic Controllers (PLC) Analog Data: Analog Data<br>handling, Analog Input Card, Analog Input Card Operation, Analog<br>Output Card, Analog Output Card Construction. Network<br>Considerations: Supervisory Control and Data Acquisition<br>(SCADA), Requirements of SCADA systems. Input Devices for<br>Analog Data: Displacement, Pressure, Temperature, |

|                | Measurements using a strain gauge, Tachometers, Moisture            |
|----------------|---------------------------------------------------------------------|
|                | Content (Humidity), Light, Flow rate, Power, Shaft position         |
|                | measurement. Complete system design: One complete project           |
|                | design solution.                                                    |
|                | Alternative Energy 2 (Power)                                        |
| EPAEN2A        | Principles of Solar, Wind, Geothermal, Hydro, Bio energy, Micro     |
|                | Generation.                                                         |
| ЕРЕМАЗА        | Electrical Machines 3                                               |
|                | Single-phase transformers, Three phase Induction Machines.          |
|                | CHOICE MODULE                                                       |
|                | Control Systems 2                                                   |
|                | Mathematical Foundation: Basic control system concepts, open-       |
|                | loop and closed-loop system, Block Diagrams: Block diagram          |
|                | terminologies, Block diagram reduction rules, Modelling: Derive     |
| EICSY2A        | the differential equation of RLC circuits, Stability: Define the    |
|                | stability criteria of control systems, Time Domain Analysis: Define |
|                | Test signals and their transfer functions, Derive the steady state  |
|                | error for unity feedback system, Frequency Domain Analysis:         |
|                | Define frequency domain analysis of linear control systems.         |
|                | SEMESTER 5                                                          |
| EPEPR3A        | Electrical Protection 3                                             |
| LFLFNJA        | Introduction to basic Theory, Fuses, Fuse Protection.               |
| <b>FPAFN3A</b> | Alternative Energy 3 (Power)                                        |
| EPAEN3A        | Interconnection of renewable energy on the grid.                    |
| <b>ΕΡΕΜΔ4Δ</b> | Electrical Machines 4                                               |
| EPEMA4A        | Three Phase Transformers, Three Phase Induction Machines.           |
| ЕРТХРЗА        | Transmission 3 (Power)                                              |
| LF IAP3A       | Principles of Transmission, Calculations, Mechanical Design.        |
|                | Power Electronics 4                                                 |
| EEPEL4A        | AC drivers; DC drives; Inverters; Multilevel inverters; FACTS;      |
|                | Power conversion applications and Resonant conversion               |
|                | techniques.                                                         |
| EPEMN2A        | Energy Management 2                                                 |
|                | Tariffs, Economic of Power Distribution.                            |
|                | CHOICE MODULE                                                       |
|                | Electronics 3                                                       |
| EEELE3A        | Advanced voltage regulators; Amplification theory and               |
|                | applications; Oscillators; Power amplifiers; Passive filter design  |
|                | and Noise.                                                          |
| SEMESTER 6     |                                                                     |
| EPEXL1A        | Experiential Learning 1                                             |
|                | Measurement.                                                        |
| EPEXL2A        | Experiential Learning 2                                             |

|         | Testing.                  |
|---------|---------------------------|
| EPPRJ4A | Engineering Project 4     |
|         | Project done in industry. |

| DIPLOMA IN ELECTRICAL ENGINEERING: POWER<br>(Extended 4 year programme) (Course code: DE0864)         Module<br>Code       Module Description         Foundation Chemistry 1       Atoms, molecules & ions; Stoichiometry; Reactions in aqueous<br>solution; Rate and extent of reactions; Chemical equilibrium;<br>Acids, bases and salts; Electrochemistry.         AMXMA1A       Foundation Mathematics 1<br>Intro to Algebra, Expressions & equations, Linear & simultaneous<br>equations, Polynomial equations, Matrix algebra, Hyperbolic<br>functions.         APXPH1A       Foundation Physics 1<br>Mechanics: Force and Newton's laws; Momentum and impulse;<br>Vertical projectile motion in one dimension; Work, energy &<br>power; Doppler effect.         AAXCH2A       Foundation Chemistry 2<br>Organic molecules; The chemical industry. | Syllabi:                                 |                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------|
| Module<br>Code       Module Description         AAXCH1A       Foundation Chemistry 1<br>Atoms, molecules & ions; Stoichiometry; Reactions in aqueous<br>solution; Rate and extent of reactions; Chemical equilibrium;<br>Acids, bases and salts; Electrochemistry.         AMXMA1A       Foundation Mathematics 1<br>Intro to Algebra, Expressions & equations, Linear & simultaneous<br>equations, Polynomial equations, Matrix algebra, Hyperbolic<br>functions.         APXPH1A       Foundation Physics 1<br>Mechanics: Force and Newton's laws; Momentum and impulse;<br>Vertical projectile motion in one dimension; Work, energy &<br>power; Doppler effect.         AAXCH2A       Foundation Chemistry 2                                                                                                                                         | DIPLOMA IN ELECTRICAL ENGINEERING: POWER |                                                               |
| Code       SEMESTER 1         AAXCH1A       Foundation Chemistry 1         Atoms, molecules & ions; Stoichiometry; Reactions in aqueous solution; Rate and extent of reactions; Chemical equilibrium; Acids, bases and salts; Electrochemistry.         AMXMA1A       Foundation Mathematics 1         Intro to Algebra, Expressions & equations, Linear & simultaneous equations, Polynomial equations, Matrix algebra, Hyperbolic functions.         APXPH1A       Foundation Physics 1         Mechanics: Force and Newton's laws; Momentum and impulse; Vertical projectile motion in one dimension; Work, energy & power; Doppler effect.         Example 4       Foundation Chemistry 2                                                                                                                                                            | (Ex                                      | tended 4 year programme) (Course code: DE0864)                |
| SEMESTER 1           AAXCH1A         Foundation Chemistry 1<br>Atoms, molecules & ions; Stoichiometry; Reactions in aqueous<br>solution; Rate and extent of reactions; Chemical equilibrium;<br>Acids, bases and salts; Electrochemistry.           AMXMA1A         Foundation Mathematics 1<br>Intro to Algebra, Expressions & equations, Linear & simultaneous<br>equations, Polynomial equations, Matrix algebra, Hyperbolic<br>functions.           APXPH1A         Foundation Physics 1<br>Mechanics: Force and Newton's laws; Momentum and impulse;<br>Vertical projectile motion in one dimension; Work, energy &<br>power; Doppler effect.           Gundation Chemistry 2                                                                                                                                                                       | Module                                   | Module Description                                            |
| AAXCH1A       Foundation Chemistry 1<br>Atoms, molecules & ions; Stoichiometry; Reactions in aqueous<br>solution; Rate and extent of reactions; Chemical equilibrium;<br>Acids, bases and salts; Electrochemistry.         AMXMA1A       Foundation Mathematics 1<br>Intro to Algebra, Expressions & equations, Linear & simultaneous<br>equations, Polynomial equations, Matrix algebra, Hyperbolic<br>functions.         APXPH1A       Foundation Physics 1<br>Mechanics: Force and Newton's laws; Momentum and impulse;<br>Vertical projectile motion in one dimension; Work, energy &<br>power; Doppler effect.         AAXCH2A       Foundation Chemistry 2                                                                                                                                                                                         | Code                                     |                                                               |
| AAXCH1A       Atoms, molecules & ions; Stoichiometry; Reactions in aqueous solution; Rate and extent of reactions; Chemical equilibrium; Acids, bases and salts; Electrochemistry.         AMXMA1A       Foundation Mathematics 1         Intro to Algebra, Expressions & equations, Linear & simultaneous equations, Polynomial equations, Matrix algebra, Hyperbolic functions.         APXPH1A       Foundation Physics 1         Mechanics: Force and Newton's laws; Momentum and impulse; Vertical projectile motion in one dimension; Work, energy & power; Doppler effect.         Example 4       Foundation Chemistry 2                                                                                                                                                                                                                         |                                          | SEMESTER 1                                                    |
| AAXCHIA       solution; Rate and extent of reactions; Chemical equilibrium;<br>Acids, bases and salts; Electrochemistry.         AMXMA1A       Foundation Mathematics 1<br>Intro to Algebra, Expressions & equations, Linear & simultaneous<br>equations, Polynomial equations, Matrix algebra, Hyperbolic<br>functions.         APXPH1A       Foundation Physics 1<br>Mechanics: Force and Newton's laws; Momentum and impulse;<br>Vertical projectile motion in one dimension; Work, energy &<br>power; Doppler effect.         AAXCH2A       Foundation Chemistry 2                                                                                                                                                                                                                                                                                   |                                          | Foundation Chemistry 1                                        |
| AMXMA1A       solution; Rate and extent of reactions; Chemical equilibrium;<br>Acids, bases and salts; Electrochemistry.         AMXMA1A       Foundation Mathematics 1<br>Intro to Algebra, Expressions & equations, Linear & simultaneous<br>equations, Polynomial equations, Matrix algebra, Hyperbolic<br>functions.         APXPH1A       Foundation Physics 1<br>Mechanics: Force and Newton's laws; Momentum and impulse;<br>Vertical projectile motion in one dimension; Work, energy &<br>power; Doppler effect.         AAXCH2A       Foundation Chemistry 2                                                                                                                                                                                                                                                                                   | ΔΔΧCH1Δ                                  | Atoms, molecules & ions; Stoichiometry; Reactions in aqueous  |
| AMXMA1A       Foundation Mathematics 1<br>Intro to Algebra, Expressions & equations, Linear & simultaneous<br>equations, Polynomial equations, Matrix algebra, Hyperbolic<br>functions.         APXPH1A       Foundation Physics 1<br>Mechanics: Force and Newton's laws; Momentum and impulse;<br>Vertical projectile motion in one dimension; Work, energy &<br>power; Doppler effect.         SEMESTER 2         Foundation Chemistry 2                                                                                                                                                                                                                                                                                                                                                                                                               | AAACHIA                                  | solution; Rate and extent of reactions; Chemical equilibrium; |
| AMXMA1A       Intro to Algebra, Expressions & equations, Linear & simultaneous equations, Polynomial equations, Matrix algebra, Hyperbolic functions.         APXPH1A       Foundation Physics 1<br>Mechanics: Force and Newton's laws; Momentum and impulse; Vertical projectile motion in one dimension; Work, energy & power; Doppler effect.         Example 1       SEMESTER 2         Foundation Chemistry 2                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | Acids, bases and salts; Electrochemistry.                     |
| AMXMAIA       equations, Polynomial equations, Matrix algebra, Hyperbolic functions.         APXPH1A       Foundation Physics 1         Mechanics: Force and Newton's laws; Momentum and impulse; Vertical projectile motion in one dimension; Work, energy & power; Doppler effect.         SEMESTER 2         Foundation Chemistry 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                               |
| APXPH1A       Foundation Physics 1<br>Mechanics: Force and Newton's laws; Momentum and impulse;<br>Vertical projectile motion in one dimension; Work, energy &<br>power; Doppler effect.         SEMESTER 2         Foundation Chemistry 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ΑΜΧΜΑ1Α                                  |                                                               |
| APXPH1A Foundation Physics 1<br>Mechanics: Force and Newton's laws; Momentum and impulse;<br>Vertical projectile motion in one dimension; Work, energy &<br>power; Doppler effect.<br>SEMESTER 2<br>Foundation Chemistry 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                               |
| APXPH1A Mechanics: Force and Newton's laws; Momentum and impulse;<br>Vertical projectile motion in one dimension; Work, energy &<br>power; Doppler effect.<br>SEMESTER 2<br>Foundation Chemistry 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                               |
| APXPH1A Vertical projectile motion in one dimension; Work, energy & power; Doppler effect.  SEMESTER 2  AAXCH2A Foundation Chemistry 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                               |
| power; Doppler effect.  SEMESTER 2  AAXCH2A Foundation Chemistry 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | APXPH1A                                  |                                                               |
| SEMESTER 2  AAXCH2A Foundation Chemistry 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                               |
| AAXCH2A Foundation Chemistry 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                               |
| Organic molecules; The chemical industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAXCH2A                                  |                                                               |
| Foundation Mathematics 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | · · · · · · · · · · · · · · · · · · ·                         |
| Polynomial equations, Partial fractions, Trigonometry (radian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ΑΜΧΜΑ2Α                                  |                                                               |
| AMXMA2A measure), Binomial series, Functions, Intro to differentiation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                               |
| Intro to integration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                               |
| Foundation Physics 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                               |
| Electrostatics: Electric circuits: Electrodynamics: Ontical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | АРХРН2А                                  |                                                               |
| APXPH2A phenomena; Properties of materials; Emission and absorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                               |
| spectra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | • • •                                                         |

| Syllabi:   |                                             |  |
|------------|---------------------------------------------|--|
| Α          | ADVANCED DIPLOMA IN ELECTRICAL ENGINEERING: |  |
|            | POWER ENGINEERING (Course code: AD0824)     |  |
| Module     | Module Description                          |  |
| Code       |                                             |  |
| SEMESTER 1 |                                             |  |
| EPPRO4A    | Electrical Engineering Project              |  |

Research Methodology: Introduction to Research methodology. Research topics, Different types of research, All research concepts and outputs, Referencing. Project Proposal: Discussion of the project proposal, Introduction: (Background, Purpose, Problem), Problem statement, Sub problems, Hypothesis, Assumptions, Delimitations, Definition of terms, Importance of the project, Overview of the project and summary. Literature Review: Introduction to literature study, Background of the topic being researched. Relevance of literature used for the study. Evidence of researched literature to address the components of the project, Citations and referenced used with research literature with reference to the VUT referring documentation. Sub-Problem 1 chapter: Introduction relevant to identified sub problem 1, Restatement of what the sub problem 1 is that need to be solved, Restatement of the hypothesis associated with the stated sub problem 1, Theory, relevant laws, fundamentals applicable to the stated sub problem 1, Methods, methodology used as well as what resources used to solve the sub problem1, Results obtained through tests, analysis and interpretation of the obtained data, Discussion of the results (explanations and evaluation of the data obtained), Testing of the hypothesis, Summary of what was discussed in the chapter. Sub-Problem 2 chapter: Introduction relevant to identified sub problem 2, Restatement of what the sub problem 2 is that need to be solved. Restatement of the hypothesis associated with the stated sub problem 2, Theory, relevant laws, fundamentals applicable to the stated sub problem 2, Methods, methodology used as well as what resources used to solve the sub problem2, Results obtained through tests, analysis and interpretation of the obtained data, Discussion of the results (explanations and evaluation of the data obtained), Testing of the hypothesis, Summary of what was discussed in the chapter. Final chapter: Summary of the identified problem statement and sub problems, Findings and deductions, Meaning and implications of the research that was conducted, Re-assessment of the original identified problems, Recommendations, Fields for further studies Final project demonstration: Presentation of the identified problem and sub problems, technologies used and how was the final solution obtained, Final project hardware layout, Demonstration of the solution, Questions and answers (Moderator/Examiners). Engineering Research Methods EPREM4A Aspects of research: Introduction, importance of research, elements of research, defining research, dimensions of research,

|                    | what research is not, nature of research and ethical requirements<br>for researchers. Types of Research: Introduction, basic and<br>applied research and research as per discipline or technical group.<br>Sources of topics for scientific research: Introduction, starting<br>point for research, sources of research topics or problems, when<br>a topic is not a research problem and determining the suitability<br>of a research problem. Demarcating of the research problem:          |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Introduction, selecting a subject for research, posing a research<br>problem as statement and steps in problem demarcation and<br>formulation. Formulating a hypothesis: Introduction, defining a<br>hypothesis, inductive and deductive hypothesis, variables and<br>examples of formulated hypothesis. Writing a research proposal:<br>Introduction, defining a research proposal, value of a research<br>proposal, types of research proposals and components of the<br>research proposal. |
| EPHVE4A            | High Voltage Engineering<br>Breakdown mechanisms of gasses, liquids and solids, generation<br>of high AC and DC voltages, Generation of Impulse voltages and<br>currents, Measurement of High voltages and currents, High<br>Voltage Testing of electrical equipment, Non-destructive<br>Insulation test techniques.                                                                                                                                                                          |
| EPELP4A            | Electrical Protection<br>Z-bus and symmetrical faults, Symmetrical components and<br>sequence networks, Unsymmetrical faults.                                                                                                                                                                                                                                                                                                                                                                 |
| EPELM4A            | Electrical Machines<br>Synchronous Alternators, Synchronous machines, Induction<br>motors, Design.                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | <u>SEMESTER 2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AMAEM4A            | Advanced Engineering Mathematics<br>Mathematical skills using: Applications of integration; Laplace<br>transform; First order differential equations and D-operators and<br>Two dimensional Laplace equations.                                                                                                                                                                                                                                                                                |
| BHEMN4A            | <b>Engineering Management</b><br>Contracts, Tenders, Planning techniques, Financial planning and<br>control, Labor, Plant and materials, Scheduling, Budgets Cash flow<br>and cost control, Labor law.                                                                                                                                                                                                                                                                                        |
| EPEPS4A<br>EEPOW4A | Electrical Power Systems<br>Basic concepts, Three-phase Transformers, Synchronous<br>machines: Real and Reactive Power, Series impedance of<br>Transmission Lines, Capacitance of Transmission lines, Current<br>and Voltage regulations on Transmission Lines, Power flow<br>studies, Economic operation of Power Systems.<br>Power Electronics                                                                                                                                              |
| EEPOW4A            | Power Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

AC drivers; DC drives; Inverters; Multilevel inverters; FACTS; Power conversion applications and Resonant conversion techniques.

| Syllabi:<br>POSTGRADUATE DIPLOMA IN ELECTRICAL ENGINEERING: |                                                                   |  |
|-------------------------------------------------------------|-------------------------------------------------------------------|--|
| FUS                                                         | POWER ENGINEERING (Course code: PG0824)                           |  |
| Module                                                      | Module Description                                                |  |
| Code                                                        |                                                                   |  |
|                                                             | COMPULSORY                                                        |  |
|                                                             | Engineering Research Project                                      |  |
|                                                             | Project Identification, Project proposal, Literature study,       |  |
|                                                             | Conceptual design, Functional design, Implementation, Testing     |  |
|                                                             | and data analysis, Oral presentation and Documentation.           |  |
|                                                             | Research Statistics                                               |  |
|                                                             | This module develops the student's knowledge and skill in the     |  |
|                                                             | application of basic mathematics; Statistics in management;       |  |
|                                                             | Exploratory data analysis; Statistical models for forecasting and |  |
|                                                             | planning. How to perform basic mathematical calculations;         |  |
|                                                             | Setting the statistical scene; Exploratory data analysis &        |  |
|                                                             | application on Excel; Statistical models for forecasting and      |  |
|                                                             | planning; Basic probability concepts & Probability distributions  |  |
|                                                             | and Inferential statistics.                                       |  |
|                                                             | MINIMUM OF 3 ELECTIVES                                            |  |
|                                                             | Alternative Energy Feasibility                                    |  |
|                                                             | Study understand: Climate change awareness, Conventional and      |  |
|                                                             | Alternative Energy Source management, Energy efficiency.          |  |
|                                                             | Electrical Protection                                             |  |
|                                                             | Electrical protection of Switchgear, Transformer Protection,      |  |
|                                                             | Feeder protection, Generator Protection, Motor Protection and     |  |
|                                                             | Transmission line Protection.                                     |  |
|                                                             | Energy Efficiency Management                                      |  |
|                                                             | Conduct an energy audit, Energy audit instrumentation, Energy     |  |
|                                                             | codes, Energy standards and protocols, Electric and energy rate   |  |
|                                                             | structure, Economic analysis and life cycle cost, Lighting        |  |
|                                                             | improvement and Industrial systems.                               |  |
|                                                             | Energy Management                                                 |  |
|                                                             | Safety and Legislation of Alternative Energy Installations,       |  |
| L                                                           | Commissioning of Installations.                                   |  |
|                                                             | High Voltage Engineering                                          |  |

| Breakdown mechanism of Gases, Liquids and Solids, Generation<br>of high AC and DC voltages, Generation of Impulse voltages and<br>currents, Measurement of High Voltages and Currents, High<br>Voltage Testing of Electrical Equipment, Non-destructive<br>Insulation Test Techniques.                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Power Systems</b><br>Three Phase Transformers, Phase shift Tap Changing,<br>Synchronous machines, Real and Relative Power Control, Series<br>impedance of Transmission Lines. Current and Voltage relations<br>on Transmission Lines, Power flow solutions and Economic<br>operation of power systems. |

## 11.6 ELECTRICAL ENGINEERING: PROCESS CONTROL

| Syllabi:                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DIPLOMA IN ELECTRICAL ENGINEERING: PROCESS CONTROL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Module                                             | (3 year programme) (Course code: DI0825)<br>Module Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Code                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                    | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                    | Applied Communication Skills 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| HKCOX1A                                            | Communication theory: what is meant by communication;<br>elements common to all forms of communication; Reading for<br>academic purpose: what it means to read a written text<br>purposefully; Writing process and referencing: writing requires<br>knowledge of grammar, punctuation, spelling, style, structure<br>and audience; Listening process: why people fail to listen; the<br>different types of listening; aspects of intercultural listening,<br>Creative thinking, critical thinking and disability communication:<br>critical thinking.                                                                                                                                                                                               |  |
| EEESK1A                                            | Engineering Skills 1<br>The Engineering Profession: Different types of engineering.<br>Mechanical, electrical, civil, chemical, computer etc. The<br>engineering team; artisans, technicians, technologists and<br>engineers. Engineering Teamwork: Engineering design.<br>Teamwork versus group work. Basic principles of; engineering<br>project management (plan, organise, lead and control), project<br>costing, budgeting and resource management. What is a business<br>plan? Engineering and the Environment: social responsibility,<br>environmental impact, natural resources, sustainability of the<br>engineering activity. Legal and safety considerations. Ethics in<br>Engineering: professional ethics, responsibility, engineering |  |

|          | norms, ECSA and their function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Electrical Engineering 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EPEEN1A  | Electrical Engineering I<br>Electrical Principles: The electron theory, Heat, Magnetism,<br>Friction, Pressure, Light, Chemical Action, Batteries, International<br>system of measurement. Basic Electrical Concepts: The electrical<br>circuit, Electrical current flow, Electrical current, Electromotive<br>force and voltage, Definitions of electric, magnetic and other SI<br>units, Resistance, Resistors. Network Theorems in Direct Current<br>Circuits: Kirchhoff's laws, Superposition theorem, Thevenin<br>theorem, Norton's Theorem, Star-Delta and delta conversion,<br>Delta-Star conversion, Star-delta conversion. Electro Magnetism:<br>The magnetic field, Electromagnetic Force on a current-carrying<br>conductor, Electromagnetic induction, Lenz's law, Faraday's law.<br>Inductance in Direct Current Circuits: Inductive circuits,<br>Inductance, Current growth in an inductive circuit, Current decay<br>in an inductive circuit, Energy stored in an inductor, Types of<br>inductors. Capacitance in Direct Current Circuits: Capacitors,<br>Capacitance, Series capacitor circuit, Parallel capacitor circuits.<br>Parallel Magnetic Cores: Parallel magnetic circuits, electrical<br>analogy, series and parallel in magnetic circuits. |
| ASICT1A  | ICT Skills 1<br>Recognizing Computers; Using current versions of Microsoft<br>Windows Professional; Common Elements; Microsoft Word;<br>Microsoft Excel; Microsoft PowerPoint; Microsoft Outlook,<br>getting connected and using the Internet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AMMAT1A  | Engineering Mathematics 1<br>Binomial expansion, radian measure and limits of functions:<br>Binomial theorem, Radian measure. Applications of radian<br>measure. Differentiation techniques: Limits of functions,<br>Differentiation from first principles, Derivatives of polynomials &<br>product rule, The quotient and chain rules, Derivatives of trig<br>functions, Derivatives of exponential & log functions, Higher<br>order derivatives, Implicit differentiation, Logarithmic<br>differentiation, Applications. Integration techniques: Integration<br>(Indefinite integrals), Definite integrals, Area enclosed by two<br>curves, Simpson's rule. Vectors: Rep & magnitude of vectors.<br>Resolving vectors, Unit vectors and direction vectors, Scalar<br>multiplication, addition and sub, Dot product, the angle between<br>two vectors and work done, Determinant of a 2 x 2 matrix. Cross<br>product and the moment of a vector. Complex numbers: Rep. of<br>complex numbers and operations, Equality of complex numbers,<br>Argand diagram, polar form & De Moivre's, Calculating roots.                                                                                                                                                            |
| APHYS1A  | Physics 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ALIIIDIA | 1 11yolog 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|         | Units of measurement, Waves and sound, Principles of Linear<br>Superposition and Interference, Electromagnetic waves,<br>Interference and Wave nature of light, Reflection of Light:<br>Mirrors, Refraction of Light, Lenses and optical instruments,<br>Vectors and scalars, Kinematics in one dimension, Forces and<br>Newton's Law of Motion, Work and Energy, Impulse and<br>Momentum, Electric Forces and Electric Fields, Electric Potential<br>and Potential Energy, Electric circuits, Fluids, Temperature and<br>heat, Transfer of heat, Nuclear Physics and Radioactivity.<br><b>Social Intelligence 1</b>                                                                                                                           |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EESIN1A | Leadership styles: Democratic, Autocratic, Consensus etc.<br>Economic systems of governance: Capitalism, Socialism and<br>Communism. Etiquette in society and the workplace. Soft skills,<br>Cultural influences. Success in Engineering: Professionalism,<br>Ethics, Responsibility, Discipline, Time management, Acquiring<br>information and Independent learning.                                                                                                                                                                                                                                                                                                                                                                          |
|         | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| НКСОУ1А | Applied Communication Skills 1.2<br>Social Intelligence: Characteristics of Social Intelligence;<br>Paragraphing: The structure of a paragraph, Elements of a<br>Paragraph, Report writing: Different types of reports, Purpose of<br>a report, Perception: What does perception involve? Facts vs<br>Opinions: Facts, opinions. Subjectivity and Objectivity:<br>Introduction, Subjectivity, objectivity. Denotations and<br>Connotations: Denotation, connotation. Bias: Age Bias, Belief<br>system or Religious Bias, Disability, Visual Literacy: Different<br>types of visual literacy. Graphics: Tables, Bar Graphs, Histogram,<br>Pie Chart, Line Graph, Pictogram, and Flow Chart.<br>Advertisements: Examples of Figurative language. |
| EICOA2A | <b>Computing Applications 2</b><br>Navigating EICOA2A on VUTela, Laboratory rules & guidelines.<br>SIMetrix Software: Working principles, Interfaces, creating<br>electronic circuits, simulation, graphs, measurements. Microsoft<br>Word 2016: Working principles, creating engineering documents,<br>navigating word, using operations. Microsoft Excel 2016: Working<br>principles, creating engineering spreadsheets, navigating excel to<br>solve engineering problems, using operations for engineering<br>applications.                                                                                                                                                                                                                |
| EIDSY1A | Digital Systems 1<br>Digital and Analogue Quantities: Binary Digits, Logic Levels, Digital<br>Waveforms Basic Logic Functions. Number Systems, Operations<br>and Codes: Decimal Numbers, Binary Numbers, Decimal-to-Binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|         | Conversion, Binary Arithmetic, Compliments of Binary Numbers,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Signed Numbers, Arithmetic, Compliments of Binary Numbers,<br>Signed Numbers, Arithmetic Operations with Signed Numbers,<br>Hexadecimal Numbers, Octal Numbers, Binary Coded Decimal<br>(BCD), Digital Codes, Error Codes. Logic Gates: The inverter, The<br>AND gate, The OR gate, The NAND gate, The NOR gate and the<br>Exclusive-OR and Exclusive-NOR gate, Fixed-Function Logic Gates.<br>Boolean Algebra and Logic Simplifications: Boolean Operations<br>and Expressions, Laws and Rules of Boolean Algebra, DeMorgan's                                                                                                                                                                                                                                                                                                                                                                                               |
|         | Theorems, Boolean Analysis of Logic Circuits, Logic Simplifications<br>using Boolean Algebra, Standard Forms of Boolean Expressions,<br>Boolean Expressions and Truth Tables, The Karnaugh Map,<br>Karnaugh Map SOP Minimization, Karnaugh Map POS<br>Minimization. Combinational Logic Analysis: Basic Combinational<br>Logic Circuits, Implementing Combinational Logic, The Universal<br>Property of NAND and NOR gates, Combinational Logic using                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | NAND and NOR gates, Pulse Waveform Operation. Functions of<br>Combinational Logic: Half and Full Adders, Parallel Binary Adders,<br>Ripple Carry and Look-Ahead Carry Adders, Comparators,<br>Decoders, Encoders, Code Converters, Multiplexers (Data<br>Selectors), De-multiplexers, Parity Generators/Checkers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AMMAT2A | Engineering Mathematics 2<br>Differentiation: Inverse trig functions, Hyperbolic functions,<br>Inverse hyperbolic functions, Parametric equations, Maxima and<br>minima, Partial differentiation, Small changes, Rate of change.<br>Integration: Revision of integration, Use of formulae sheet,<br>Inverse functions, Partial fractions, Partial fractions, Integration<br>by parts, Trig. & hyperbolic substitutions, t-formulae, Mean and<br>RMS values. Differential Equations: Differential eq., separation,<br>Using the integrating factor, Applications, Homogeneous<br>differential equations. Matrix Algebra: Operations with matrices,<br>Inverse of a matrix, solve equations using inverse, Cramer's rule,<br>Eigenvalues and –vectors. Probability and Statistics: Data<br>representation, Data summaries, Normal distribution, Conf.<br>intervals, error est. Conf. intervals, error est. Hypothesis testing. |
| EIPRI1A | <b>Process Instrumentation 1</b><br>Introduction: Measurement Standards, Functional elements of<br>Instruments, Static characteristics of instruments, Instrument<br>errors, Industrial instrumentation schematics. Pressure<br>Measurement: Introduction and definitions, Pressure in a Liquid,<br>Pressure measurement with manometers, measuring pressure<br>with elastic structures, measuring pressure with force balance<br>gauges, Measuring pressure with DP-cell, Strain gauges. Flow<br>Measurement: Introduction, Derivation of the flow equation,                                                                                                                                                                                                                                                                                                                                                                |

|         | Differential pressure method of measuring flow, Other flow<br>meters. Level Measurement: Direct methods, indirect methods.<br>Temperature Measurement: Introduction, Expansion and<br>pressure thermometers, Resistance thermometers,<br>Thermocouple thermometers, Thermistor thermometers.<br>Process Control: Introduction, Control schemas, PID controllers,<br>Pneumatic control valves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Physics 2 Practical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| АРНҮР2А | Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors<br>in series and in parallel, RC Circuits. Magnetic Fields, Force on a<br>moving charge, Particle motion in a magnetic field, Mass<br>spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,<br>Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,<br>Transformers. Alternating Current Circuits, Capacitive Reactance,<br>Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,<br>Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,<br>The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of<br>gas, Diffusion. Thermodynamics, Thermodynamic Systems,<br>Zeroth Law, First law of thermodynamics, Thermal processes,<br>Specific heat capacities, Second Law of Thermodynamics, Heat<br>engines, Carnot's Principle, Refrigeration, Entropy. Nature of the<br>Atom, X Rays, Lasers. Radiation, Ionising radiation, Nuclear<br>Energy and Elementary Particles, Biological Effects of Ionizing<br>Radiation, Induced Nuclear Reactions, Nuclear Fission, Nuclear<br>Reactors, Nuclear Fusion. Kinematics in two dimensions,<br>Displacement velocity and acceleration, Equations, Projectile<br>motion. Uniform Circular Motion, Acceleration, Centripetal force,<br>Rotational Kinematics, Rotational Dynamics. Simple Harmonic |
| АРНҮТ2А | Physics 2 Theory<br>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors<br>in series and in parallel, RC Circuits. Magnetic Fields, Force on a<br>moving charge, Particle motion in a magnetic field, Mass<br>spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,<br>Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,<br>Transformers. Alternating Current Circuits, Capacitive Reactance,<br>Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,<br>Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,<br>The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|         | Diffusion Themselversite Themselverseis Costants                                                                             |
|---------|------------------------------------------------------------------------------------------------------------------------------|
|         | gas, Diffusion. Thermodynamics, Thermodynamic Systems,<br>Zeroth Law, First law of thermodynamics, Thermal processes,        |
|         | Specific heat capacities, Second Law of Thermodynamics, Heat                                                                 |
|         | engines, Carnot's Principle, Refrigeration, Entropy. Nature of the                                                           |
|         | Atom, X Rays, Lasers. Radiation, Ionising Radiation, Nuclear                                                                 |
|         | Energy and Elementary Particles, Biological Effects of Ionizing                                                              |
|         | Radiation, Induced Nuclear Reactions, Nuclear Fission, Nuclear                                                               |
|         | Reactors, Nuclear Fusion. Kinematics in two dimensions,                                                                      |
|         | Displacement velocity and acceleration, Equations, Projectile                                                                |
|         | motion. Uniform Circular Motion, Acceleration, Centripetal force,                                                            |
|         | Rotational Kinematics, Rotational Dynamics. Simple Harmonic                                                                  |
|         | motion and Elasticity.                                                                                                       |
|         | Safety Principles and Law 1                                                                                                  |
|         | Importance of health and safety: What is safety and health                                                                   |
|         | concepts as indicated in the OHS Act, Fundamental safety                                                                     |
|         | concepts and terms: Fundamental safety terms, legal                                                                          |
|         | appointments as per the OHS Act, duties of the legal appointees                                                              |
|         | as per the OHS Act, safety awareness and fire training, What is                                                              |
|         | hazards and risk in the workplace: What is a hazard, what is a risk,                                                         |
|         | what is the difference between a hazard and a risk, identification                                                           |
|         | of main six hazards in the workplace, occupational hazards,                                                                  |
|         | difference between an accident and an incident: general                                                                      |
|         | principles of control and risk reduction, safe systems of work,                                                              |
|         | permit-to-work systems, emergency procedures and first-aid,                                                                  |
| EESPA1A | Principles of hazard and risk control: What is a risk assessment,                                                            |
|         | why do a risk assessment, how to conduct a risk assessment, Risk                                                             |
|         | assessment and risk management, Tools and Machinery: Tool and machine hazards, Principles of safeguarding powered and driven |
|         | machines, point of operation safeguards, controls for hand toll                                                              |
|         | hazards, portable power tool controls, Electrical safety: What do                                                            |
|         | I need to know about electricity, what kind of injuries result from                                                          |
|         | electrical current, electrical shock hazards, arc flash, control of                                                          |
|         | electrical hazards, electrical safety-related work practices, Noise                                                          |
|         | and vibration: Sound and noise, hearing, hazards of noise,                                                                   |
|         | exposure standard for noise, engineering controls for noise, noise                                                           |
|         | measurement, vibrations of the human body or parts of the                                                                    |
|         | human body.                                                                                                                  |
|         | SEMESTER 3                                                                                                                   |
|         | Applied Communication Skills 2.1                                                                                             |
|         | Introduction to Group Dynamics: Show understanding of                                                                        |
| HKCOX2A | different group characteristics, Communication Theory:                                                                       |
|         | Communication Model, Communication Barriers, Communication                                                                   |
|         | styles in workplace, PowerPoint Presentations: Planning and                                                                  |

| -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | preparation of a presentation (Audience, Language, Knowledge of<br>topics, Level of education, Social variables, Values, Needs and Size<br>of Audience, Non-verbal and Intercultural Communication:<br>Introduction to Non-verbal Communication, Logic and Reasoning:<br>Conceptualise vital terminology uses in argumentative writing,<br>construct a logically sound and well- reasoned argument, write<br>and present logical arguments, Meetings and Interviews:<br>Introduction of meetings, Types of meetings.<br><u>Electrical Engineering 2</u><br>Single Phase AC Circuits: Series Impedance Circuits, AC Voltage<br>Diver, Components of current, Admittance, Parallel impedance<br>circuits, Current divider. Power and Power Factor Correction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EPEEN2A | Active (Real) power, Power in a resistive ac circuit, Power in an active ac circuit, Power in a capacitive ac circuit, Peak and average power, the complex power triangle, Complex power, Reactive power, Power factor, Disadvantage of a low power factor, causes of low power, Power factor correction, Equipment used for power factor improvement, Importance of power factor improvement, Calculations on power factor improvement. Network Theorems in AC Circuits: Kirchhoff's laws, Superposition theorem, Thevenin theorem, Norton's Theorem, Star-Delta and delta conversion, Delta-Star conversion, Star-delta conversion, Maximum power transfer theorem. Resonance: Effect of varying frequency in series ac circuits, Frequency effect on the circuit impedance, Current at resonance, Resonance rise in voltage, Energy transfer between the inductor and capacitor, Resonant frequency in series ac circuits, Tuning for resonance, Q-factor of a series resonant circuit, Practical parallel resonant circuit. Complex Waves and Harmonics: Integration of waveforms, Production of harmonics, Effect of reactance in complex circuits, Composition of complex waves, Power and power factor of non-sinusoidal waves, Resonance as a result of non-sinusoidal waves, Addition and |
| EEELE1A | subtraction of non-sinusoidal waveforms.<br>Electronics 1<br>Introduction to Electronics: The Atom, Materials Used in<br>Electronics, Current in Semiconductors, N-Type and P-Type<br>Semiconductors, the PN Junction. Diodes and Applications: Diode<br>Operation, Voltage-Current (V-I) Characteristics of a diode, Diode<br>Models, Half-Wave Rectifiers, Full-Wave Rectifiers, Power Supply<br>Filters and Regulators, Diode Limiters and Clampers, Voltage<br>Multipliers, The Diode Datasheet, Troubleshooting. Special-<br>Purpose Diodes: The Zener Diode, Zener Diode Applications, The<br>Varactor Diode, Optical Diodes, Other Types of Diodes,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|         | Troubleshooting. Bipolar Junction Transistors: BJT Structure,<br>Basic BJT Operation, BJT Characteristics and Parameters, The BJT |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|
|         | as an Amplifier, The BJT as a Switch, The Phototransistor,                                                                        |
|         | Transistor Categories and Packaging, Troubleshooting. Transistor                                                                  |
|         | Bias Circuits: The DC Operating Point, Voltage-Divider Bias, Other                                                                |
|         | Bias Methods, Troubleshooting.                                                                                                    |
|         | Engineering Programming 1                                                                                                         |
|         | Introduction to programming: different languages, first program,                                                                  |
|         | integer variables, numbers and operators, characters, flow                                                                        |
|         | control, input and output. Advanced Flow Control and Data                                                                         |
|         | Aggregates: if and else, more types, loops, Boolean algebra,                                                                      |
|         | vectors, initiators: simple arrays, multidimensional arrays,                                                                      |
|         | structures and why we need them. Extending Expressive Power:                                                                      |
|         | pointers, functions and memory. Accessing Different kinds of                                                                      |
| EIENP1A | Data: arrays of pointers, conversions, strings, and namespaces.                                                                   |
|         | Object Programming Essentials: basic concepts, a class, static                                                                    |
|         | components, and objects vs pointers inside objects. Inheritance:                                                                  |
|         | class hierarchy, inheritance and type compatibility,                                                                              |
|         | polymorphism and virtual methods, objects as parameters and                                                                       |
|         | dynamic casting, various supplements, constant keyword.                                                                           |
|         | Exceptions: to errors in human, throw statement, categorizing                                                                     |
|         | exceptions, catching exceptions. Operators and Enumerated                                                                         |
|         | types: overloading operators, enumerated types.                                                                                   |
|         | Networks 1                                                                                                                        |
|         | Introduction – Exploring the Network: Global Connectivity,<br>Networking Today, LANs, WANs, and the Internet, Components          |
|         | of a Network, The Network as a data communications platform,                                                                      |
|         | The changing Network Environment. Configuring a Network                                                                           |
|         | Operating System: The IOS, Basic Configurations, Network                                                                          |
|         | Addressing Schemes. Network Protocols and Communications:                                                                         |
|         | The Rules of Communications, Protocols and Standards, How                                                                         |
|         | Data moves in a Network. Network Access: Physical layer                                                                           |
|         | Protocols, Network Media, Data Link Layer Protocols, Media                                                                        |
| EINET1A | Access Control. Ethernet: Ethernet Protocol, Address Resolution                                                                   |
|         | Protocol, LAN Switches Network Layer: Network Layer Protocols,                                                                    |
|         | Routing Principles, what is a Router, Configuring Routers. IP                                                                     |
|         | Addressing: IPV4 and IPV6 Addressing, Connectivity, ICMP. Sub                                                                     |
|         | netting IP Networks: Sub netting of IPV4 Networks, Addressing                                                                     |
|         | Schemes, Structured Design, Design Considerations for IPV6.                                                                       |
|         | Transport Layer: Transport layer Protocols, TCP and UDP                                                                           |
|         | Characteristics and Operation. Application layer: Application                                                                     |
|         | layer Protocols, Well-known Application Layer Protocols and                                                                       |
|         | Services, HTTP, DHCP, DNS, SMTP etc. Build a Small Network:                                                                       |

|         | Natural Design Natural Security Natural performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Network Design, Network Security, Network performance,<br>Troubleshooting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EIPRI2A | <b>Process Instrumentation 2</b><br>High and medium vacuum measurement, Introduction, Ionization gauges, Hot- filament ionization vacuum gauge, Undesirable feature, Cold cathode ionization vacuum gauge Electronic pressure detectors and transmitters, Introduction, Resistance strain gauge, Theory, Gauge factor "S", Construction of strain gauges, Fine wire gauge cemented on a paper backing Flow measurement, Introduction, Types of flow, Streamlined flow, Turbulent flow, Helical-turbulent flow, Pulsating flow, Planning a flow installation, The flow equation, Modification of the flow formula level measurement, Introduction, Selection of a measurement system, Capacitive level measurement system, Operation of capacitive system, Factors which determine the dielectric constant, Installation requirements and practical consideration, temperature measure, Temperature measurement: Introduction, Resistance thermometer measuring method, Measurement circuits, Application notes, Potentiometer circuits, Operating principles, programmable controllers, Introduction to programmable controllers, Definition of a programmable controllers, Components of a programmable controllers, Components of a programmable controllers, Components of a programmable controllers, Random access memory, Central processing unit, Internal operation of the control unit, Input modules, controllers and control elements Introduction to Practical controllers and elements, Control stations, Remote-set stations, Cascade stations, Ratio-stations, Computer-set stations, Integral saturation, Control valves. |
| AMMAT3A | Mathematics 3<br>Application of Integration: Volumes of solids of revolution,<br>Length of Curves, Double Integrals: Iterated Integrals & Fubini's<br>theorem, Double Integrals, Polar Coordinates. First Order<br>Differentiation Equations: Exact DE, Homogeneous DE, Bernoulli<br>DE, Applications (Excluding Newton's Law of Cooling), D-Operator<br>Methods. Numerical Solutions of First Order Differential<br>Equations: Euler's method, Runge-Kutta order 2, Runge-Kutta<br>order 4. Operator D Methods/Undetermined coefficients:<br>Complementary Solutions, D-operator & Inverse, binomial or long<br>division method, Theorem 1, Theorem 2, Theorem 3, Special<br>cases, General solution, Applications. Laplace Transforms, and<br>Table of transforms. (Derivation from first principles not for<br>examination purposes), First shifting property, Laplace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|         | transforms of derivatives, Inverse Laplace Transforms using<br>tables, Laplace Transforms of discontinuous functions, Inverse<br>Laplace Transforms of discontinuous functions, Solution of<br>differential equations, Application to electric circuits, Application<br>to beams. Fourier Series: Periodic functions and harmonics,<br>sketching of graphs and determining Fourier Series, Series with<br>period 2l, Even and Odd functions, Full range and Half range<br>series, Numerical Harmonic Analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | SEMESTER 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EIDCS1A | <b>Digital Control Systems 1</b><br>Introduction to Networks: Introduction, Analogue<br>Communication Systems, Instrumentation and Control Systems,<br>Digital Communication Systems, Serial and Parallel<br>Communication, Classifying Communication. Communication<br>Mediums: Optical Fibers for Data Transmission, Radio/Wireless<br>Communication, and Wireless Ethernet. Communication<br>Protocols: Introduction, Packet-Switching vs Circuit-Switching,<br>Data transfer path - ISO/OSI 7-layer model, Ethernet, Ethernet &<br>the 7-layer ISO/OSI model, and transmission control<br>protocol/internet protocol (TCP/IP). Industrial Networks or Field<br>busses: Introduction, Industrial applications, Predecessors of the<br>modern Fieldbus, Digital Communication Plus 4 - 20 mA, Highway<br>Addressable Remote Transmitter (HART), Operation of HART,<br>Modbus for Factory Automation, Current Fieldbus Standards,<br>Fieldbus. Profinet: Introduction, Redundant Profibus/Ethernet,<br>and Profisafe. Foundation Fieldbus: Introduction, H1 Level,<br>Foundation Fieldbus H1 Level Topology, Foundation Fieldbus<br>Model, Producer/Consumer Model (Publish/Subscribe), Standard<br>Function Blocks in FF Devices. Devicenet & Controlnet: History<br>and development of Devicenet, Topology and Connectors,<br>Connections, Installation rules, Power Supplies, Potential Power<br>Supply Problems, Bus Operation, Data Structure. Interbus & AS-I<br>Bus: Interbus Protocol Efficiency, Interbus Shift Registers,<br>Interbus System Performance, Interbus Sub-Buses, Redundancy<br>with Interbus, The Actuator-Sensor Interface (AS-I BUS), AS-I<br>Physical Layer. |
| НКСОҮ2А | Applied Communication Skills 2.2<br>Interpersonal Skills in the Workplace: Group Dynamics, Conflict<br>Resolution, Persuasion, Negotiation, Mediation, the Business<br>Plan: Introduction to the business plan, Marketing your new<br>business; Intellectual Property; How to obtain funding for your<br>small business; The Business Pitch, Disability Etiquette: Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|          | of disability and disablism, Different depictions of disability,<br>Words to describe different disabilities, Disability in South Africa,<br>Models of disability; Disability Etiquette, Job advertisement,<br>Curriculum Vitae and Cover letter: Analysing job advertisements;<br>aligning your skills with job advertisements; Designing a<br>professional curriculum vitae; Online job applications, Drafting a<br>cover letter, Written Messages: E-mail etiquette; Writing Styles;<br>Memoranda, Business Letters; The News Article.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Digital Systems 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EIDSY2A  | Latches Flip-Flops and Timers: Latches, Flip-Flops, Flip-Flop<br>Operating Characteristics, Flip-Flop Applications, One-Shots, the<br>a-stable multi-vibrator. Shift Registers: Shift Register Operation,<br>Types of Shift Register, Bidirectional Shift Register, Shift Register<br>Counters, Shift Register Applications. Counters: Finite State<br>Machines, Asynchronous Counter Operation, Synchronous<br>Counter Operation, Up/Down Synchronous Counters, Design of<br>Synchronous Counters, Cascaded Counters, Counter Decoding,<br>Counter Applications. Data Storage: Semiconductor Memory<br>Basics, The Random-Access Memory (RAM), Read-Only Memory<br>(ROM), Programmable Rom, The Flash Memory, Memory<br>Expansion, Special Types of Memories, Magnetic and Optical<br>Storage, Memory Hierarchy, Cloud Storage. Signal Conversion and<br>Processing: Analogue-to-Digital Conversion, Methods of<br>analogue-to-Digital Conversion, Methods of Digital -to- analogue<br>Conversion, Digital Signal Processing, The Digital Signal Processor<br>(DSP). |
| EEELEC2A | Electronics 2<br>BJT Amplifiers: Amplifier Operation, Transistor Models, the<br>Common-Emitter Amplifier, the Common-Collector Amplifier, the<br>Common-Base Amplifier, Multistage Amplifiers, the Differential<br>Amplifier. Power Amplifiers: The Class A Power Amplifier, The<br>Class B and Class AB Push-Pull Amplifiers, The Class C Power<br>Amplifier. Field Effect Transistors: The JFET, JFET Characteristics<br>and Parameters, JFET Biasing, The Ohmic Region, The MOSFET,<br>MOSFET Characteristics and Parameters, MOSFET Biasing, The<br>IGBT. FET Amplifiers and Switching Circuits: The Common-Source<br>Amplifier, The Common-Drain Amplifier, The Common-Gate<br>Amplifier, The Class D Amplifier, MOSFET Analog<br>Switching, MOSFET Digital Switching. Amplifier Frequency<br>Response: Basic Concepts, The Decibel, Low-Frequency Amplifier<br>Response, High-Frequency Amplifier Response, Total Amplifier<br>Frequency Response. Thyristors: The Four-Layer Diode, The<br>Silicon-Controlled Rectifier (SCR), SCR, Applications, The Diac and |

|         | Trian The Ciliner Controlled Control (CCC) Bus means the Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Triac , The Silicon-Controlled Switch (SCS), Programmable Uni-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | junction Transistor (PUT).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EIENP2A | Engineering Programming 2<br>The Analysis Model of a system: selection of an appropriate<br>model. Iterative System Build: Select and Prepare a use case for<br>design and/or code; Use Case Design; Perform Class Design; Code<br>and Unit Test a use case using the build tools as defined in the<br>Architecture document; Integrate and test: the use case with all<br>other use cases in the build. Principles of Database Design: The<br>Logical Data model is transformed into a physical Data Base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EINET2A | <b>Networks 2</b><br>Routing Concepts: Configuration, Decisions, Operation. Static<br>Routing: Implementation, Configuration of Static and Default<br>Routes, Summary and Floating Static Routes, Troubleshooting<br>Static and Default Rotes. Routing Dynamically: Dynamic Routing<br>Protocols, Distance Vector Routing, RIP and RIPng, The Routing<br>Table. Switched Networks: LAN Design, The Switched<br>Environment, General Concepts of Switching, Switching<br>Configuration: Configuration, Security, Management and<br>Implementation. VLANS: Segmentation, VLAN Implementation,<br>Trunks, Inter-VLAN Routing, Troubleshooting, Access Control<br>Lists: IP ACL Operation, Standard and Extended ACLs for IPv4,<br>Troubleshooting, IPv6 ACLs. DHCP Protocol IPv4 and IPv6:<br>Principles, Configuration and Troubleshooting. Network Address<br>Translation, NAT Operation, Configuration and troubleshooting.<br>Managing the Network: IOS Management, Maintenance,<br>Backups. |
| EIPRI3A | <b>Process Instrumentation 3</b><br>Automatic control methods & distributed control systems, telemetering, intrinsically safe equipment, control systems, measurement with radio-active sources & non-destructive testing, analysers, SCADA systems and PLC systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | SEMESTER 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EEPEL3A | <b>Power Electronics 3</b><br>Industrial Control Elements: The Elements of Logic Control,<br>switches as Input Devices, Relays as Logic Devices, Solid State<br>Logic Gates. Designing Logic Control Systems Using Relays and<br>Solid state devices: Classification Control System. Programmable<br>Logic Controllers: Introducing the PLC, Input-Output Section,<br>Input Cards, Output Cards, Input-Output Racks, Addressing<br>Method, the processor, Input Image File (IIF), Output Image File<br>(OIF), The User Program Memory, The Variable Data Memory,<br>The Central Processing Unit (CPU). Programmable Logic                                                                                                                                                                                                                                                                                                                                                                     |

|         | Controllers (PLC) Instructions I: Examine-On/Off Instruction,<br>Output-Energize instruction, Rung Definition, Decision Logic of<br>the CPU. Programmable Logic Controllers (PLC) Instructions II:<br>Counters, Up-Down Counters, Timers, Timer-On-Delay (TON)<br>operation, Timer-Off-Delay (TOF) operation. Programmable Logic<br>Controllers (PLC) Instructions III: Latch and Unlatch Instructions,<br>Immediate Input and Output instructions, Immediate Input<br>Instruction, Immediate Input Instruction, Master Control Reset<br>Instruction. Programmable Logic Controllers (PLC) Analog Data:<br>Analog Data handling, Analog Input Card, Analog Input Card<br>Operation, Analog Output Card, Analog Output Card<br>Construction. Network Considerations: Supervisory Control and<br>Data Acquisition (SCADA), Requirements of SCADA systems. Input<br>Devices for Analog Data: Displacement, Pressure, Temperature,<br>Measurements using a strain gauge, Tachometers, Moisture<br>Content (Humidity), Light, Flow rate, Power, Shaft position<br>measurement. Complete system design: One complete project<br>design solution.                                                                                                                                                                                                                                                                                                                                             |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EIDSY3A | <b>Digital Systems 3</b><br>The 8051 Microcontroller: The discussion of the role of microcontrollers in everyday life, criteria for choosing microcontroller and various members of the 8051 microcontroller family. 8051 Assembly programming: The listing and discussion of 8051 registers, assemble and run 8051 program, discuss RAM memory space allocation in 8051 and understand the RISC and CISC architecture. Jump, Loop and Call Instructions: Code 8051 Assembly language instructions using loops, conditional and unconditional jump instructions and subroutines. Calculates the target address for jump instructions, describe precaution in using stack in subroutines and discuss crystal frequency VS machine cycle in 8051. I/O Port Programming: List four I/O ports of the 8051, explain the role of each port, code Assembly language to use ports as input and output, instruction for handling I/O and code I/O bit manipulation programs. 8051 Addressing Modes: List and explain the five addressing modes of the 8051 microcontroller, stack manipulation using direct addressing. Arithmetic Logic Instructions and Programs: Define the range of numbers possible in 8051 unsigned numbers data, code addition, subtraction, multiplications and divisions for unsigned numbers. Code logic instructions AND, OR, XOR and use logic instruction for bit manipulation. Use compare and jump for program control. Compare and contrast packed and unpacked |

|         | BCD data. Code programs for ASCII and BCD conversion. 8051<br>Programming in C: Code C programs for time delay and I/O<br>operations and BIT manipulation. Code C programs logic and<br>arithmetic operations, ASCII and BCD conversions, and binary<br>(hex) to decimal conversion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Networks 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EINET3A | LAN Design – Introduction to LAN Design, Campus Wired LAN designs, Selecting Network Devices. Scaling VLANs – VTP, Extended VLAN's and DTP, Troubleshooting, Layer 3 Switching. STP – LAN Redundancy, Spanning Tree Concepts, Spanning Tree Configuration. Ether Channel and HSRP – Link Aggregation Concepts and Configuration, First Hop Redundancy Protocols. Dynamic Routing – Dynamic Routing Protocols, Distance Vector Routing, Links State Routing. EIGRP – EIGRP Characteristics, EIGRP Operation, Implementing EIGRP for IPv4 and IPv6. EIGRP Tuning and Troubleshooting – Tune EIGRP, Troubleshoot EIGRP. Single-Area OSPF – OSPF Characteristics, Single Area OSPF v2 and v3. Multi-Area OSPF – Multi-Area OSPF Operation, and Configuration. OSPF Tuning and Troubleshooting – Advanced Single-Area OSPF Configuration, Troubleshooting Single – Area |
|         | OSPF Implementations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EICSY2A | <u>Control Systems 2</u><br>Mathematical Foundation: Basic control system concepts, open-<br>loop and closed-loop system, Block Diagrams: Block diagram<br>terminologies, Block diagram reduction rules, Modelling: Derive<br>the differential equation of RLC circuits, Stability: Define the<br>stability criteria of control systems, Time Domain Analysis: Define<br>Test signals and their transfer functions, Derive the steady state<br>error for unity feedback system, Frequency Domain Analysis:<br>Define frequency domain analysis of linear control systems.                                                                                                                                                                                                                                                                                          |
| EIDCS2A | <b>Digital Control Systems 2</b><br>HART: network topologies, communication modes, protocol stack, Benefits of HART communication, Installation and intrinsic safety barriers, Wireless-HART. MODBUS: network topologies, network physical media and wiring, registers, Query-response messaging, Application of Modbus serial and exceptional responses. Modbus –TCP, Interoperability of variants. FOUNDATION FIELDBUS: basics, protocol stack and physical media, Operation of the LAS in FF, Application layer, application, function blocks and scheduling. PROFIBUS: Profibus physical media and termination, Fieldbus Data-link layer; addressing and arbitration, Profibus slave redundancy and MBP wiring verification. PROFINET: Devices and device classes, Physical                                                                                    |

|         | media and Profinet-IO topologies, Data-link layer. CAN,                         |
|---------|---------------------------------------------------------------------------------|
|         | DEVICENET and CAN OPEN: Physical layer in CAN, CAN data-link                    |
|         | layer, DeviceNet, protocols, networks, communication and                        |
|         | hardware, CAN-Open.                                                             |
|         | Engineering Programming 3                                                       |
|         | A Senior Level Certified Object Orientated Programming Course                   |
|         | selected out of the mainstream Object Orientated Courses such                   |
|         | as CPS - C++ Certified Senior Programmer or The Equivalent                      |
| EIENP3A | Certified Java Course or the equivalent C Programming course                    |
|         | such as CLS - C Certified Senior Programmer Certificate or an                   |
|         | appropriate level web-based development course, depending on                    |
|         | the programming demands of Software Engineering Project.                        |
|         | Sample Curriculum for CPS - C++ Certified Senior Programmer.                    |
|         | SEMESTER 6                                                                      |
|         | Digital Systems 4                                                               |
|         | 8051 Timer Programming in C, Programming 8051 Timers,                           |
|         | Counter Programming, Programming Timers 0 and 1 in 8051 C.                      |
|         | 8051 Serial Port PROGRAMMING in C, Basic Serial                                 |
|         | Communication, 8051 connection to RS232, 8051 serial port                       |
|         | programming in C. Interrupt Programming in C, 8051 Interrupts,                  |
|         | Programming Timer interrupts, Programming External Hardware                     |
| EIDSY4A | interrupts, Programming the Serial Communication interrupt,                     |
|         | Interrupt Priority in 8051/8052, Interrupt Programming in C. LCD                |
|         | and Keyboard interfacing, LCD Interfacing, Keyboard interfacing,                |
|         | ADC, DAC and Sensor interfacing, Parallel and serial ADC, DAC                   |
|         | interfacing, Sensor interfacing and signal conditioning. Relay,                 |
|         | Opto-isolator and Stepper motor, Relay and Opto-Isolator,                       |
|         | Stepper Motor interfacing. DC Motor Control and PWM, DC                         |
|         | Motor interfacing and PWM SPI and I2C Protocols, SPI BUS                        |
|         | Protocol, I2C BUS Protocol.                                                     |
|         | Control Systems 3<br>System representation and mathematical modelling: Ordinary |
|         | differential equations of electrical, mechanical, hydraulic and                 |
|         | thermal systems. State-space and transfer function equivalent                   |
|         | representations. Linearization of non-linear systems. System                    |
|         | identification and modelling from experimental data. System                     |
| EICSY3A | simulation and stability: Numerical simulation of differential                  |
|         | equations. Lyapunov stability and eigenvalues. Time-domain                      |
|         | performance indices. Qualitative analysis on the s-plane.                       |
|         | Feedback systems. PID controllers and tuning. Controller design:                |
|         | Root locus; Identifying poles and zeros. Symmetry of the root                   |
|         | locus. Root locus on the real axis. Angle of departure for route                |
|         | locus. Angle of arrival and convergence of asymptotes. State-                   |
|         | locus. Angle of arrival and convergence of asymptotes. State-                   |

|         | 1                                                                   |
|---------|---------------------------------------------------------------------|
|         | space pole placement. Implementation of control algorithms:         |
|         | Sampled data system. z-transform and unit circle stability. s-plane |
|         | to z-plane translation. Digital computer control implementation.    |
|         | Networks 4                                                          |
|         | WAN Concepts - WAN Technologies Overview, Selecting a WAN           |
|         | Technology. Point-to-Point Connections - Serial Point-to-Point      |
|         | Overview, PPP Operation, PPP Implementation, Troubleshoot           |
|         | WAN Connectivity. Branch Connections - Remote Access                |
| EINET4A | Connections, PPPoE, VPN's, GRE, eBGP. Access Control Lists -        |
|         | Standard ACL Operation and Configuration Review, Extended IPv4      |
|         | ACLs, IPv6 ACLs, Troubleshoot ACLs. Network Security and            |
|         | Monitoring - LAN Security, SNMP, Cisco Switch Port Analyzer.        |
|         | Quality of Service - QoS Overview, QoS Mechanisms. Network          |
|         | Evolution - Internet of Things, Cloud and Virtualization, Network   |
|         | Programming. Network Troubleshooting - Troubleshooting              |
|         | Methodology, Troubleshooting Scenarios.                             |
|         | WBL Placement                                                       |
| EIEXL1A | Experiential Learning 1                                             |
| EIEXL2A | Experiential Learning 2                                             |
|         | Engineering Project 4                                               |
| EIPRJ4A | Industrial problem solving and documentation.                       |

| Syllabi: |                                                                  |  |
|----------|------------------------------------------------------------------|--|
| _        | DIPLOMA IN ELECTRICAL ENGINEERING: PROCESS CONTROL               |  |
| Module   | (Extended 4 year programme) (Course code: DE0865)                |  |
| Code     | Module Description                                               |  |
| Code     | CENTER 1                                                         |  |
|          | SEMESTER 1                                                       |  |
|          | Foundation Chemistry 1                                           |  |
| AAXCH1A  | Atoms, molecules & ions; Stoichiometry; Reactions in aqueous     |  |
| ААЛСНІА  | solution; Rate and extent of reactions; Chemical equilibrium;    |  |
|          | Acids, bases and salts; Electrochemistry.                        |  |
|          | Foundation Mathematics 1                                         |  |
|          | Intro to Algebra, Expressions & equations, Linear & simultaneous |  |
| AMXMA1A  | equations, Polynomial equations, Matrix algebra, Hyperbolic      |  |
|          | functions.                                                       |  |
|          | Foundation Physics 1                                             |  |
|          | Mechanics: Force and Newton's laws; Momentum and impulse;        |  |
| APXPH1A  | Vertical projectile motion in one dimension; Work, energy &      |  |
|          | power; Doppler effect.                                           |  |
|          | SEMESTER 2                                                       |  |
| AAXCH2A  | Foundation Chemistry 2                                           |  |

|         | Organic molecules; The chemical industry.                                                                                                                                              |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMXMA2A | <b>Foundation Mathematics 2</b><br>Polynomial equations, Partial fractions, Trigonometry (radian measure), Binomial series, Functions, Intro to differentiation, Intro to integration. |
| АРХРН2А | Foundation Physics 2<br>Electrostatics; Electric circuits; Electrodynamics; Optical<br>phenomena; Properties of materials; Emission and absorption<br>spectra.                         |

| Syllabi:<br>ADVANCED DIPLOMA IN ELECTRICAL ENGINEERING: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                         | PROCESS CONTROL ENGINEERING (Course code: AD0825)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Module<br>Code                                          | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Coue                                                    | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                         | Electrical Engineering Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| EIPRO4A                                                 | Research Methodology: Introduction to Research methodology,<br>Research topics, Different types of research, All research<br>concepts and outputs, Referencing. Project Proposal: Discussion<br>of the project proposal, Introduction: (Background, Purpose,<br>Problem), Problem statement, Sub problems, Hypothesis,<br>Assumptions, Delimitations, Definition of terms, Importance of<br>the project, Overview of the project and summary. Literature<br>Review: Introduction to literature study, Background of the topic<br>being researched, Relevance of literature used for the study,<br>Evidence of researched literature to address the components of<br>the project, Citations and referenced used with research<br>literature with reference to the VUT referring documentation.<br>Sub-Problem 1 chapter: Introduction relevant to identified sub<br>problem 1, Restatement of what the sub problem 1 is that need<br>to be solved, Restatement of the hypothesis associated with the<br>stated sub problem 1, Theory, relevant laws, fundamentals<br>applicable to the stated sub problem 1, Methods, methodology<br>used as well as what resources used to solve the sub problem1,<br>Results obtained through tests, analysis and interpretation of the<br>obtained data, Discussion of the results (explanations and<br>evaluation of the data obtained), Testing of the hypothesis,<br>Summary of what was discussed in the chapter. Sub-Problem 2<br>chapter: Introduction relevant to identified sub problem 2,<br>Restatement of what the sub problem 2 is that need to be solved,<br>Restatement of the hypothesis associated with the stated sub |  |

|         | problem 2, Theory, relevant laws, fundamentals applicable to the<br>stated sub problem 2, Methods, methodology used as well as<br>what resources used to solve the sub problem2, Results obtained<br>through tests, analysis and interpretation of the obtained data,<br>Discussion of the results (explanations and evaluation of the data<br>obtained), Testing of the hypothesis, Summary of what was<br>discussed in the chapter. Final chapter: Summary of the identified<br>problem statement and sub problems, Findings and deductions,<br>Meaning and implications of the research that was conducted,<br>Re-assessment of the original identified problems,<br>Recommendations, Fields for further studies.<br>Final project demonstration: Presentation of the identified<br>problem and sub problems, technologies used and how was the<br>final solution obtained, Final project hardware layout,<br>Demonstration of the solution, Questions and answers<br>(Moderator/Examiners).                                                                                                                                                         |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EIREM4A | Engineering Research Methods<br>Aspects of research: Introduction, importance of research,<br>elements of research, defining research, dimensions of research,<br>what research is not, nature of research and ethical requirements<br>for researchers. Types of Research: Introduction, basic and<br>applied research and research as per discipline or technical group.<br>Sources of topics for scientific research: Introduction, starting<br>point for research, sources of research topics or problems, when<br>a topic is not a research problem and determining the suitability<br>of a research problem. Demarcating of the research problem:<br>Introduction, selecting a subject for research, posing a research<br>problem as statement and steps in problem demarcation and<br>formulation. Formulating a hypothesis: Introduction, defining a<br>hypothesis, inductive and deductive hypothesis, variables and<br>examples of formulated hypothesis. Writing a research proposal:<br>Introduction, defining a research proposal, value of a research<br>proposal, types of research proposals and components of the<br>research proposal. |
| EIPRI4A | Process Instrumentation<br>Nuclear reactor instrumentation, control of chemical reactors,<br>blending and ratio controls, analyzers, water quality monitoring<br>systems, smoke and air quality monitors air pollution control,<br>control centers, un-interruptible power supplies, wiring practices,<br>plc Communication And Automation, Selecting, Commissioning<br>and Maintenance of a PLC System, Distributed Control Systems,<br>Hierarchy Control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EIDSP4A | Digital Signal Processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|         | Discrete systems and signals: Define Shannon's sampling<br>theorem, define the impulse and step function, sketch and<br>perform elementary algebraic operations with discrete signals,<br>construct difference equations and block diagrams for discrete<br>systems, determine the response of linear, time invariant system<br>to various inputs. Time Domain Analysis: Determine the zero<br>input response of second order circuits, determine the complete<br>response of second order circuits with initial conditions and non-<br>zero inputs. Z-Transform: Define the z transform X(z), verify the<br>important properties of the z transform, determine the z<br>transform X(z) for time functions x(k), use the method of long<br>division and partial fractions to find the inverse z transform of<br>X(z). Frequency Domain Analysis: Relate the transient response<br>of a system to the roots of the denominator of the system<br>function H(z), determine the frequency response of the system |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | $H(\omega)$ , from $H(z)$ . Discrete Fourier Transform: Determine the frequency spectrum of non-periodic signals and determine the frequency spectrum of periodic signals. Project: Low Pass FIR Filter designs: The design of fourth and fifth order low pass FIR filters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | Advanced Engineering Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AMAEM4A | Mathematical skills using: Applications of integration; Laplace transform; First order differential equations and D-operators and Two dimensional Laplace equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BHEMN4A | Engineering Management<br>Contracts, Tenders, Planning techniques, Financial planning and<br>control, Labor, Plant and materials, Scheduling, Budgets Cash flow<br>and cost control, Labor law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EIDCS4A | <b>Digital Control Systems</b><br>Sampled Data Systems: Describe the basic elements of a digital control system and the fundamental process of sampling a continuous signal, express the input output relationship of digital systems in terms of difference equations, define the impulse function and step function, determine the z transform of important time functions and use z-transform techniques to solve difference equations. Transfer Functions: Visualise the sampling process to be composed of an ideal sampling action followed by a hold action, determine the transfer function of discrete cascaded systems and feedback systems and obtain the transfer function of a plant preceded by a zero-order hold device. Time Domain Analysis: Analyse the transient behaviour of a prototype second order continuous system, map between values in the s                                                                                                                                     |

|         | plane and the z plane, judge the response of discrete systems by<br>relating the essential discrete characteristics to the properties of<br>a similar and more familiar continuous system, view the transient<br>response of discrete systems in terms of the position of the roots<br>of the characteristic equation in the z plane and determine the<br>steady state behaviour of digital control systems. Stability<br>Analysis: Use the Jury test to judge the stability of discrete control<br>systems and prescribe the set of conditions that will guarantee<br>stable operation of a digital control system. Root Locus<br>Techniques: Construct the root locus from the characteristic<br>equation of a system and analyse transient and stability<br>behaviour of systems by means of the root locus. Digital<br>Controller Design: Improve system response with controller<br>design based on root locus methods, determine digital forms of<br>the PID control algorithm and realize PID controllers. Project:<br>Level Control: To complete this project, students will be required |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | to construct a circuit representing a water level control system<br>with various parameters to simulate PID control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EIINT4A | Industrial Network Systems<br>The ISA-95 standard, basic concepts, different similar standards,<br>MES Model, MESA model, ISA-95 standard functionality, ISA-95<br>Enterprise Process Control Model, ISA-95 parts discussions,<br>benefits of the ISA-95 standard, End-users use of the standard,<br>Integrator use of the standard, Integration of ISA-88 and ISA-95<br>standards, comparison op the two models, integrating ERP and<br>MES systems using the two standards, Secure architecture for<br>industrial process control hierarchy, Enterprise zones, Different<br>zones and level in the control hierarchy, practical implementation<br>of an ICS network, architecture security patterns for ICS, access<br>control, Log management, network security, remote access to<br>ICS, IIOT and Plantweb Digital Eco System and Industry 4.0 for<br>process control and mobile process control networking.                                                                                                                                                                                 |

| Syllabi:<br>POSTGRADUATE DIPLOMA IN ELECTRICAL ENGINEERING:<br>PROCESS CONTROL ENGINEERING (Course code: PG0825) |                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module<br>Code                                                                                                   | Module Description                                                                                                                                                                     |
|                                                                                                                  | Process Control Engineering Research Project<br>Process Control based problem definition (III Defined), literature<br>study, design of Solution using knowledge, skill and technology, |

| Implementation of the proposed solution design, demonstration of solution and reporting on how technologies and systems were                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>used to produce the final industry related solution.                                                                                                                                      |
| Research Statistics                                                                                                                                                                           |
| This module develops the student's knowledge and skill in the                                                                                                                                 |
| application of basic mathematics; Statistics in management;<br>Exploratory data analysis; Statistical models for forecasting and<br>planning. How to perform basic mathematical calculations; |
| Setting the statistical scene; Exploratory data analysis & application on Excel; Statistical models for forecasting and                                                                       |
| planning; Basic probability concepts & Probability distributions and Inferential statistics.                                                                                                  |
| Advanced DCS and Safety Systems Engineering                                                                                                                                                   |
| High level Process Control Systems, "Smart" Instrumentation,                                                                                                                                  |
| Control Schemes & Strategies, Advanced Process Automation,                                                                                                                                    |
| Modelling & Simulation, Fuzzy, Neural & Expert Systems, and                                                                                                                                   |
| Plant Optimization.                                                                                                                                                                           |
| Advanced Process Instrumentation Systems                                                                                                                                                      |
| Development of maintenance strategies working with Smart                                                                                                                                      |
| instrumentation, predictive maintenance strategies and                                                                                                                                        |
| implementation, Advanced instrumentation diagnostics using                                                                                                                                    |
| new IIOT technology tools and systems.                                                                                                                                                        |
| Process Control System Design and Development                                                                                                                                                 |
| Design, Optimization, and Implementation of process control                                                                                                                                   |
| plants with reference to IIOT technologies and Smart field                                                                                                                                    |
| <br>instrumentation.                                                                                                                                                                          |
| Smart Digital Instrumentation Engineering                                                                                                                                                     |
| This module introduces Smart HART and Foundation Fieldbus                                                                                                                                     |
| digital field instrumentation, Wireless HART instrumentation,                                                                                                                                 |
| interfacing instrumentation to Basic Plant Control System (BPCS)                                                                                                                              |
| and Safety Integrated System (SIS) systems. Design, configuration,                                                                                                                            |
| implementation, testing and asset optimization techniques are                                                                                                                                 |
| utilized for optimum plant design. Utilizing the new Smart HART,                                                                                                                              |
| Smart Foundation Fieldbus and HART Wireless technologies used                                                                                                                                 |
| in digital field instrumentation to design industrial plants to                                                                                                                               |
| enable industry to have more reliable operations and effective                                                                                                                                |
| <br>running plants.                                                                                                                                                                           |
| Smart Industrial Network Control                                                                                                                                                              |
| MES, SAP system interfacing to industrial networks and various                                                                                                                                |
| plant control systems, safety systems, 3 <sup>rd</sup> party control systems                                                                                                                  |
| and various management systems.                                                                                                                                                               |

## 11.7 ELECTRICAL ENGINEERING: COMPUTER SYSTEMS

| Syllabi:<br>DIPLOMA IN ELECTRICAL ENGINEERING: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| COMPUTER SYSTEMS (3 year programme)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| (Course Code: DI0822)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Module<br>Code                                 | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| НКСОХ1А                                        | <u>Applied Communication Skills 1.1</u><br>Communication theory: what is meant by communication;<br>elements common to all forms of communication; Reading for<br>academic purpose: what it means to read a written text<br>purposefully; Writing process and referencing: writing requires<br>knowledge of grammar, punctuation, spelling, style, structure<br>and audience; Listening process: why people fail to listen; the<br>different types of listening; aspects of intercultural listening,<br>Creative thinking, critical thinking and disability communication:<br>critical thinking.                                                                                                                   |  |
| EEESK1A                                        | Engineering Skills 1<br>The Engineering Profession: Different types of engineering.<br>Mechanical, electrical, civil, chemical, computer etc. The<br>engineering team; artisans, technicians, technologists and<br>engineers. Engineering Teamwork: Engineering design.<br>Teamwork versus group work. Basic principles of; engineering<br>project management (plan, organize, lead and control), project<br>costing, budgeting and resource management. What is a business<br>plan? Engineering and the Environment: social responsibility,<br>environmental impact, natural resources, sustainability of the<br>engineering: professional ethics, responsibility, engineering<br>norms, ECSA and their function. |  |
| EPEEN1A                                        | Electrical Engineering 1<br>Electrical Principles: The electron theory, Heat, Magnetism,<br>Friction, Pressure, Light, Chemical Action, Batteries, International<br>system of measurement. Basic Electrical Concepts: The electrical<br>circuit, Electrical current flow, Electrical current, Electromotive<br>force and voltage, Definitions of electric, magnetic and other SI<br>units, Resistance, Resistors. Network Theorems in Direct Current<br>Circuits: Kirchhoff's laws, Superposition theorem, Thevenin                                                                                                                                                                                                |  |

|         | the second Newton's The second Chan Dalta and dalt                  |
|---------|---------------------------------------------------------------------|
|         | theorem, Norton's Theorem, Star-Delta and delta conversion,         |
|         | Delta-Star conversion, Star-delta conversion. Electro Magnetism:    |
|         | The magnetic field, Electromagnetic Force on a current-carrying     |
|         | conductor, Electromagnetic induction, Lenz's law, Faraday's law.    |
|         | Inductance in Direct Current Circuits: Inductive circuits,          |
|         | Inductance, Current growth in an inductive circuit, Current decay   |
|         | in an inductive circuit, Energy stored in an inductor, Types of     |
|         | inductors. Capacitance in Direct Current Circuits: Capacitors,      |
|         | Capacitance, Series capacitor circuit, Parallel capacitor circuits. |
|         | Parallel Magnetic Cores: Parallel magnetic circuits, electrical     |
|         | analogy, series and parallel in magnetic circuits.                  |
|         | ICT Skills 1                                                        |
|         | Recognizing Computers; Using current versions of Microsoft          |
| ASICT1A | Windows Professional; Common Elements; Microsoft Word;              |
|         | Microsoft Excel; Microsoft PowerPoint; Microsoft Outlook,           |
|         | Getting connected and using the Internet.                           |
|         | Engineering Mathematics 1                                           |
|         | Binomial expansion, radian measure and limits of functions:         |
|         | Binomial theorem, Radian measure. Applications of radian            |
|         | measure. Differentiation techniques: Limits of functions,           |
|         | Differentiation from first principles, Derivatives of polynomials & |
|         | product rule, The quotient and chain rules, Derivatives of trig     |
|         | functions, Derivatives of exponential & log functions, Higher       |
|         | order derivatives, Implicit differentiation, Logarithmic            |
| AMMAT1A | differentiation, Applications. Integration techniques: Integration  |
|         | (Indefinite integrals), Definite integrals, Area enclosed by two    |
|         | curves, Simpson's rule. Vectors: Rep & magnitude of vectors.        |
|         | Resolving vectors, Unit vectors and direction vectors, Scalar       |
|         | multiplication, addition and sub, Dot product, the angle between    |
|         | two vectors and work done, Determinant of a 2 x 2 matrix. Cross     |
|         | product and the moment of a vector. Complex numbers: Rep. of        |
|         | complex numbers and operations, Equality of complex numbers,        |
|         | Argand diagram, polar form & De Moivre's, Calculating roots.        |
|         | Physics 1                                                           |
|         | Units of measurement, Waves and sound, Principles of Linear         |
|         | Superposition and Interference, Electromagnetic waves,              |
| APHYS1A | Interference and Wave nature of light, Reflection of Light:         |
|         | Mirrors, Refraction of Light, Lenses and optical instruments,       |
|         | Vectors and scalars, Kinematics in one dimension, Forces and        |
|         | Newton's Law of Motion, Work and Energy, Impulse and                |
|         | Momentum, Electric Forces and Electric Fields, Electric Potential   |
|         | and Potential Energy, Electric circuits, Fluids, Temperature and    |
|         | heat, Transfer of heat, Nuclear Physics and Radioactivity.          |
| l       |                                                                     |

| [       |                                                                       |
|---------|-----------------------------------------------------------------------|
| EESIN1A | Social Intelligence 1                                                 |
|         | Leadership styles: Democratic, Autocratic, Consensus etc.             |
|         | Economic systems of governance: Capitalism, Socialism and             |
|         | Communism. Etiquette in society and the workplace. Soft skills,       |
|         | Cultural influences. Success in Engineering: Professionalism,         |
|         | Ethics, Responsibility, Discipline, Time management, Acquiring        |
|         | information and Independent learning.                                 |
|         | SEMESTER 2                                                            |
|         | Applied Communication Skills 1.2                                      |
|         | Social Intelligence: Characteristics of Social Intelligence;          |
|         | Paragraphing: The structure of a paragraph, Elements of a             |
|         | Paragraph, Report writing: Different types of reports, Purpose of     |
|         | a report, Perception: What does perception involve? Facts vs          |
|         | Opinions: Facts, opinions. Subjectivity and Objectivity:              |
| HKCOY1A | Introduction, Subjectivity, objectivity. Denotations and              |
|         | Connotations: Denotation, connotation. Bias: Age Bias, Belief         |
|         | system or Religious Bias, Disability, Visual Literacy: Different      |
|         | types of visual literacy. Graphics: Tables, Bar Graphs, Histogram,    |
|         | Pie Chart, Line Graph, Pictogram, and Flow Chart.                     |
|         | Advertisements: Examples of Figurative language.                      |
|         | Computing Applications 2                                              |
|         | Introduction: steps of program development, program design            |
|         | methodology, basic input, processing and output, introducing          |
|         | algorithms and pseudo code. Constants, Variables, and                 |
|         | Arithmetic Operators: meaningful names, defining the problem,         |
|         | designing the algorithm, pseudo code, general integer division        |
|         | and modulus operators. Scope of variables: data types, variable       |
|         | naming, declarations and assignments, scope of variables.             |
| EICOA2A | Modularization: steps of modularization, procedures, functions        |
|         | and passing variables. Selection structures: arithmetic operators,    |
|         | comparison operators, logic operators, messages, simple               |
|         | compound and nested structures, case structures. Repetition           |
|         | structures: counters and accumulators, do_while structure,            |
|         | for loop, nested structures. Arrays: One dimensional arrays,          |
|         | defining arrays, saving displaying and searching arrays,              |
|         | multidimensional arrays.                                              |
|         | Digital Systems 1                                                     |
|         | Digital and Analogue Quantities: Binary Digits, Logic Levels, Digital |
|         | Waveforms Basic Logic Functions. Number Systems, Operations           |
| EIDSY1A | and Codes: Decimal Numbers, Binary Numbers, Decimal-to-               |
| EIDSY1A | Binary Conversion, Binary Arithmetic, Compliments of Binary           |
|         | Numbers, Signed Numbers, Arithmetic Operations with Signed            |
|         |                                                                       |
|         | Numbers, Hexadecimal Numbers, Octal Numbers, Binary Coded             |

|         | Decimal (BCD), Digital Codes, Error Codes. Logic Gates: The           |
|---------|-----------------------------------------------------------------------|
|         | inverter, The AND gate, The OR gate, The NAND gate, The NOR           |
|         | gate and the Exclusive-OR and Exclusive-NOR gate, Fixed-              |
|         | Function Logic Gates. Boolean Algebra and Logic Simplifications:      |
|         | Boolean Operations and Expressions, Laws and Rules of Boolean         |
|         | Algebra, DeMorgan's Theorems, Boolean Analysis of Logic               |
|         | Circuits, Logic Simplifications using Boolean Algebra, Standard       |
|         | Forms of Boolean Expressions, Boolean Expressions and Truth           |
|         | Tables, The Karnaugh Map, Karnaugh Map SOP Minimization,              |
|         | Karnaugh Map POS Minimization. Combinational Logic Analysis:          |
|         | Basic Combinational Logic Circuits, Implementing Combinational        |
|         | Logic, The Universal Property of NAND and NOR gates,                  |
|         | Combinational Logic using NAND and NOR gates, Pulse Waveform          |
|         | Operation. Functions of Combinational Logic: Half and Full            |
|         | Adders, Parallel Binary Adders, Ripple Carry and Look-Ahead           |
|         | Carry Adders, Comparators, Decoders, Encoders, Code                   |
|         | Converters, Multiplexers (Data Selectors), De-multiplexers, Parity    |
|         | Generators/Checkers.                                                  |
|         | Electrical Engineering 2                                              |
|         | Single Phase AC Circuits: Series Impedance Circuits, AC Voltage       |
|         | Diver, Components of current, Admittance, Parallel impedance          |
|         | circuits, Current divider. Power and Power Factor Correction:         |
|         | Active (Real) power, Power in a resistive ac circuit, Power in an     |
|         | active ac circuit, Power in a capacitive ac circuit, Peak and average |
|         | power, the complex power triangle, Complex power, Reactive            |
|         | power, Power factor, Disadvantage of a low power factor, causes       |
|         | of low power, Power factor correction, Equipment used for power       |
|         | factor improvement, Importance of power factor improvement,           |
|         | Calculations on power factor improvement. Network Theorems            |
|         | in AC Circuits: Kirchhoff's laws, Superposition theorem, Thevenin     |
| EPEEN2A | theorem, Norton's Theorem, Star-Delta and delta conversion,           |
|         | Delta-Star conversion, Star-delta conversion, Maximum power           |
|         | transfer theorem. Resonance: Effect of varying frequency in           |
|         | series ac circuits, Frequency effect on the circuit impedance,        |
|         | Current at resonance, Resonance rise in voltage, Energy transfer      |
|         | between the inductor and capacitor, Resonant frequency in series      |
|         | ac circuits, Tuning for resonance, Q-factor of a series resonant      |
|         | circuit, Practical parallel resonant circuit. Complex Waves and       |
|         | Harmonics: Integration of waveforms, Production of harmonics,         |
|         | Effect of reactance in complex circuits, Composition of complex       |
|         | waves, Power and power factor of non-sinusoidal waves,                |
|         | Resonance as a result of non-sinusoidal waves, Addition and           |
|         | subtraction of non-sinusoidal waveforms.                              |

|         | Engineering Mathematics 2                                             |
|---------|-----------------------------------------------------------------------|
|         | Differentiation: Inverse trig functions, Hyperbolic functions,        |
|         | Inverse hyperbolic functions, Parametric equations, Maxima and        |
|         | minima, Partial differentiation, Small changes, Rate of change.       |
|         | Integration: Revision of integration, Use of formulae sheet,          |
|         | Inverse functions, Partial fractions, Partial fractions, Integration  |
| AMMAT2A | by parts, Trig. & hyperbolic substitutions, t-formulae, Mean and      |
|         | RMS values. Differential Equations: Differential eq., separation,     |
|         | Using the integrating factor, Applications, Homogeneous               |
|         | differential equations. Matrix Algebra: Operations with matrices,     |
|         | Inverse of a matrix, solve equations using inverse, Cramer's rule,    |
|         | Eigenvalues and -vectors. Probability and Statistics: Data            |
|         | representation, Data summaries, Normal distribution, Conf.            |
|         | intervals, error est. Conf. intervals, error est. Hypothesis testing. |
|         | Physics 2 Practical                                                   |
|         | Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors |
|         | in series and in parallel, RC Circuits. Magnetic Fields, Force on a   |
|         | moving charge, Particle motion in a magnetic field, Mass              |
|         | spectrometer, Current in a magnetic field, Torque on current-         |
|         | carrying coil, Magnetic fields produced by current, Amperes Law.      |
|         | Electromagnetic Induction, Induced EMF, Motional EMF,                 |
|         | Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,         |
|         | Transformers. Alternating Current Circuits, Capacitive Reactance,     |
|         | Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,      |
|         | Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,       |
| ΑΡΗΥΡ2Α | The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of       |
|         | gas, Diffusion. Thermodynamics, Thermodynamic Systems,                |
|         | Zeroth Law, First law of thermodynamics, Thermal processes,           |
|         | Specific heat capacities, Second Law of Thermodynamics, Heat          |
|         | engines, Carnot's Principle, Refrigeration, Entropy. Nature of the    |
|         | Atom, X Rays, Lasers. Radiation, Ionising Radiation, Nuclear          |
|         | Energy and Elementary Particles, Biological Effects of Ionizing       |
|         | Radiation, Induced Nuclear Reactions, Nuclear Fission, Nuclear        |
|         | Reactors, Nuclear Fusion. Kinematics in two dimensions,               |
|         | Displacement velocity and acceleration, Equations, Projectile         |
|         | motion. Uniform Circular Motion, Acceleration, Centripetal force,     |
|         | Rotational Kinematics, Rotational Dynamics. Simple Harmonic           |
|         | motion and Elasticity.                                                |
|         | Physics 2 Theory                                                      |
|         | Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors |
| ΑΡΗΥΤ2Α | in series and in parallel, RC Circuits. Magnetic Fields, Force on a   |
|         | moving charge, Particle motion in a magnetic field, Mass              |
|         | spectrometer, Current in a magnetic field, Torque on current-         |

|         | carrying coil, Magnetic fields produced by current, Amperes Law.                   |
|---------|------------------------------------------------------------------------------------|
|         | Electromagnetic Induction, Induced EMF, Motional EMF,                              |
|         | Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,                      |
|         | Transformers. Alternating Current Circuits, Capacitive Reactance,                  |
|         | Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,                   |
|         | Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,                    |
|         | The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of                    |
|         | gas, Diffusion. Thermodynamics, Thermodynamic Systems,                             |
|         | Zeroth Law, First law of thermodynamics, Thermal processes,                        |
|         | Specific heat capacities, Second Law of Thermodynamics, Heat                       |
|         | engines, Carnot's Principle, Refrigeration, Entropy. Nature of the                 |
|         | Atom, X Rays, Lasers. Radiation, Ionising Radiation, Nuclear                       |
|         | Energy and Elementary Particles, Biological Effects of Ionizing                    |
|         | Radiation, Induced Nuclear Reactions, Nuclear Fission, Nuclear                     |
|         | Reactors, Nuclear Fusion. Kinematics in two dimensions,                            |
|         | Displacement velocity and acceleration, Equations, Projectile                      |
|         | motion. Uniform Circular Motion, Acceleration, Centripetal force,                  |
|         | Rotational Kinematics, Rotational Dynamics. Simple Harmonic motion and Elasticity. |
|         | Safety Principles and Law 1                                                        |
|         | Importance of health and safety: What is safety and health                         |
|         | concepts as indicated in the OHS Act, Fundamental safety                           |
|         | concepts and terms: Fundamental safety terms, legal                                |
|         | appointments as per the OHS Act, duties of the legal appointees                    |
|         | as per the OHS Act, safety awareness and fire training, What is                    |
|         | hazards and risk in the workplace: What is a hazard, what is a risk,               |
|         | what is the difference between a hazard and a risk, identification                 |
|         | of main six hazards in the workplace, occupational hazards,                        |
|         | difference between an accident and an incident: general                            |
|         | principles of control and risk reduction, safe systems of work,                    |
| EESPA1A | permit-to-work systems, emergency procedures and first-aid,                        |
|         | Principles of hazard and risk control: What is a risk assessment,                  |
|         | why do a risk assessment, how to conduct a risk assessment, Risk                   |
|         | assessment and risk management, Tools and Machinery: Tool and                      |
|         | machine hazards, Principles of safeguarding powered and driven                     |
|         | machines, point of operation safeguards, controls for hand toll                    |
|         | hazards, portable power tool controls, Electrical safety: What do                  |
|         | I need to know about electricity, what kind of injuries result from                |
|         | electrical current, electrical shock hazards, arc flash, control of                |
|         | electrical hazards, electrical safety-related work practices, Noise                |
|         | and vibration: Sound and noise, hearing, hazards of noise,                         |
|         | exposure standard for noise, engineering controls for noise, noise                 |

|         | measurement, vibrations of the human body or parts of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | human body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | SEMESTER 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HKCOX2A | Applied Communication Skills 2.1<br>Introduction to Group Dynamics: Show understanding of<br>different group characteristics, Communication Theory:<br>Communication Model, Communication Barriers, Communication<br>styles in workplace, PowerPoint Presentations: Planning and<br>preparation of a presentation (Audience, Language, Knowledge of<br>topics, Level of education, Social variables, Values, Needs and Size<br>of Audience, Non-verbal and Intercultural Communication:<br>Introduction to Non-verbal Communication, Logic and Reasoning:<br>Conceptualise vital terminology uses in argumentative writing,<br>construct a logically sound and well- reasoned argument, write<br>and present logical arguments, Meetings and Interviews:<br>Introduction of meetings, Types of meetings.                                                                                                                                                                                                                                                                                    |
| EIDSY2A | Digital Systems 2<br>Latches Flip-Flops and Timers: Latches, Flip-Flops, Flip-Flop<br>Operating Characteristics, Flip-Flop Applications, One-Shots, the<br>a-stable multi-vibrator. Shift Registers: Shift Register Operation,<br>Types of Shift Register, Bidirectional Shift Registers, Shift Register<br>Counters, Shift Register Applications. Counters: Finite State<br>Machines, Asynchronous Counter Operation, Synchronous<br>Counter Operation, Up/Down Synchronous Counters, Design of<br>Synchronous Counters, Cascaded Counters, Counter Decoding,<br>Counter Applications. Data Storage: Semiconductor Memory<br>Basics, The Random-Access Memory (RAM), Read-Only Memory<br>(ROM), Programmable Rom, The Flash Memory, Memory<br>Expansion, Special Types of Memories, Magnetic and Optical<br>Storage, Memory Hierarchy, Cloud Storage. Signal Conversion<br>and Processing: Analogue-to-Digital Conversion, Methods of<br>analogue-to-Digital Conversion, Methods of Digital -to- analogue<br>Conversion, Digital Signal Processing, The Digital Signal Processor<br>(DSP). |
| EEELE1A | Electronics 1<br>Introduction to Electronics: The Atom, Materials Used in<br>Electronics, Current in Semiconductors, N-Type and P-Type<br>Semiconductors, the PN Junction. Diodes and Applications: Diode<br>Operation, Voltage-Current (V-I) Characteristics of a diode, Diode<br>Models, Half-Wave Rectifiers, Full-Wave Rectifiers, Power Supply<br>Filters and Regulators, Diode Limiters and Clampers, Voltage<br>Multipliers, The Diode Datasheet, Troubleshooting. Special-<br>Purpose Diodes: The Zener Diode, Zener Diode Applications, The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|         | Verester Diede Onticel Dieder Other Turner of Di                                                                              |
|---------|-------------------------------------------------------------------------------------------------------------------------------|
|         | Varactor Diode, Optical Diodes, Other Types of Diodes,<br>Troubleshooting. Bipolar Junction Transistors: BJT Structure,       |
|         | Basic BJT Operation, BJT Characteristics and Parameters, The BJT                                                              |
|         | as an Amplifier, The BJT as a Switch, The Phototransistor,                                                                    |
|         | Transistor Categories and Packaging, Troubleshooting. Transistor                                                              |
|         | с с с, с                                                                                                                      |
|         | Bias Circuits: The DC Operating Point, Voltage-Divider Bias, Other                                                            |
|         | Bias Methods, Troubleshooting. Engineering Programming 1                                                                      |
|         | Introduction to programming: different languages, first program,                                                              |
|         | integer variables, numbers and operators, characters, flow                                                                    |
|         | •                                                                                                                             |
|         | control, input and output. Advanced Flow Control and Data                                                                     |
|         | Aggregates: if and else, more types, loops, Boolean algebra,                                                                  |
|         | vectors, initiators: simple arrays, multidimensional arrays,                                                                  |
|         | structures and why we need them. Extending Expressive Power:                                                                  |
|         | pointers, functions and memory. Accessing Different kinds of                                                                  |
| EIENP1A | Data: arrays of pointers, conversions, strings, and namespaces.                                                               |
|         | Object Programming Essentials: basic concepts, a class, static                                                                |
|         | components, and objects vs pointers inside objects. Inheritance:                                                              |
|         | class hierarchy, inheritance and type compatibility,                                                                          |
|         | polymorphism and virtual methods, objects as parameters and                                                                   |
|         | dynamic casting, various supplements, constant keyword.                                                                       |
|         | Exceptions: to errors in human, throw statement, categorizing                                                                 |
|         | exceptions, catching exceptions. Operators and Enumerated                                                                     |
|         | types: overloading operators, enumerated types.                                                                               |
|         | <u>Networks 1</u>                                                                                                             |
|         | Introduction – Exploring the Network: Global Connectivity,                                                                    |
|         | Networking Today, LANs, WANs, and the Internet, Components                                                                    |
|         | of a Network, The Network as a data communications platform,                                                                  |
|         | The changing Network Environment. Configuring a Network                                                                       |
|         | Operating System: The IOS, Basic Configurations, Network<br>Addressing Schemes. Network Protocols and Communications:         |
|         | The Rules of Communications, Protocols and Standards, How                                                                     |
|         |                                                                                                                               |
| EINET1A | Data moves in a Network. Network Access: Physical layer                                                                       |
| LINELIA | Protocols, Network Media, Data Link Layer Protocols, Media<br>Access Control. Ethernet: Ethernet Protocol, Address Resolution |
|         | Protocol, LAN Switches Network Layer: Network Layer Protocols,                                                                |
|         | Routing Principles, what is a Router, Configuring Routers. IP                                                                 |
|         | Addressing: IPV4 and IPV6 Addressing, Connectivity, ICMP. Sub                                                                 |
|         | netting IP Networks: Sub netting of IPV4 Networks, Addressing                                                                 |
|         | Schemes, Structured Design, Design Considerations for IPV6.                                                                   |
|         | Transport Layer: Transport layer Protocols, TCP and UDP                                                                       |
|         | Characteristics and Operation. Application layer: Application                                                                 |
|         | layer Protocols, Well-known Application Layer Protocols and                                                                   |
|         | l layer Frotocols, well-known Application Layer Protocols and                                                                 |

|         | Services, HTTP, DHCP, DNS, SMTP etc. Build a Small Network:<br>Network Design, Network Security, Network performance,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Troubleshooting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EISEN1A | Software Engineering 1<br>Model Driven Architecture (MDA), Object Methods Groups<br>(OMG) and Unified Modelling Language (UML); Rational Unified<br>Process (RUP); Software Engineering Body of knowledge<br>(SWEBOK). Tools, IBM Rational Software Architect, IBM<br>InfoSphere Data Architect. Building the Analysis Model: Problem<br>Statement, Use Case Diagram (Actors and Use Cases), Activity<br>Diagram, Use Case Specification (Overview and Detail), Structure<br>Use Case Model, Design and Prototype the User Interface,<br>Concepts of Object Orientated Analysis. Introduction to Use Case<br>Analysis: Use Case Realization, Finding Analysis Classes and Class<br>Responsibility Analysis, Domain Model, View of Participating<br>Classes (VOPC), Distribute Use Case Behaviour to Analysis Classes,<br>Describe Attributes and Associations and Qualify Analysis<br>Mechanism. Integrate Project: VOPC from Individual Use Case<br>VOPC's, Conceptual and Logical Data Modelling Concepts, Derive<br>the Integrated Logical Data Model for the Use Case from the<br>VOPC. |
| EIOSY1A | <b>Operating Systems 1</b><br>Introduction to operating systems: Overview of Hardware and<br>Operating system concepts, components. Role of Operating<br>systems, View of Operating systems. Operating systems<br>structure: Operating systems structures: OPS Services, System<br>calls, Device management, Design goals, Overview of the booting<br>process using LINUX architecture. Process concept: Process<br>concept, Process state, Process scheduling, Inter process<br>communication. Multithreading programming: Overview of<br>threads, types of threads, operations, benefits, multithreading.<br>Process scheduling: CPU Scheduling: basic concepts, scheduling<br>criteria and algorithms (FCFS, PS, RR, SJF). Synchronization:<br>Process Synchronization: Basic process interactions: Critical<br>section problem. Cooperation, Semaphores. Deadlocks: System<br>model,, deadlock characterization, methods of handling<br>deadlocks, deadlocks prevention, deadlocks detection, deadlock<br>avoidance, deadlocks recovery.                                                |
|         | SEMESTER 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| НКСОҮ2А | Applied Communication Skills 2.2<br>Interpersonal Skills in the Workplace: Group Dynamics, Conflict<br>Resolution, Persuasion, Negotiation, Mediation, the Business<br>Plan: Introduction to the business plan, Marketing your new                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| r       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | business; Intellectual Property; How to obtain funding for your<br>small business; The Business Pitch, Disability Etiquette: Definition<br>of disability and disablism, Different depictions of disability,<br>Words to describe different disabilities, Disability in South Africa,<br>Models of disability; Disability Etiquette, Job advertisement,<br>Curriculum Vitae and Cover letter: Analysing job advertisements;<br>aligning your skills with job advertisements; Designing a<br>professional curriculum vitae; Online job applications, Drafting a<br>cover letter, Written Messages: E-mail etiquette; Writing Styles;<br>Memoranda, Business Letters; The News Article.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | Digital Systems 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EIDSY3A | The 8051 Microcontroller: The discussion of the role of microcontrollers in everyday life, criteria for choosing microcontroller and various members of the 8051 microcontroller family. 8051 Assembly programming: The listing and discussion of 8051 registers, assemble and run 8051 program, discuss RAM memory space allocation in 8051 and understand the RISC and CISC architecture. Jump, Loop and Call Instructions: Code 8051 Assembly language instructions using loops, conditional and unconditional jump instructions and subroutines. Calculates the target address for jump instructions, describe precaution in using stack in subroutines and discuss crystal frequency VS machine cycle in 8051. I/O Port Programming: List four I/O ports of the 8051, explain the role of each port, code Assembly language to use ports as input and output, instruction for handling I/O and code I/O bit manipulation programs. 8051 Addressing Modes: List and explain the five addressing modes of the 8051 microcontroller, stack manipulation using direct addressing mode and accessing RAM, I/O and ports using bit addressing. Arithmetic Logic Instructions and Programs: Define the range of numbers possible in 8051 unsigned numbers data, code addition, subtraction, multiplications and divisions for unsigned numbers. Code logic instructions AND, OR, XOR and use logic instruction for bit manipulation. Use compare and jump for program control. Compare and contrast packed and unpacked BCD data. Code programs for ASCII and BCD conversion. 8051 Programming in C: Code C programs for time delay and I/O operations and BIT manipulation. Code C programs logic and arithmetic operations, ASCII and BCD conversions, and binary (hex) to decimal conversion. |
| EEELE2A | Electronics 2<br>BJT Amplifiers: Amplifier Operation, Transistor Models, the<br>Common-Emitter Amplifier, the Common-Collector Amplifier, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|         | Common-Base Amplifier, Multistage Amplifiers, the Differential<br>Amplifier. Power Amplifiers: The Class A Power Amplifier, The<br>Class B and Class AB Push-Pull Amplifiers, The Class C Power<br>Amplifier. Field Effect Transistors: The JFET, JFET Characteristics<br>and Parameters, JFET Biasing, The Ohmic Region, The MOSFET,<br>MOSFET Characteristics and Parameters, MOSFET Biasing, The<br>IGBT. FET Amplifiers and Switching Circuits: The Common-Source<br>Amplifier, The Common-Drain Amplifier, The Common-Gate<br>Amplifier, The Class D Amplifier, MOSFET Analog Switching,<br>MOSFET Digital Switching. Amplifier Frequency Response: Basic<br>Concepts, The Decibel, Low-Frequency Amplifier Response, High-<br>Frequency Amplifier Response, Total Amplifier Frequency<br>Response. Thyristors: The Four-Layer Diode, The Silicon-<br>Controlled Rectifier (SCR), SCR, Applications, The Diac and Triac,<br>The Silicon-Controlled Switch (SCS), Programmable Uni-junction<br>Transistor (PUT). |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EIENP2A | Engineering Programming 2<br>The Analysis Model of a system: selection of an appropriate<br>model. Iterative System Build: Select and Prepare a use case for<br>design and/or code; Use Case Design; Perform Class Design; Code<br>and Unit Test a use case using the build tools as defined in the<br>Architecture document; Integrate and test: the use case with all<br>other use cases in the build. Principles of Database Design: The<br>Logical Data model is transformed into a physical Data Base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EINET2A | Networks 2<br>Routing Concepts: Configuration, Decisions, Operation. Static<br>Routing: Implementation, Configuration of Static and Default<br>Routes, Summary and Floating Static Routes, Troubleshooting<br>Static and Default Rotes. Routing Dynamically: Dynamic Routing<br>Protocols, Distance Vector Routing, RIP and RIPng, The Routing<br>Table. Switched Networks: LAN Design, The Switched<br>Environment, General Concepts of Switching, Switching<br>Configuration: Configuration, Security, Management and<br>Implementation. VLANS: Segmentation, VLAN Implementation,<br>Trunks, Inter-VLAN Routing, Troubleshooting, Access Control<br>Lists: IP ACL Operation, Standard and Extended ACLs for IPv4,<br>Troubleshooting, IPv6 ACLs. DHCP Protocol IPv4 and IPv6:<br>Principles, Configuration and Troubleshooting. Network Address<br>Translation, NAT Operation, Configuration and troubleshooting.<br>Managing the Network: IOS Management, Maintenance,<br>Backups.                               |
| EIOSY2A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|         | Main Memory: Contiguous Memory Allocation, Paging,<br>Swapping. Virtual Memory: Demand Paging, Page Replacement,<br>Frame Allocation. Mass Storage System: Overview of Mass<br>Storage Structure, HDD Scheduling, NVM Scheduling, Error<br>Detection and Correction, Storage Device Management, Swap-<br>Space Management, RAID Structure. I/O Systems: I/O Hardware,<br>Application I/O Interface, Kernel I/O Subsystem, Transforming I/O<br>Requests to Hardware Operations. File System Interface: File<br>Concept, Access Methods, Disk and Directory Structure, File-<br>System Mounting, File Sharing, Protection. File System<br>implementation: File-System Structure, File-System Operations,<br>Directory Implementation, Allocation Methods, Free-Space<br>Management, Efficiency and Performance. File System Internals:<br>File Systems, File-System Mounting, Partitions and Mounting, File<br>Sharing, Virtual File Systems, Remote File Systems, NFS. Security:<br>Program Threats, System and Network Threats, Cryptography as<br>a Security, User Authentication, Implementing Security Defenses,<br>Firewalling to Protect Systems and Networks, Computer-Security<br>Classifications. Virtual Machines: Benefits and Features, Building<br>Blocks, Types of Virtual Machines and Their Implementations,<br>Virtualization and Operating-System Components. Network and<br>Distributed Systems: Advantages of Distributed Systems,<br>Network Structure, Communication Structure, Network and<br>Distributed Operating Systems, Design Issues of Distributed<br>Systems, Distributed File Systems. |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EISEN2A | Software Engineering 2<br>The Analysis Model of a system: selection of an appropriate<br>model. Iterative System Build: Select and Prepare a use case for<br>design and/or code; Use Case Design; Perform Class Design; Code<br>and Unit Test a use case using the build tools as defined in the<br>Architecture document; Integrate and test: the use case with all<br>other use cases in the build. Principles of Database Design: The<br>Logical Data model is transformed into a physical Data Base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | SEMESTER 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | Engineering Programming 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | A Senior Level Certified Object Orientated Programming Course selected out of the mainstream Object Orientated Courses such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EIENP3A | as CPS - C++ Certified Senior Programmer or The Equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | Certified Java Course or the equivalent C Programming course<br>such as CLS - C Certified Senior Programmer Certificate or an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | appropriate level web-based development course, depending on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|         | the programming demands of Software Engineering Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Sample Curriculum for CPS - C++ Certified Senior Programmer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | Mathematics 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| АММАТЗА | Application of Integration: Volumes of solids of revolution,<br>Length of Curves, Double Integrals: Iterated Integrals & Fubini's<br>theorem, Double Integrals, Polar Coordinates. First Order<br>Differentiation Equations: Exact DE, Homogeneous DE, Bernoulli<br>DE, Applications (Excluding Newton's Law of Cooling), D-Operator<br>Methods. Numerical Solutions of First Order Differential<br>Equations: Euler's method, Runge-Kutta order 2, Runge-Kutta<br>order 4. Operator D Methods/Undetermined coefficients:<br>Complementary Solutions, D-operator & Inverse, binomial or long<br>division method, Theorem 1, Theorem 2, Theorem 3, Special<br>cases, General solution, Applications. Laplace Transforms, and<br>Table of transforms. (Derivation from first principles not for<br>examination purposes), First shifting property, Laplace<br>transforms of derivatives, Inverse Laplace Transforms using<br>tables, Laplace Transforms of discontinuous functions, Inverse<br>Laplace Transforms of discontinuous functions, Solution of<br>differential equations, Application to electric circuits, Application<br>to beams. Fourier Series: Periodic functions and harmonics,<br>sketching of graphs and determining Fourier Series, Series with<br>period 2l, Even and Odd functions, Full range and Half range |
| EINET3A | series, Numerical Harmonic Analysis.<br><u>Networks 3</u><br>LAN Design – Introduction to LAN Design, Campus Wired LAN<br>designs, Selecting Network Devices. Scaling VLANs – VTP,<br>Extended VLAN's and DTP, Troubleshooting, Layer 3 Switching.<br>STP – LAN Redundancy, Spanning Tree Concepts, Spanning Tree<br>Configuration. Ether Channel and HSRP – Link Aggregation<br>Concepts and Configuration, First Hop Redundancy Protocols.<br>Dynamic Routing – Dynamic Routing Protocols, Distance Vector<br>Routing, Links State Routing. EIGRP – EIGRP Characteristics,<br>EIGRP Operation, Implementing EIGRP for IPv4 and IPv6. EIGRP<br>Tuning and Troubleshooting – Tune EIGRP, Troubleshoot EIGRP.<br>Single-Area OSPF – OSPF Characteristics, Single Area OSPF v2 and<br>v3. Multi-Area OSPF – Multi-Area OSPF Operation, and<br>Configuration. OSPF Tuning and Troubleshooting – Advanced<br>Single-Area OSPF Configuration, Troubleshooting Single – Area<br>OSPF Implementations.                                                                                                                                                                                                                                                                                                                                    |
| EIOSY3A | <b>Operating Systems 3</b><br>Domain Controllers. Active Directory. Authentication and<br>Account Policies. Complex Enterprise Environments. Group Policy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|         | Objects, processing, settings and preferences (GPOs). Certificate<br>Services (AD CS). Digital Certificates. Active Directory Federation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Services (AD FS). Web Application Proxy (WAP). Active Directory<br>Rights Management (AD RMS). Samba on Linux server. Apache<br>web server on Linux server. Linux clients to access Windows-<br>based services.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EISEN3A | Software Engineering 3<br>Software Engineering Project: using a pre-developed problem, all<br>the aspects learned are put together in one project to complete<br>phase by phase. Each phase to be started with the best solution.<br>Data Query Language: constructs and use of data query language.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EIDSY4A | Digital Systems 4<br>8051 Timer Programming in C, Programming 8051 Timers,<br>Counter Programming, Programming Timers 0 and 1 in 8051 C.<br>8051 Serial Port PROGRAMMING in C, Basic Serial<br>Communication, 8051 connection to RS232, 8051 serial port<br>programming in C. Interrupt Programming in C, 8051 Interrupts,<br>Programming Timer interrupts, Programming External Hardware<br>interrupts, Programming the Serial Communication interrupt,<br>Interrupt Priority in 8051/8052, Interrupt Programming in C. LCD<br>and Keyboard interfacing, LCD Interfacing, Keyboard interfacing,<br>ADC, DAC and Sensor interfacing, Parallel and serial ADC, DAC<br>interfacing, Sensor interfacing and signal conditioning. Relay,<br>Opto-isolator and Stepper motor, Relay and Opto-Isolator,<br>Stepper Motor interfacing. DC Motor Control and PWM, DC<br>Motor interfacing and PWM SPI and I2C Protocols, SPI BUS<br>Protocol, I2C BUS Protocol. |
|         | SEMESTER 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EIENP4A | Engineering Programming 4<br>Developing a foundational comprehension of selected software<br>engineering principles with reference to various software<br>engineering knowledge areas, their practice and application in<br>the Discipline of Systems Engineering as applied to Engineered<br>Systems (ES).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EINET4A | Networks 4<br>WAN Concepts - WAN Technologies Overview, Selecting a WAN<br>Technology. Point-to-Point Connections - Serial Point-to-Point<br>Overview, PPP Operation, PPP Implementation, Troubleshoot<br>WAN Connectivity. Branch Connections - Remote Access<br>Connections, PPPoE, VPN's, GRE, eBGP. Access Control Lists -<br>Standard ACL Operation and Configuration Review, Extended IPv4<br>ACLs, IPv6 ACLs, Troubleshoot ACLs. Network Security and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|               | Monitoring - LAN Security, SNMP, Cisco Switch Port Analyzer.<br>Quality of Service - QoS Overview, QoS Mechanisms. Network<br>Evolution - Internet of Things, Cloud and Virtualization, Network<br>Programming. Network Troubleshooting - Troubleshooting<br>Methodology, Troubleshooting Scenarios. |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WBL Placement |                                                                                                                                                                                                                                                                                                      |  |
| EIEXC1A       | EIEXC1A Experiential Learning 1 (Computer Systems)                                                                                                                                                                                                                                                   |  |
| EIEXC2A       | Experiential Learning 2 (Computer Systems)                                                                                                                                                                                                                                                           |  |
| EIPRC4A       | Engineering Project 4<br>Industrial problem solving and documentation.                                                                                                                                                                                                                               |  |

|                                                   | Syllabi:                                                         |  |
|---------------------------------------------------|------------------------------------------------------------------|--|
| DIPLON                                            | DIPLOMA IN ELECTRICAL ENGINEERING: COMPUTER SYSTEMS              |  |
| (Extended 4 year programme) (Course code: DE0862) |                                                                  |  |
| Module                                            | Module Description                                               |  |
| Code                                              |                                                                  |  |
| SEMESTER 1                                        |                                                                  |  |
|                                                   | Foundation Chemistry 1                                           |  |
| AAXCH1A                                           | Atoms, molecules & ions; Stoichiometry; Reactions in aqueous     |  |
| AAACHIA                                           | solution; Rate and extent of reactions; Chemical equilibrium;    |  |
|                                                   | Acids, bases and salts; Electrochemistry.                        |  |
|                                                   | Foundation Mathematics 1                                         |  |
| AMXMA1A                                           | Intro to Algebra, Expressions & equations, Linear & simultaneous |  |
|                                                   | equations, Polynomial equations, Matrix algebra, Hyperbolic      |  |
|                                                   | functions.                                                       |  |
|                                                   | Foundation Physics 1                                             |  |
| APXPH1A                                           | Mechanics: Force and Newton's laws; Momentum and impulse;        |  |
|                                                   | Vertical projectile motion in one dimension; Work, energy &      |  |
|                                                   | power; Doppler effect.                                           |  |
|                                                   | SEMESTER 2                                                       |  |
| AAXCH2A                                           | Foundation Chemistry 2                                           |  |
|                                                   | Organic molecules; The chemical industry.                        |  |
|                                                   | Foundation Mathematics 2                                         |  |
| AMXMA2A                                           | Polynomial equations, Partial fractions, Trigonometry (radian    |  |
|                                                   | measure), Binomial series, Functions, Intro to differentiation,  |  |
|                                                   | Intro to integration.                                            |  |
|                                                   | Foundation Physics 2                                             |  |
| APXPH2A                                           | Electrostatics; Electric circuits; Electrodynamics; Optical      |  |
|                                                   | phenomena; Properties of materials; Emission and absorption      |  |
|                                                   | spectra.                                                         |  |

| Syllabi:<br>ADVANCED DIPLOMA IN ELECTRICAL ENGINEERING: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                         | COMPUTER SYSTEMS ENGINEERING (Course code: AD0822)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Module                                                  | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Code                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                         | SEMESTER 1<br>Electrical Engineering Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| EIPRO4A                                                 | Research Methodology: Introduction to Research methodology,<br>Research topics, Different types of research, all research concepts<br>and outputs, Referencing. Project Proposal: Discussion of the<br>project proposal, Introduction: (Background, Purpose, Problem),<br>Problem statement, Sub problems, Hypothesis, Assumptions,<br>Delimitations, Definition of terms, Importance of the project,<br>Overview of the project and summary. Literature Review:<br>Introduction to literature study, Background of the topic being<br>researched, Relevance of literature used for the study, Evidence<br>of researched literature to address the components of the<br>project, Citations and referenced used with research literature<br>with reference to the VUT referring documentation. Sub-Problem<br>1 chapter: Introduction relevant to identified sub problem 1,<br>Restatement of what the sub problem 1 is that need to be solved,<br>Restatement of the hypothesis associated with the stated sub<br>problem 1, Theory, relevant laws, fundamentals applicable to the<br>stated sub problem 1, Methods, methodology used as well as<br>what resources used to solve the sub problem1, Results obtained<br>through tests, analysis and interpretation of the obtained data,<br>Discussion of the results (explanations and evaluation of the data<br>obtained), Testing of the hypothesis, Summary of what was<br>discussed in the chapter. Sub-Problem 2 chapter: Introduction<br>relevant to identified sub problem 2, Restatement of the<br>hypothesis associated with the stated sub problem<br>2, Methods, methodology used as well as what resources used to<br>solve the sub problem2, Results obtained through tests, analysis<br>and interpretation of the obtained data, Discussion of the results<br>(explanations and evaluation of the data obtained), Testing of the<br>hypothesis, Summary of what was discussed in the chapter. Final<br>chapter: Summary of the identified problem statement and sub<br>problems, Findings and deductions, Meaning and implications of<br>the research that was conducted, Re-assessment of the original<br>identified problems, Recommendations, Fields for furt |  |  |

|         | Final project demonstration, Presentation of the identified                                                                   |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------|--|
|         | Final project demonstration: Presentation of the identified                                                                   |  |
|         | problem and sub problems, technologies used and how was the final solution obtained, Final project hardware layout,           |  |
|         |                                                                                                                               |  |
|         | Demonstration of the solution, Questions and answers (Moderator/Examiners)                                                    |  |
|         | Engineering Research Methods                                                                                                  |  |
|         | Aspects of research: Introduction, importance of research,                                                                    |  |
|         | elements of research, defining research, dimensions of research,                                                              |  |
|         | what research is not, nature of research and ethical requirements                                                             |  |
|         | for researchers. Types of Research: Introduction, basic and                                                                   |  |
|         | applied research and research as per discipline or technical group.                                                           |  |
|         | Sources of topics for scientific research: Introduction, starting                                                             |  |
|         | point for research, sources of research topics or problems, when                                                              |  |
|         | a topic is not a research problem and determining the suitability                                                             |  |
| EIREM4A | of a research problem. Demarcating of the research problem:                                                                   |  |
|         | Introduction, selecting a subject for research, posing a research                                                             |  |
|         | problem as statement and steps in problem demarcation and                                                                     |  |
|         | formulation. Formulating a hypothesis: Introduction, defining a                                                               |  |
|         | hypothesis, inductive and deductive hypothesis, variables and                                                                 |  |
|         | examples of formulated hypothesis. Writing a research proposal:                                                               |  |
|         | Introduction, defining a research proposal, value of a research                                                               |  |
|         | proposal, types of research proposals and components of the                                                                   |  |
|         | research proposal.                                                                                                            |  |
|         | Micro Systems Design                                                                                                          |  |
|         | Introduction: Concepts of embedded systems and Internet-of-                                                                   |  |
|         | Things (IoT), Architecture of microcontrollers, three-layered IoT                                                             |  |
|         | architecture, Hardware platforms - Arduino UNO hardware and                                                                   |  |
|         | NodeMCU/ESP8266. Programming IDE (Integrated development                                                                      |  |
|         | environment), Circuit design in electronic design automation                                                                  |  |
|         | (EDA) simulator software. Programming and algorithm design:                                                                   |  |
|         | Embedded system design, Design of algorithms – pseudocode and                                                                 |  |
|         | flow charts, C++ coding; variable and data types, Operators, Flow control statements and loops, functions, libraries and pre- |  |
| EIMSD4A | compiler directives. Interfacing and sensors: Interfacing                                                                     |  |
|         | microprocessors to the physical world, Using interrupts and                                                                   |  |
|         | polling, Resistive sensors, analogue and Digital interfaces,                                                                  |  |
|         | Analogue to digital conversion. Serial communication peripheral                                                               |  |
|         | interfaces: Universal Asynchronous Receiver/Transmitter                                                                       |  |
|         | (UART), Serial Peripheral Interface (SPI), Inter-integrated Circuit                                                           |  |
|         | (I2C), Interfacing the LCD and custom digital interface - DHT22.                                                              |  |
|         | Communication layer: Implementation of wireless sensor                                                                        |  |
|         | networks (WSN), The need for energy efficiency in WSN, TCP/IP                                                                 |  |
|         | protocol stack, Network layer, transport layer, lower layer                                                                   |  |
|         | protocol stuck, network layer, transport layer, lower layer                                                                   |  |

| r       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | wireless communication protocols; IEEE 802.11, IEEE 802.15.4,<br>Bluetooth low energy and Z-wave. Application layer: Hyper Text<br>Transport Protocol (HTTP) - server and client, Message Queue<br>Telemetry Transport (MQTT)- clients and broker, data logging on<br>the Serial Peripheral Interface Flash File System (SPIFF) and other<br>application layer protocols; CoAP, XMPP and AMQP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EEAEL4A | <b><u>Electronics</u></b><br>Advanced biasing; Universal preamplifier; Three stage semi-<br>power amplifier signal sources and Signal processing; Power<br>amplifier; Power supply; RF coil; Differential amplifier; Dual-gate<br>MOSFET and Power MOSFET.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EINTP4A | <b>New Technology Programming</b><br>Design, create, build and debug an Android app.•Apply algorithm<br>thinking to develop useful apps. Use the development tools in the<br>Android development environment. Use the major components<br>of Android API set to develop their own apps. Describe the life<br>cycles of Activities, Applications and Fragments. Use the Java<br>programming language to build Android apps. Know UI best-<br>practices. Be familiar with new UI components like Fragments and<br>the Action Bar. Store and manipulate data using Content<br>Providers, SQLite and Notifications. GPS to add orientation and<br>location to their apps. Package and prepare their apps for<br>distribution on the Google Play Store.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EIDBP4A | <b>Database Programming</b><br>Introduction to database system and SQL: Core components of a<br>Database Systems; Database Application Architecture; Database<br>Systems performance metrics; History of SQL; SQL Categories.<br>Introduction to SQL Server: SQL Server origins; SQL Server<br>hierarchy; System & User databases; Database Logins & Users;<br>Creating & reading database diagrams. Creating database<br>structures in SQL Server: Object naming rules in SQL Server; Rules<br>& conventions in SQL Server; SQL Server datatypes and their<br>usage; Concept of NULL; Concept of three-valued logic and its<br>implication on logical evaluations; Creating database objects;<br>Renaming database object and the implications thereof. Basic<br>data retrieval: SQL query life cycle within SQL Server; Execute<br>queries in SQL Server and view the results; Result set vs Print<br>statement; Data retrieval with SELECT statement; Projection vs<br>Selection; Filter results with WHERE clause; Order results with<br>ORDER BY; Operator precedence; Aliasing and the use thereof.<br>Data modification: INSERT data into a table and variation of the<br>INSERT statement; Modifying data with UPDATE statement;<br>Removing rows with DELETE statement; Copy rows with |

|         | INSERTSELECT statement; Importance of WHERE clause.<br>Advanced data retrieval: Filter rows with pattern matching, range<br>selection, list or set containment; Perform aggregate function<br>over a set of data; Perform aggregate function over a group of<br>data; Using derived tables. Joining data: Concept and usage of<br>JOINs, UNIONs and Sub-queries; Differentiate between the<br>different types of JOINs; Implement the different types of JOINs;<br>Extend a join between more than two tables; Implement Union<br>operation; Implement correlated and uncorrelated sub-queries.<br>Writing SQL scripts and batches: SQL Server scripts and batches;<br>Single and multiline comments; Declare and working with<br>variables; Alter the flow of code using selection with IF and CASE;<br>Iterating through code with loops; Exception handling in a<br>database; Database transactions; Database cursors; Using<br>temporary tables; Executing dynamic SQL statements. Working<br>with User Defined Functions: Define of User Defined Functions<br>(UDF); Benefits of UDFs; Deterministic vs non-deterministic<br>functions; System UDFs; Scalar functions compared to inline &<br>normal table valued functions; Limitations of UDFs. Working with<br>Stored Procedures: Define Stored Procedures; Benefits of stored<br>procedures; System & Extended stored procedures; Creating and<br>modifying stored procedures; Passing parameters into and out of<br>a stored procedure; Using the RETURN value; Code encryption in<br>stored procedures. Working with Triggers: Define Triggers within<br>a database system; Differentiate between the different trigger<br>option; Create and modify triggers; Enable and disable triggers.<br>Working with XML: Define XML and its usage in a database; Define<br>"Well-formed" XML; XML technology and related concepts; XML<br>in SQL Server and generating XML; XML datatype and available |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | methods. SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AMAEM4A | Advanced Engineering Mathematics<br>Mathematical skills using: Applications of integration; Laplace<br>transform; First order differential equations and D-operators and<br>Two dimensional Laplace equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BHEMN4A | Engineering Management<br>Contracts, Tenders, Planning techniques, Financial planning and<br>control, Labor, Plant and materials, Scheduling, Budgets Cash flow<br>and cost control, Labor law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | Software Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|         | Window Date Ormaniasticae                                             |
|---------|-----------------------------------------------------------------------|
|         | Wireless Data Communications                                          |
| EIWDC4A | Introduction to wireless channel: Physical modelling for wireless     |
|         | channels; input and output model of the wireless channels; time       |
|         | and frequency coherence; statistical channel modelling. Point to      |
|         | point communication: detection, diversity and channel                 |
|         | uncertainty: Detection in Rayleigh fading channel; Time Diversity;    |
|         | Antenna Diversity; Frequency Diversity; Impact of channel             |
|         | uncertainty. Cellular Systems: multiple access and interference       |
|         | management: Narrowband cellular systems; wideband systems.            |
|         | Capacity of Wireless Channels: AWGN channel capacity;                 |
|         | Resources of AWGN channel; Linear time invariant Gaussian             |
|         | channels; Capacity of fading channels. Multi-user capacity and        |
|         | opportunistic communication: Uplink AWGN channel; Downlink            |
|         | AWGN channel; Uplink fading channel; Downlink fading channels;        |
|         | frequency selective fading channel; multi-user diversity.             |
|         | Computer Network Security                                             |
|         | Network Security Threats: Fundamental principles, Worms,              |
|         | Viruses and Trojan Horses. Attack methodologies. Securing             |
|         | Network Devices: Device Access and Files, Privilege Levels and CLi.   |
| EICNS4A | Monitoring Devices. Automated features. Authentication,               |
| LICIUS  | Authorization and Accounting: Purpose of AAA, Local AAA, Server       |
|         | Based AAA, Implementing Firewall Technologies: Access Control         |
|         | Lists, Firewall Technologies, Context based Access Control, Zone      |
|         | based Policy Firewalls. Intrusion prevention: IPS Technologies,       |
|         | Implementation of IPS.                                                |
|         | Database Administration                                               |
|         | Manage database systems that help companies and corporations          |
|         | effectively and efficiently store, manage, and retrieve large         |
|         | volumes of data. Update outdated systems or integrate old data        |
|         | into a new system. Test existing systems and make changes or          |
|         | troubleshoot problems when necessary. Keep the database               |
|         | system functioning properly and add or delete users as needed.        |
|         | Responsible coordinating the maintenance of data integrity, back-     |
| EIDBS4A | up systems, and security with network administrators. Think           |
|         | logically, concentrate, and pay attention to details because those    |
|         | in this field are often required to pay attention to several tasks at |
|         | once. Work as part of a team. Provide data to external systems        |
|         | using exports, and include external data using imports. Track         |
|         | database performance and troubleshoot problems. Develop a             |
|         | complete database and demonstrate administrative tasks. Should        |
|         | investigate new technologies in the field of database including but   |
|         | not limited to NoSQL.                                                 |
| EIARI4A | Artificial Intelligence                                               |

An introduction to artificial intelligence, machine learning in business, natural language processing, robotics in business, artificial intelligence in business and society and the future of artificial intelligence.

| Syllabi:<br>POSTGRADUATE DIPLOMA IN ELECTRICAL ENGINEERING: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| СОМ                                                         | COMPUTER SYSTEMS ENGINEERING (Course code: PG0822)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Module                                                      | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Code                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                             | Engineering Research Project<br>Problem Definition (III Defined), Literature Study, Design of<br>Solution, Implementation of design, Demonstration of solution<br>and Reporting of what technologies and systems were used to<br>produce the final solution.                                                                                                                                                                                                                                                         |  |
|                                                             | Research Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                             | This module develops the student's knowledge and skill in the application of basic mathematics; Statistics in management; Exploratory data analysis; Statistical models for forecasting and planning. How to perform basic mathematical calculations; Setting the statistical scene; Exploratory data analysis & application on Excel; Statistical models for forecasting and planning; Basic probability concepts & Probability distributions and Inferential statistics.<br>Advanced Software Engineering Module 1 |  |
|                                                             | Practice and Application of the following Software Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                             | Knowledge Areas: Software Requirements, -Design, -<br>Construction, -Testing, -Quality, -Maintenance and -Configuration<br>Management.                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                             | Advanced Software Engineering Module 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                             | Practice and Application of the following Software Engineering<br>Knowledge Areas: Software Engineering Models and Methods,<br>Management, -Process, -Professional Practice, -Economics, -<br>Foundations, Computing Foundations and Mathematical<br>Foundations.                                                                                                                                                                                                                                                    |  |
|                                                             | Systems Engineering Module 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                             | Using the SEBoK and GRCSE as guidelines to concentrate on the                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                             | practice of Systems Design and Development (SDD) by acquiring<br>in-depth Knowledge about the Software engineering process,<br>Software engineering models and methods, Software quality.                                                                                                                                                                                                                                                                                                                            |  |
|                                                             | Systems Engineering Module 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

|    | Using the SEBoK and GRCSE as guidelines to concentrate on the practice of Systems Design and Development (SDD) by acquiring in-depth Knowledge of Software engineering professional practices, Software engineering economics, Computing foundations, Mathematical foundations an Engineering |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | foundations.                                                                                                                                                                                                                                                                                  |
|    | Advanced Networking Module 1                                                                                                                                                                                                                                                                  |
|    | Advanced Routing Services, Configuring the EIGRP protocol,                                                                                                                                                                                                                                    |
|    | Configuring the OSPF protocol, Manipulating Route Updates,                                                                                                                                                                                                                                    |
|    | Implementing Path Control, Implementing BGP protocol for ISP                                                                                                                                                                                                                                  |
|    | connectivity. Routing Facilities for Branches and Mobile                                                                                                                                                                                                                                      |
|    | connectivity, IPV6 in the enterprise.                                                                                                                                                                                                                                                         |
|    | Advanced Networking Module 2                                                                                                                                                                                                                                                                  |
|    | Advanced Switching: The Enterprise Campus Architecture, VLANS                                                                                                                                                                                                                                 |
|    | in a campus architecture, Implementing Spanning tree, Inter VLAN                                                                                                                                                                                                                              |
|    | Routing, Availability and redundancy, Securing the switched                                                                                                                                                                                                                                   |
|    | network Advanced Services. Maintenance and Troubleshooting                                                                                                                                                                                                                                    |
|    | complex networks, Maintaining and Troubleshooting Routing,                                                                                                                                                                                                                                    |
|    | addressing and performance issues. Troubleshooting security                                                                                                                                                                                                                                   |
|    | implementations.                                                                                                                                                                                                                                                                              |
|    | <b>Computer Systems Security</b><br>Local Network Security: Endpoint Security, Layer 2 Security<br>considerations, Wireless, VoIP and SAN Security, Configuring                                                                                                                               |
|    | Switch Security, SPAN and RSPAN. Cryptography: Services,<br>Hashes and Digital Signatures, Symmetric and Asymmetric<br>Encryption. Virtual Private Networks: VPNs, IPSec, Site to Site                                                                                                        |
|    | IPSec VPN, Remote Access VPN, SSL VPN. Managing a Secure                                                                                                                                                                                                                                      |
|    | Network: Network Lifecycle, Self-defending Networks, Building a                                                                                                                                                                                                                               |
|    | comprehensive security policy.                                                                                                                                                                                                                                                                |
|    | Advanced Hardware Systems                                                                                                                                                                                                                                                                     |
|    | Perspectives on the Design, Development and Deployment of                                                                                                                                                                                                                                     |
|    | Advanced Hardware Systems as deployed in the Petrochemical-,                                                                                                                                                                                                                                  |
|    | Steel-, Health-, Automotive-, Aeronautical-, Defense - and other                                                                                                                                                                                                                              |
|    | Industries that may be impacted by these systems.                                                                                                                                                                                                                                             |
|    | Emerging Systems                                                                                                                                                                                                                                                                              |
|    | New and Emerging IOT Systems and Developing Platforms,                                                                                                                                                                                                                                        |
|    | Techniques and Tools.                                                                                                                                                                                                                                                                         |
|    | Operating System Design                                                                                                                                                                                                                                                                       |
|    | Operating System Concepts, Understanding the structure of Linux                                                                                                                                                                                                                               |
|    | kernel, Special Purpose Systems, Designing and building the                                                                                                                                                                                                                                   |
| ļļ | special purpose operating system based on the Linux kernel.                                                                                                                                                                                                                                   |
|    | Intelligent Systems                                                                                                                                                                                                                                                                           |

Perspectives on the theory and application of systems that perceive, reason, learn, and act intelligently as they serve many different professionals in a broad range of fields.

## 11.8 INDUSTRIAL AND OPERATIONS MANAGEMENT

|                                                      | Syllabi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DIPLOMA IN INDUSTRIAL ENGINEERING (3 year programme) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                      | (Course code: DI0830)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Module                                               | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Code                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                      | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| HKCOX1A                                              | Applied Communication Skills 1.1<br>Communication theory: what is meant by communication;<br>elements common to all forms of communication; Reading for<br>academic purpose: what it means to read a written text<br>purposefully; Writing process and referencing: writing requires<br>knowledge of grammar, punctuation, spelling, style, structure and<br>audience; Listening process: why people fail to listen; the different<br>types of listening; aspects of intercultural listening, Creative<br>thinking, critical thinking and disability communication: critical<br>thinking.                                                                                                                                                                                              |  |
| EEESK1A                                              | Engineering Skills 1<br>The Engineering Profession: Different types of engineering.<br>Mechanical, electrical, civil, chemical, computer etc. The<br>engineering team; artisans, technicians, technologists and<br>engineers. Engineering Teamwork: Engineering design.<br>Teamwork versus group work. Basic principles of; engineering<br>project management (plan, organise, lead and control), project<br>costing, budgeting and resource management. What is a business<br>plan? Engineering and the Environment: social responsibility,<br>environmental impact, natural resources, sustainability of the<br>engineering activity. Legal and safety considerations. Ethics in<br>Engineering: professional ethics, responsibility, engineering<br>norms, ECSA and their function. |  |
| AAECH1A                                              | Engineering Chemistry 1<br>Matter and measurement; Atoms; Molecules and ions; Formulas,<br>Equations and moles; Chemical reactions in aqueous solution;<br>Periodicity and atomic structure; Ionic bonds; Covalent bonds and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

| molecular structure; Chemical equilibrium; Acids and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bases;                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Organic chemistry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |
| ICT Skills 1<br>Recognizing Computers; Using current versions of Mic           ASICT1A         Windows Professional; Common Elements; Microsoft Microsoft Excel; Microsoft PowerPoint; Microsoft Ougetting connected and using the Internet.                                                                                                                                                                                                                                                                                                                           | Word;                                                                                                                         |
| Engineering Mathematics 1Binomial expansion, radian measure and limits of fund<br>Binomial theorem, Radian measure. Applications of measure. Differentiation techniques: Limits of fund<br>Differentiation from first principles, Derivatives of polynom<br>product rule, The quotient and chain rules, Derivatives of<br>                                                                                                                                                                                                                                             | adian<br>tions,<br>ials &<br>of trig<br>order<br>ation,<br>efinite<br>urves,<br>olving<br>ation,<br>rs and<br>nd the<br>mbers |
| Physics 1           Units of measurement, Waves and sound, Principles of Superposition and Interference, Electromagnetic v           Interference and Wave nature of light, Reflection of Light: M           Refraction of Light, Lenses and optical instruments, Vector scalars, Kinematics in one dimension, Forces and Newton's I           Motion, Work and Energy, Impulse and Momentum, E           Forces and Electric Fields, Electric Potential and Potential Electric circuits, Fluids, Temperature and heat, Transfer of Nuclear Physics and Radioactivity. | vaves,<br>irrors,<br>rs and<br>.aw of<br>lectric<br>nergy,                                                                    |
| Social Intelligence 1           Leadership styles: Democratic, Autocratic, Consensus           Economic systems of governance: Capitalism, Socialism           Communism. Etiquette in society and the workplace. Soft           Cultural influences. Success in Engineering: Profession           Ethics, Responsibility, Discipline, Time management, Acquinformation and Independent learning.                                                                                                                                                                      | n and<br>skills,<br>alism,                                                                                                    |
| SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                               |
| HKCOY1A Applied Communication Skills 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |

|         | Social Intelligence: Characteristics of Social Intelligence;<br>Paragraphing: The structure of a paragraph, Elements of a<br>Paragraph, Report writing: Different types of reports, Purpose of<br>a report, Perception: What does perception involve? Facts vs<br>Opinions: Facts, opinions. Subjectivity and Objectivity:<br>Introduction, Subjectivity, objectivity. Denotations and<br>Connotations: Denotation, connotation. Bias: Age Bias, Belief<br>system or Religious Bias, Disability, Visual Literacy: Different types<br>of visual literacy. Graphics: Tables, Bar Graphs, Histogram, Pie<br>Chart, Line Graph, Pictogram, and Flow Chart. Advertisements:<br>Examples of Figurative language. |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBCOA2A | Computing Applications 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | Navigating EECOA2A on VUTela, Laboratory rules & guidelines.<br>SIMetrix Software: Working principles, Interfaces, creating<br>electronic circuits, simulation, graphs, measurements. Microsoft<br>Word 2016: Working principles, creating engineering documents,<br>navigating word, using operations. Microsoft Excel 2016: Working<br>principles, creating engineering spreadsheets, navigating excel to<br>solve engineering problems, using operations for engineering<br>applications.                                                                                                                                                                                                               |
| AAECH2A | Engineering Chemistry 2<br>Introduction to chemical bonding; Ionic bonds; Covalent bonding<br>and molecular structure; Hydrogen; The Group IA and IIA metals;<br>Boron and Aluminium; Chemical reactions in aqueous solutions;<br>Carbon, Silicon, Germanium, Tin, and Lead; Acids, bases, and non-<br>aqueous solvents; Nitrogen Phosphorus, Arsenic; Oxygen,<br>Sulphur, Selenium, and Tellurium; Halogens.                                                                                                                                                                                                                                                                                              |
| EMEDR1A | <b>Engineering Drawing 1</b><br>Drawing instruments; Drawing skills; Object visualization and<br>drawing; sketch and drawing of chemical engineering process<br>equipment's using computer software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| EBMRE2A | Manufacturing Relations 2<br>Introduction; Personnel and the personnel function; Job design;<br>Analysis and evaluation; Interviewing. Human relations:<br>Importance; Motivation theories; Organisation climate; Stress<br>and Conflict handling. Labour relations. Labour economy:<br>Demand and supply; Collective bargaining; Law machinery;<br>Acknowledged agreements and Negotiations.                                                                                                                                                                                                                                                                                                              |
| AMMAT2A | <b>Engineering Mathematics 2</b><br>Differentiation: Inverse trig functions, Hyperbolic functions,<br>Inverse hyperbolic functions, Parametric equations, Maxima and<br>minima, Partial differentiation, Small changes, Rate of change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|         | Integration: Revision of integration, Use of formulae sheet,<br>Inverse functions, Partial fractions, Partial fractions, Integration<br>by parts, Trig. & hyperbolic substitutions, t-formulae, Mean and<br>RMS values. Differential Equations: Differential equation,<br>separation, Using the integrating factor, Applications,<br>Homogeneous differential equations. Matrix Algebra: Operations<br>with matrices, Inverse of a matrix, solve equations using inverse,<br>Cramer's rule, Eigenvalues and –vectors. Probability and<br>Statistics: Data representation, Data summaries, Normal<br>distribution, Conf. intervals, error est. Conf. intervals, error est.<br>Hypothesis testing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| АРНҮР2А | <b>Physics 2 Practical</b><br>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors<br>in series and in parallel, RC Circuits. Magnetic Fields, Force on a<br>moving charge, Particle motion in a magnetic field, Mass<br>spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,<br>Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,<br>Transformers. Alternating Current Circuits, Capacitive Reactance,<br>Inductive Reactance, RLC Circuits. Fluids, Archimedes principle,<br>Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass,<br>The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of<br>gas, Diffusion. Thermodynamics, Thermodynamic Systems, Zeroth<br>Law, First law of thermodynamics, Thermal processes, Specific<br>heat capacities, Second Law of Thermodynamics, Heat engines,<br>Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X<br>Rays, Lasers. Radiation, Ionising radiation, Nuclear Energy and<br>Elementary Particles, Biological Effects of Ionizing Radiation,<br>Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors,<br>Nuclear Fusion. Kinematics in two dimensions, Displacement<br>velocity and acceleration, Equations, Projectile motion. Uniform<br>Circular Motion, Acceleration, Centripetal force, Rotational<br>Kinematics, Rotational Dynamics. Simple Harmonic motion and<br>Elasticity. |
| АРНҮТ2А | <b>Physics 2 Theory</b><br>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors<br>in series and in parallel, RC Circuits. Magnetic Fields, Force on a<br>moving charge, Particle motion in a magnetic field, Mass<br>spectrometer, Current in a magnetic field, Torque on current-<br>carrying coil, Magnetic fields produced by current, Amperes Law.<br>Electromagnetic Induction, Induced EMF, Motional EMF,<br>Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|         | Law, First law of thermodynamics, Thermal processes, Specific<br>heat capacities, Second Law of Thermodynamics, Heat engines,<br>Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X<br>Rays, Lasers. Radiation, Ionising Radiation, Nuclear Energy and<br>Elementary Particles, Biological Effects of Ionizing Radiation,<br>Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors,<br>Nuclear Fusion. Kinematics in two dimensions, Displacement<br>velocity and acceleration, Equations, Projectile motion. Uniform<br>Circular Motion, Acceleration, Centripetal force, Rotational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Kinematics, Rotational Dynamics. Simple Harmonic motion and Elasticity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EBSPA1A | Safety Principles and Law 1<br>Importance of health and safety: What is safety and health<br>concepts as indicated in the OHS Act, Fundamental safety<br>concepts and terms: Fundamental safety terms, legal<br>appointments as per the OHS Act, duties of the legal appointees<br>as per the OHS Act, safety awareness and fire training, What is<br>hazards and risk in the workplace: What is a hazard, what is a risk,<br>what is the difference between a hazard and a risk, identification<br>of main six hazards in the workplace, occupational hazards,<br>difference between an accident and an incident: general<br>principles of control and risk reduction, safe systems of work,<br>permit-to-work systems, emergency procedures and first-aid,<br>Principles of hazard and risk control: What is a risk assessment, Risk<br>assessment and risk management, Tools and Machinery: Tool and<br>machine hazards, Principles of safeguarding powered and driven<br>machines, point of operation safeguards, controls for hand toll<br>hazards, portable power tool controls, Electrical safety: What do I<br>need to know about electricity, what kind of injuries result from<br>electrical current, electrical safety-related work practices, Noise<br>and vibration: Sound and noise, hearing, hazards of noise,<br>exposure standard for noise, engineering controls for noise, noise<br>measurement, vibrations of the human body or parts of the<br>human body. |
|         | SEMESTER 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| HKCOX2A | Applied Communication Skills 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|         | Introduction to Group Dynamics: Show understanding of different             |
|---------|-----------------------------------------------------------------------------|
|         | group characteristics, Communication Theory: Communication                  |
|         | Model, Communication Barriers, Communication styles in                      |
|         | workplace, PowerPoint Presentations: Planning and preparation               |
|         | of a presentation (Audience, Language, Knowledge of topics, Level           |
|         | of education, Social variables, Values, Needs and Size of Audience,         |
|         | Non-verbal and Intercultural Communication: Introduction to                 |
|         | Non-verbal Communication, Logic and Reasoning: Conceptualise                |
|         | vital terminology uses in argumentative writing, construct a                |
|         | logically sound and well- reasoned argument, write and present              |
|         | logical arguments, Meetings and Interviews: Introduction of                 |
|         | meetings, Types of meetings.                                                |
|         | Electrical Engineering 1                                                    |
|         | Electrical Principles: The electron theory, Heat, Magnetism,                |
|         | Friction, Pressure, Light, Chemical Action, Batteries, International        |
|         | system of measurement. Basic Electrical Concepts: The electrical            |
|         | circuit, Electrical current flow, Electrical current, Electromotive         |
|         | force and voltage, Definitions of electric, magnetic and other SI           |
|         | units, Resistance, Resistors. Network Theorems in Direct Current            |
|         | Circuits: Kirchhoff's laws, Superposition theorem, Thevenin                 |
|         | theorem, Norton's Theorem, Star-Delta and delta conversion,                 |
| EPEEN1A | Delta-Star conversion, Star-delta conversion. Electro Magnetism:            |
|         | The magnetic field, Electromagnetic Force on a current-carrying             |
|         | conductor, Electromagnetic induction, Lenz's law, Faraday's law.            |
|         | Inductance in Direct Current Circuits: Inductive circuits,                  |
|         | Inductance, Current growth in an inductive circuit, Current decay           |
|         | in an inductive circuit, Energy stored in an inductor, Types of             |
|         | inductors. Capacitance in Direct Current Circuits: Capacitors,              |
|         | Capacitance, Series capacitor circuit, Parallel capacitor circuits.         |
|         | Parallel Magnetic Cores: Parallel magnetic circuits, electrical             |
|         | analogy, series and parallel in magnetic circuits. Engineering Work Study 1 |
|         | Introduction to work-study; Productivity; Choice of study method            |
|         | techniques; Study method (standard level); Work measurement                 |
| EBEWS1A | (time study); Human factors; Ergonomics; Working conditions and             |
|         | environment, Jigs and fixtures (introduction) and Computer                  |
|         | applications.                                                               |
|         | Mechanical Manufacturing Engineering 1                                      |
|         | Safety and safety legislation; Identification and application of            |
| EMMEN1A | materials; Elementary measuring equipment and Elementary                    |
|         | materials, Elementary measuring equipment and Elementary                    |
|         | hand and Machine tools.                                                     |

|         | Operating strategies; Forecasting; Process planning and designing; Trade-off analysis; Automated processes; Allocating resources with LP; Decision trees; Facility location; Aggregate planning; Master production schedules; Inventory systems; Material requirements planning and Lot-sizing for MRP and CRP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBQTE1A | Qualitative Techniques 1<br>Introduction; Descriptive techniques; Probability and probability<br>distributions; Sample selection and sampling theory; Statistical<br>process control; Hypothesis testing; Regression analysis and<br>Acceptance sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EMMEC1A | <u>Mechanics 1</u><br>Statics: Analysis of vectors in 2-D and 3-D Cartesian spaces;<br>Equilibrium of mechanical system and application to the<br>calculation of reaction; Resultant, Moments of force and<br>coordinates of Centre of gravity (Centroid); Friction; Dynamics;<br>Linear and angular motion; Momentum and impulse; Work<br>energy and power and Radial acceleration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AMMAT3A | Mathematics 3<br>Application of Integration: Volumes of solids of revolution, Length<br>of Curves, Double Integrals: Iterated Integrals & Fubini's theorem,<br>Double Integrals, Polar Coordinates. First Order Differentiation<br>Equations: Exact DE, Homogeneous DE, Bernoulli DE, Applications<br>(Excluding Newton's Law of Cooling), D-Operator Methods.<br>Numerical Solutions of First Order Differential Equations: Euler's<br>method, Runge-Kutta order 2, Runge-Kutta order 4. Operator D<br>Methods/Undetermined coefficients: Complementary Solutions,<br>D-operator & Inverse, binomial or long division method, Theorem<br>1, Theorem 2, Theorem 3, Special cases, General solution,<br>Applications. Laplace Transforms, and Table of transforms.<br>(Derivation from first principles not for examination purposes),<br>First shifting property, Laplace transforms of derivatives, Inverse<br>Laplace Transforms using tables, Laplace Transforms of<br>discontinuous functions, Inverse Laplace Transforms of<br>discontinuous functions, Solution of differential equations,<br>Application to electric circuits, Application to beams. Fourier<br>Series: Periodic functions and harmonics, sketching of graphs and<br>determining Fourier Series, Series with period 2l, Even and Odd<br>functions, Full range and Half range series, Numerical Harmonic<br>Analysis. |
|         | SEMESTER 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | Applied Communication Skills 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| НКСОҮ2А | Interpersonal Skills in the Workplace: Group Dynamics, Conflict<br>Resolution, Persuasion, Negotiation, Mediation, the Business<br>Plan: Introduction to the business plan, Marketing your new<br>business; Intellectual Property; How to obtain funding for your<br>small business; The Business Pitch, Disability Etiquette: Definition<br>of disability and disablism, Different depictions of disability,<br>Words to describe different disabilities, Disability in South Africa,<br>Models of disability; Disability Etiquette, Job advertisement,<br>Curriculum Vitae and Cover letter: Analysing job advertisements;<br>aligning your skills with job advertisements; Designing a<br>professional curriculum vitae; Online job applications, Drafting a<br>cover letter, Written Messages: E-mail etiquette; Writing Styles;<br>Memoranda, Business Letters; The News Article. |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BACOS2A | <b><u>Costing 2</u></b><br>Elements of cost; The introduction of elementary accounts;<br>Absorption / marginal costing; Cost-Volume-Profit analyses;<br>Budget and Standard costing variance analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EBEWS2A | Engineering Work Study 2<br>Work environment design; Value engineering; Proposed method<br>implementation; Standard data; Formula construction;<br>Predetermined time systems; Work sampling; Standard follow-up<br>and times; Wage payment and Training other management<br>practices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EBFLA2A | Facility Layout and Material Handling 2<br>Introduction; Facilities in general; Elementary flow system:<br>Material; People; Equipment and Information; Process design;<br>Auxiliary services; Employee services; Handling systems: Types;<br>Design; Constructing and Evaluation; The problems with material<br>handling: Area location; Layout evaluation and Selling the layout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EMMEN2A | Mechanical Manufacturing Engineering 2<br>Fault diagnosis; Failure analysis and measuring equipment; Test<br>methods; Interpretation and action; Powder metallurgy; Metal<br>forming; Erosion; Casting; Plastics-moulding and machining;<br>Welding and joining and Obtaining finish and accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EBPEN2A | <b>Production Engineering 2</b><br>Capacity management; Forecasting; Linear programming;<br>Transportation algorithms; Assignment problems; Scheduling<br>product focused; Manufacturing; Planning and scheduling service;<br>JIT manufacturing; Activity scheduling; MRP I and MRP II; Project<br>planning and control; Scheduling batch processing; Design and<br>scheduling flow; Processing systems; Material and purchasing and<br>Maintenance management and reliability.                                                                                                                                                                                                                                                                                                                                                                                                        |

|         | Quality Assurance 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBQAS2A | Quality Assurance 2<br>Introduction to quality; Quality improvement and cost reduction;<br>Strategic quality management; Developing a quality culture;<br>Designing for quality; Inspection, test and sampling plans;<br>Assessment of quality; Control of quality; Organisation for quality;<br>Understanding customer needs; Manufacture; Inspection test and<br>measurement and Quality assurance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | Computer-Aided Draughting 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EBCAD1A | Introduction to a 3D parametric software interface; Creating sections, parts, assemblies and drawings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EPEEN2A | Electrical Engineering 2<br>Single Phase AC Circuits: Series Impedance Circuits, AC Voltage<br>Diver, Components of current, Admittance, Parallel impedance<br>circuits, Current divider. Power and Power Factor Correction:<br>Active (Real) power, Power in a resistive ac circuit, Power in an<br>active ac circuit, Power in a capacitive ac circuit, Peak and average<br>power, the complex power triangle, Complex power, Reactive<br>power, Power factor, Disadvantage of a low power factor, causes<br>of low power, Power factor correction, Equipment used for power<br>factor improvement, Importance of power factor improvement,<br>Calculations on power factor improvement. Network Theorems<br>in AC Circuits: Kirchhoff's laws, Superposition theorem, Thevenin<br>theorem, Norton's Theorem, Star-Delta and delta conversion,<br>Delta-Star conversion, Star-delta conversion, Maximum power<br>transfer theorem. Resonance: Effect of varying frequency in<br>series ac circuits, Frequency effect on the circuit impedance,<br>Current at resonance, Resonance rise in voltage, Energy transfer<br>between the inductor and capacitor, Resonant frequency in series<br>ac circuits, Tuning for resonance, Q-factor of a series resonant<br>circuit, Practical parallel resonant circuit. Complex Waves and<br>Harmonics: Integration of waveforms, Production of harmonics,<br>Effect of reactance in complex circuits, Composition of complex<br>waves, Power and power factor of non-sinusoidal waves,<br>Resonance as a result of non-sinusoidal waves, Addition and<br>subtraction of non-sinusoidal waveforms. |
| EMMAE1A | Maintenance Engineering 1<br>Maintenance organisation, Work execution, Parts and materials,<br>Maintenance systems and documentation, Maintenance planning<br>and scheduling, Preventive and corrective maintenance,<br>Computerized maintenance systems, Maintenance safety and<br>efficiency, Reliability centred maintenance and Evaluation of a<br>maintenance program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Mechanics of Machines 2 |                                                                                                         |
|-------------------------|---------------------------------------------------------------------------------------------------------|
| EMMOM2A                 | Torque acceleration; Vehicle dynamics; Simple lifting machines;                                         |
|                         | Hoists and haulages; Moment of inertia; Simple harmonic motions                                         |
|                         | and Power transmission.                                                                                 |
| -                       | Strength of Materials 2                                                                                 |
|                         | Pin jointed structures; Stress and strain; Testing of materials;                                        |
| EMSOM2A                 | Stresses in thin rotating cylinders; Thin cylinders; Shafts; Rigid                                      |
|                         | couplings; Helical springs; Shear force and bending moments in                                          |
|                         | simply supported beams and cantilevers.                                                                 |
|                         | SEMESTER 5                                                                                              |
|                         | Automation 3                                                                                            |
|                         | Introduction: What is production? What is automation? What is                                           |
|                         | a system? Automation considerations; Levels of automation; Jigs                                         |
|                         | and figures and its applications; Press work and material usage;                                        |
|                         | Fundamentals of manufacturing and high volume production                                                |
|                         | systems; Numerical control production system; Press work                                                |
|                         | processes: Features of tools: Design of progression tooling,                                            |
|                         | Calculation for minimum material usage; Pneumatic and hydraulic                                         |
| EBAUT3A                 | automation of a workstation; Transfer machine; CNC machines:                                            |
|                         | Types, Classification and Writing a programme; The selection of                                         |
|                         | the correct level of automation (cycle time, quantity, economy                                          |
|                         | and other); Laboratory project; Associated operations: Automatic                                        |
|                         | feeding and orientation: Electronic detection of size, colour and                                       |
|                         | proximity, Pneumatic auto-sizing; Project: Design of an                                                 |
|                         | automotive system; Design a workstation; Design an automated                                            |
|                         | workstation or selected standard production machines or design a transfer machine for this application. |
|                         | Engineering Work Study 3                                                                                |
|                         | Information systems analysis and design; Performance                                                    |
| EBEWS3A                 | improvement programmes; Entrepreneurship theory; Financial                                              |
|                         | plan; Marketing plan and Business plan.                                                                 |
|                         | Industrial Accounting 3                                                                                 |
|                         | Introduction: The finance function; Financial analysis; Planning                                        |
|                         | and Control. Working capital management: Working Capital;                                               |
| EBIAC3A                 | Inventory models; Credit management and Investment decisions.                                           |
|                         | Capital budgeting techniques; Risk and investment return; Cost of                                       |
|                         | capital and Capital structure and leverage.                                                             |
|                         | Industrial Leadership 3                                                                                 |
|                         | Managers, diversity and change; Environment competitive                                                 |
| EBILE3A                 | advantage and quality operations; International management;                                             |
|                         | Managing ethics and social responsibilities; Fundamentals of                                            |
|                         | planning; Strategic management; Organising; Human resource                                              |

|            | management; Leading; Motivation; Communication;<br>Interpersonal skills; Group dynamics; Innovation and planned<br>changes and Controlling.                                                                                                                                                 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBORE3A    | <b>Operations Research 3</b><br>Introduction; Decision theory; Decisions trees; Linear programming and formulation; Transportation and network algorithms; Markov analysis; Project management; Simulation; Dynamic programming; Game theory and applications and Use of software packages. |
| SEMESTER 6 |                                                                                                                                                                                                                                                                                             |
| EBWIL1A    | Workplace Based Learning (Industrial)                                                                                                                                                                                                                                                       |

| Syllabi:                                                                               |                                                                  |  |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| DIPLOMA IN INDUSTRIAL ENGINEERING (Extended 4 year programme)<br>(Course code: DE0831) |                                                                  |  |  |
| Module Module Description                                                              |                                                                  |  |  |
| Code                                                                                   |                                                                  |  |  |
|                                                                                        | SEMESTER 1                                                       |  |  |
|                                                                                        | Foundation Chemistry 1                                           |  |  |
| AAXCH1A                                                                                | Atoms, molecules & ions; Stoichiometry; Reactions in aqueous     |  |  |
| AAACHIA                                                                                | solution; Rate and extent of reactions; Chemical equilibrium;    |  |  |
|                                                                                        | Acids, bases and salts; Electrochemistry.                        |  |  |
|                                                                                        | Foundation Mathematics 1                                         |  |  |
| AMXMA1A                                                                                | Intro to Algebra, Expressions & equations, Linear & simultaneous |  |  |
|                                                                                        | equations, Polynomial equations, Matrix algebra, Hyperbolic      |  |  |
|                                                                                        | functions.                                                       |  |  |
|                                                                                        | Foundation Physics 1                                             |  |  |
| APXPH1A                                                                                | Mechanics: Force and Newton's laws; Momentum and impulse;        |  |  |
|                                                                                        | Vertical projectile motion in one dimension; Work, energy &      |  |  |
|                                                                                        | power; Doppler effect. SEMESTER 2                                |  |  |
|                                                                                        | Foundation Chemistry 2                                           |  |  |
| AAXCH2A                                                                                | Organic molecules; The chemical industry.                        |  |  |
|                                                                                        | Foundation Mathematics 2                                         |  |  |
|                                                                                        | Polynomial equations, Partial fractions, Trigonometry (radian    |  |  |
| AMXMA2A                                                                                | measure), Binomial series, Functions, Intro to differentiation,  |  |  |
|                                                                                        | Intro to integration.                                            |  |  |
|                                                                                        | Foundation Physics 2                                             |  |  |
|                                                                                        | Electrostatics; Electric circuits; Electrodynamics; Optical      |  |  |
| APXPH2A                                                                                | phenomena; Properties of materials; Emission and absorption      |  |  |
|                                                                                        | spectra.                                                         |  |  |
| EMXDR1A                                                                                | Foundation Drawing 1                                             |  |  |

Letter and number notation; Line notation; Handling of apparatus; Measurement notation; Geometrical construction; Orthographic projections; Arcs of penetration and developments; Detailed works drawing; Composite drawings.

| Syllabi:                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADVANCED DIPLOMA IN INDUSTRIAL ENGINEERING |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (Course code: AD0830)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Module                                     | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Code                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                            | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            | Manufacturing and Production Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EBMPS4A                                    | Introduction and Basic Principles; Generalized Additive<br>Manufacturing Process Chain; Extrusion Based Systems; The<br>Impact of Low-Cost AM Systems Guidelines for Process<br>Selection; Post-Processing; Development of Additive<br>Manufacturing Technology; Business Opportunities and Future<br>Directions; Automated Inspection, Renewable Energy &<br>CAD/CAM; Software Issues for Additive Manufacturing; Direct                                                                                                                                                                                                                              |
|                                            | Digital Manufacturing; Design for Additive Manufacturing; Rapid<br>Tooling; Applications for Additive Manufacture; Final Additive<br>Manufacturing Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EBQIC4A                                    | Quality Control and Improvement<br>Trilogy of quality processes; Fundamentals and principles of<br>quality assurance; Use of engineering statistics in reducing<br>product variation; International standards for quality/quality<br>management systems; Use of lean Six Sigma in reducing waste<br>and/or reduction of process or product variation; Process design<br>and/or Design of experiments to design robust processes and<br>products; Reliability engineering and product safety concepts;<br>TQM management and concepts; Inspection and testing;<br>Quality audits.                                                                       |
| EBRMI4A                                    | <b>Research Methods and Industrial Engineering Project</b><br>Research as a way of thinking and the role of research in product<br>and service industries; Research process or concept map,<br>Identification of research approaches and evaluating research<br>strategies; Formulation of research problems; Research main<br>question and sub-questions; Setting research aim(s) and<br>objectives; Conceptualization and design of research; Critically<br>reviewing literature and secondary data; Types of data:<br>quantitative and qualitative; Constructing an instrument for<br>Data collections; How to select a research sample; Collecting |

|           | primary data through experimentation, measurement,                |
|-----------|-------------------------------------------------------------------|
|           | observation, interviews and questionnaires; Data                  |
|           | management/analysis and data presentation techniques, The         |
|           | writing of research proposal; Writing research report, Research   |
|           | Ethics.                                                           |
|           | SEMESTER 2                                                        |
|           | Facility Planning and Design                                      |
|           | Introduction to facility planning and material handling; Product, |
|           | process and schedule design; Flow systems, activity               |
| EBFPD4A   | relationships and space requirements; Principles of material      |
| 2011 0    | handling; Plant layout generation; Warehouse operations;          |
|           | Manufacturing systems and material handling; Facilities           |
|           | systems; Quantitative techniques for facility planning;           |
|           | Evaluating, selecting, and implementing the facilities plan.      |
|           | Human Factors and Ergonomics                                      |
| EBHFE4A   | Ergonomics; Human factors; Work design; Method study; Work        |
| 2011 2 01 | measurement; Health and safety including healthcare;              |
|           | Enterprise applications.                                          |
|           | Industrial Engineering Management                                 |
|           | This module takes an in-depth look into the managerial systems    |
|           | in the working environments; Providing the students with          |
|           | understanding of managerial principles and practice in internal   |
|           | and external working environments; The various challenges face    |
|           | by managers in today's manufacturing/working environments,        |
|           | and way forward; An approach and models for decision making       |
|           | and problem solving; In addition, the module focuses on the       |
| EBIEM4A   | Industrial engineering managerial principles in managing          |
|           | operation, Quality and Crisis management. The topics covered      |
|           | include, amongst others: Introduction to Management Practice,     |
|           | Managing in organizations, Model of management, Managing          |
|           | internationally, Cooperate responsibility and employability       |
|           | skills, Planning, Decision making, Managing strategy, Managing    |
|           | marketing, Organizational structure, Creativity, Innovation and   |
|           | change, Teams, Managing operation and quality, Control and        |
|           | performance measurement.                                          |
|           | Financial Engineering and Economics                               |
|           | Discrete-time models of equity, bond, credit, and foreign-        |
|           | exchange markets; Introduction to derivative, complete and        |
| EBFEE4A   | incomplete markets; Arbitrage and fundamental theorem of          |
|           | asset pricing; Assess risk and return in an organisation; Perform |
|           | financial planning; Mean variance analysis; Capital asset pricing |
|           | model; The arbitrage pricing theory.                              |
| EBIKM4A   | Information and Knowledge Management                              |

| EBMOS4A                                                    | Introduction on knowledge management; Developing a knowledge management system; Knowledge processes and governance; Types of Information systems; System development methodologies; information requirements analysis; Process analysis and specifications; Designing effective output and input; Quality assurance and implementation of Information Systems.<br><u>Modelling and Simulation</u><br>Continuous systems: classification of systems, system's abstraction and modelling, types of systems and examples, system variables, input-output system description, system response and analysis of system behaviour; System simulation (computer-aided: Arena software), real-world system examples; Discrete systems: difference equations, numerical simulation of continuous-time dynamics, discrete-event systems, and real- |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | world system examples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Syllabi:<br>POSTGRADUATE DIPLOMA IN INDUSTRIAL ENGINEERING |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (Course code: PG0830)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Module                                                     | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Code                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                            | YEAR MODULES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EBIPD5A                                                    | Industrial Engineering Project Planning and Design<br>Overview of the project cycle; Starting, organising and preparing<br>a project; Dealing with ethical dilemmas, Project quality<br>management; Preparing the capstone project; Planning, project<br>organisation, financial control, controlling and leading projects<br>within the industrial environment; Investigating real-life cases<br>from industry.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EBIDI5A                                                    | Industrial Engineering Project Design and Implementation<br>Product design; Process Design; Field survey; Workshop design;<br>Emphasizing project design and implementation from an<br>organisational perspective by acquiring data and validating the<br>relationship between the project and the overall strategy of the<br>organisation (governance); Investigating real-live cases from<br>industry.                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                            | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EBADA5A                                                    | Advanced Decision Analysis<br>Introduction to decision analysis, modelling and decision<br>making, decision analysis and probability; Benchmarking,<br>modelling of preferences and experts' values; Structuring<br>decision problems and measuring uncertainties; Modelling<br>uncertainty and multi-attribute models; Structuring and building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                                          | of decision tracs. Conditional probabilities consistivity and                                                                    |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
|                                          | of decision trees; Conditional probabilities, sensitivity and specificity probabilistic risk assessment, likelihood ratios; Root |  |
|                                          |                                                                                                                                  |  |
|                                          | cause analysis; Dynamic modelling basics; Stochastic cohort                                                                      |  |
|                                          | models and microsimulation models.                                                                                               |  |
| EBAMS5A                                  | Advanced Modelling and Simulation                                                                                                |  |
|                                          | Introduction to discrete event simulation; Simulation project                                                                    |  |
|                                          | methodology, event calendar and implications; Advanced                                                                           |  |
|                                          | statistic distributions; Making decisions with simulation;                                                                       |  |
|                                          | Introduction to advanced modelling techniques; Modelling                                                                         |  |
|                                          | material handling devices; Conveyor modelling; Continuous                                                                        |  |
|                                          | systems; Discrete systems; System simulation software, real-                                                                     |  |
|                                          | world system examples.                                                                                                           |  |
| SEMESTER 2                               |                                                                                                                                  |  |
| Manufacturing and Production Engineering |                                                                                                                                  |  |
| EBMPE5A                                  | Industry 4.0/smart factory; Programmable Logic Control (PLC)                                                                     |  |
|                                          | programming; Internet of Things (IoT) Technology; Robotics                                                                       |  |
|                                          | programming; Computer Numerical Control (CNC)                                                                                    |  |
|                                          | Programming.                                                                                                                     |  |
| EBAFD5A                                  | Advanced Facility Design                                                                                                         |  |
|                                          | Material handling concepts; Layout design algorithms;                                                                            |  |
|                                          | Manufacturing systems; Quantitative facility planning models;                                                                    |  |
|                                          | Evaluating and selecting the facilities plan.                                                                                    |  |
|                                          | Financial Engineering                                                                                                            |  |
| EBFEN5A                                  | Derivatives in financial engineering; Financial engineering risk                                                                 |  |
|                                          | measurement and management; credit risk concepts and                                                                             |  |
|                                          | modelling; Ethics in financial markets; Equity and currency                                                                      |  |
|                                          | markets; Allocation of money and asset management.                                                                               |  |
|                                          | Project Engineering                                                                                                              |  |
| EBPRE5A                                  | Introduction to project engineering; Project charter and                                                                         |  |
|                                          | preliminary scope statement; Develop project scope; Work                                                                         |  |
|                                          | breakdown structure and communication plan; Risk planning                                                                        |  |
|                                          | and management; Project quality management; Project team                                                                         |  |
|                                          | development; Measuring and controlling team performance;                                                                         |  |
|                                          |                                                                                                                                  |  |
|                                          | Managing participation, teamwork and conflict; Monitoring and                                                                    |  |
|                                          | control change; Controlling work results and closing out the                                                                     |  |
|                                          | project.                                                                                                                         |  |

| Syllabi:<br>DIPLOMA IN OPERATIONS MANAGEMENT<br>(Course code: DI0400) |                    |
|-----------------------------------------------------------------------|--------------------|
| Module<br>Code                                                        | Module Description |

|         | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | Applied Communication Skills 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| НКСОХ1А | Communication theory: what is meant by communication;<br>elements common to all forms of communication; Reading for<br>academic purpose: what it means to read a written text<br>purposefully; Writing process and referencing: writing requires<br>knowledge of grammar, punctuation, spelling, style, structure and<br>audience; Listening process: why people fail to listen; the different<br>types of listening; aspects of intercultural listening, Creative<br>thinking, critical thinking and disability communication: critical<br>thinking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ASICT1A | ICT Skills 1<br>Recognizing Computers; Using a current versions of Microsoft<br>Windows Professional; Common Elements; Microsoft Word;<br>Microsoft Excel; Microsoft PowerPoint; Microsoft Outlook,<br>getting connected and using the Internet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| EBMFX1A | Manufacturing Technology 1.1<br>Safety and safety legislation; Manufacturing methods, techniques<br>and processes; Hand tools; Power tools; Marking out; Cutting<br>tools and cutting fluids; Drilling machines; Centre Lathe; Pedestal<br>grinder and sawing machines; Joining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AMMAT1A | Engineering Mathematics 1<br>Binomial expansion, radian measure and limits of functions:<br>Binomial theorem, Radian measure. Applications of radian<br>measure. Differentiation techniques: Limits of functions,<br>Differentiation from first principles, Derivatives of polynomials &<br>product rule, The quotient and chain rules, Derivatives of trig<br>functions, Derivatives of exponential & log functions, Higher order<br>derivatives, Implicit differentiation, Logarithmic differentiation,<br>Applications. Integration techniques: Integration (Indefinite<br>integrals), Definite integrals, Area enclosed by two curves,<br>Simpson's rule. Vectors: Rep & magnitude of vectors. Resolving<br>vectors, Unit vectors and direction vectors, Scalar multiplication,<br>addition and sub, Dot product, the angle between two vectors and<br>work done, Determinant of a 2 x 2 matrix. Cross product and the<br>moment of a vector. Complex numbers: Rep. of complex numbers<br>and operations, Equality of complex numbers, Argand diagram,<br>polar form & De Moivre's, Calculating roots. |  |
| EBOPX1A | polar form & De Moivre's, Calculating roots.         Operations Management 1.1         Introduction to production management; Product and service design; Application of forecasting; Facilities planning and layout; Location planning and analysis; Capacity management;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

|           | Productivity, competitiveness and strategy; Process selection and      |
|-----------|------------------------------------------------------------------------|
|           | capacity planning.                                                     |
|           | Organisational Effectiveness 1.1                                       |
|           | Introduction to Work Study; Productivity; Method study; Work           |
| EBOGX1A   | measurement (time study); Human factors in work study;                 |
|           | Ergonomics; Working conditions and environment; Jigs and               |
|           | fixtures.                                                              |
|           | Workplace Dynamics 1.1                                                 |
| EBWPX1A   | Production environment; Human behaviour; Group behaviour;              |
| 20007/27  | Communication skills; Legal aspects; Negotiation skills and the        |
|           | application of these skills; Performance expectations.                 |
|           | SEMESTER 2                                                             |
|           | Applied Communication Skills 1.2                                       |
|           | Social Intelligence: Characteristics of Social Intelligence;           |
|           | Paragraphing: The structure of a paragraph, Elements of a              |
|           | Paragraph, Report writing: Different types of reports, Purpose of      |
|           | a report, Perception: What does perception involve? Facts vs           |
| ΗΚϹΟΥΊΑ   | Opinions: Facts, opinions. Subjectivity and Objectivity:               |
|           | Introduction, Subjectivity, objectivity. Denotations and               |
|           | Connotations: Denotation, connotation. Bias: Age Bias, Belief          |
|           | system or Religious Bias, Disability, Visual Literacy: Different types |
|           | of visual literacy. Graphics: Tables, Bar Graphs, Histogram, Pie       |
|           | Chart, Line Graph, Pictogram, and Flow Chart. Advertisements:          |
|           | Examples of Figurative language.                                       |
|           | Manufacturing Technology 1.2                                           |
|           | Introduction to product development; PACE - An integrated              |
| EBMFY1A   | process for product & cycle time excellence; Core team approach        |
| EBIVIFYIA | to project organization; Design techniques and automated               |
|           | development; Product strategy; Technology management;                  |
|           | Evolution of the product development process; Implementing PACE.       |
|           | Operations Management 1.2                                              |
|           | Introduction to reliability centred maintenance; Functions;            |
|           | Functional failure; Failure modes and effects analysis;                |
| EBOPY1A   | Consequences; Proactive maintenance; Default action;                   |
| EBOPTIA   | Implementing reliability centred maintenance; Applying the             |
|           | reliability centred maintenance process; What reliability-centred      |
|           | maintenance achieves.                                                  |
|           | Organisational Effectiveness 1.2                                       |
|           | Introduction to business logistics; Defining the logistic product;     |
| EBOGY1A   | Logistic customer service; Forecasting logistics requirement; The      |
|           | storage and handling systems; Storage and material handling            |
|           |                                                                        |

|         | decision; Purchasing and production scheduling decision;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Inventory policy decision.<br>Quality Management 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| EBQMA1A | Introduction; Descriptive techniques; Probability and probability distributions; Sample selection and sampling theory; Statistical process control; Hypothesis testing; Regression analysis and Acceptance sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | Workplace Dynamics 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EBWPY1A | Evaluate and implement personnel administration procedures;<br>Personnel and the personnel function; Job design, analysis and<br>evaluation; Interviewing; Human relations; Labour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | SEMESTER 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HKCOX2A | Applied Communication Skills 2.1<br>Introduction to Group Dynamics: Show understanding of different<br>group characteristics, Communication Theory: Communication<br>Model, Communication Barriers, Communication styles in<br>workplace, PowerPoint Presentations: Planning and preparation<br>of a presentation (Audience, Language, Knowledge of topics, Level<br>of education, Social variables, Values, Needs and Size of Audience,<br>Non-verbal and Intercultural Communication: Introduction to<br>Non-verbal Communication, Logic and Reasoning: Conceptualise<br>vital terminology uses in argumentative writing, construct a<br>logically sound and well- reasoned argument, write and present<br>logical arguments, Meetings and Interviews: Introduction of<br>meetings, Types of meetings. |
| BACEX1A | <b>Costing and Estimating 1.1</b><br>Elements of cost; Introduction to elementary accounts;<br>Absorption costing; Marginal costing; Cost-volume-profit analysis;<br>Budgeting; Profitability of new projects; Just-in-time accounting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EBMAX2A | Operations Management 2.1Managementfunctions;Businessfunctions;Inventorymanagement;Masterproductionschedule;Materialrequirements planning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EBOGX2A | Organisational Effectiveness 2.1<br>Revision of work study techniques; Compiling of operations<br>procedures; Advanced work measurement; Application of<br>ergonomics; Indices of production factors; Value analysis; Work<br>environment design; Value engineering; Proposed method<br>implementation; Standard data; Formula construction;<br>Predetermined time systems; Work sampling; Standard follow-up<br>time; Wage payment; Training other management practices.                                                                                                                                                                                                                                                                                                                                |
| EBQAS2A | Quality Assurance 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|         | Introduction to quality; Quality improvement and cost reduction;<br>Strategic quality management; Developing a quality culture;<br>Designing for quality; Inspection, test and sampling plans;<br>Assessment of quality; Control of quality; Organisation for quality;<br>Understanding customer needs; Manufacture; Inspection test and<br>measurement and quality assurance.                                                                                                                                                                                                                           |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBSTX1A | <u>Statistics 1.1</u><br>Introduction to statistics; Presenting data; Measuring data;<br>Probability; Probability distribution; Sampling distribution;<br>Estimation; Hypothesis testing; Comparing populations;<br>Regressions.                                                                                                                                                                                                                                                                                                                                                                         |
| AAECH1A | Engineering Chemistry 1<br>Matter and measurement; Atoms; Molecules and ions; Formulas,<br>Equations and moles; Chemical reactions in aqueous solution;<br>Periodicity and atomic structure; Ionic bonds; Covalent bonds and<br>molecular structure; Chemical equilibrium; Acids and bases;<br>Organic chemistry.                                                                                                                                                                                                                                                                                        |
| HLAWX1A | Labour Law 1.1<br>Common law contract of service; Collective labour law includes a<br>working knowledge of the following acts: Labour relations,<br>Workforce training, Basic employment conditions, Workmen's<br>compensation, Unemployment Insurance and the Wages Act.                                                                                                                                                                                                                                                                                                                                |
| APHYS1A | <b>Physics 1</b><br>Units of measurement, Waves and sound, Principles of Linear<br>Superposition and Interference, Electromagnetic waves,<br>Interference and Wave nature of light, Reflection of Light: Mirrors,<br>Refraction of Light, Lenses and optical instruments, Vectors and<br>scalars, Kinematics in one dimension, Forces and Newton's Law of<br>Motion, Work and Energy, Impulse and Momentum, Electric<br>Forces and Electric Fields, Electric Potential and Potential Energy,<br>Electric circuits, Fluids, Temperature and heat, Transfer of heat,<br>Nuclear Physics and Radioactivity. |
| ASPRG1A | <b>Programming 1</b><br>This module introduces the student practically to the fundamentals of programming. Aspects covered include the basics of programming techniques and principles. The sequence, selection and repetition programming structures are examined and discussed. Method creation and parameter passing are introduced.                                                                                                                                                                                                                                                                  |
|         | SEMESTER 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| НКСОҮ2А | Applied Communication Skills 2.2<br>Interpersonal Skills in the Workplace: Group Dynamics, Conflict<br>Resolution, Persuasion, Negotiation, Mediation, the Business                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|         | Plan: Introduction to the business plan, Marketing your new<br>business; Intellectual Property; How to obtain funding for your<br>small business; The Business Pitch, Disability Etiquette: Definition<br>of disability and disablism, Different depictions of disability,<br>Words to describe different disabilities, Disability in South Africa,<br>Models of disability; Disability Etiquette, Job advertisement,<br>Curriculum Vitae and Cover letter: Analysing job advertisements;<br>aligning your skills with job advertisements; Designing a<br>professional curriculum vitae; Online job applications, Drafting a<br>cover letter, Written Messages: E-mail etiquette; Writing Styles;<br>Memoranda, Business Letters; The News Article. |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BACEY1A | <b>Costing and Estimating 1.2</b><br>Elements of cost; Introduction to elementary accounts;<br>Absorption costing; Marginal costing; Cost-volume-profit analysis;<br>Budgeting; Profitability of new projects; Just-in-time accounting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EBMAY2A | <b>Operations Management 2.2</b><br>Just-in-time systems; Scheduling of operations; Quality management; Decision-making; Linear programming; The transportation module; Supply chain management; Project management.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EBMAT2A | <b>Operations Management Techniques 2</b><br>Game Theory & applications; Decision analysis; Decision trees;<br>Fundamentals of decision theory; Probability concepts and<br>distributions; Forecasting; Inventory models; Involved<br>formulation of decision problems; Graphical solution to linear<br>programming problems; The simplex method; Use of computer in<br>solving problems.                                                                                                                                                                                                                                                                                                                                                           |
| EBOGY2A | Organisational Effectiveness 2.2<br>Facilities in general; Elementary flow system: Material, People,<br>Equipment, Information; Process design; Auxiliary services;<br>Employee services; Handling systems: Types, Designs,<br>Constructing, Evaluation, Problems with material handling; Area<br>location; Layout evaluation; Selling the layout.                                                                                                                                                                                                                                                                                                                                                                                                  |
| AAECH2A | Engineering Chemistry 2<br>Introduction to chemical bonding; Ionic bonds; Covalent bonding<br>and molecular structure; Hydrogen; The Group IA and IIA metals;<br>Boron and Aluminium; Chemical reactions in aqueous solutions;<br>Carbon, Silicon, Germanium, Tin, and Lead; Acids, bases, and non-<br>aqueous solvents; Nitrogen Phosphorus, Arsenic; Oxygen,<br>Sulphur, Selenium, and Tellurium; Halogens.                                                                                                                                                                                                                                                                                                                                       |
| EMMAE2A | Maintenance Engineering 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|             | Condition Manitoring, Failure analysis, Mibration Analysis, Fault                                                            |
|-------------|------------------------------------------------------------------------------------------------------------------------------|
|             | Condition Monitoring; Failure analysis; Vibration Analysis; Fault detection techniques and tools: Thermography Analysis, Oil |
|             | Analysis, Ultrasound Analysis.                                                                                               |
|             | Manufacturing Engineering 2                                                                                                  |
|             | Fault diagnosis; Failure analysis and measuring equipment; Test                                                              |
| EMMEN2A     | methods; Interpretation and action; Powder metallurgy; Metal                                                                 |
|             | forming; Erosion; Casting; Plastics-moulding and machining;                                                                  |
|             | Welding and joining and Obtaining finish and accuracy.                                                                       |
|             | Engineering Physics 2                                                                                                        |
|             | Projectile motion; rotational motion; simple harmonic motion and                                                             |
| APHYS2A     | elasticity; fluids; gas behaviour; thermodynamics; current and                                                               |
| AFIIIJZA    | capacitors; magnetism; nuclear physics, radioactivity and ionising                                                           |
|             | radiation; Calculus.                                                                                                         |
|             | Programming 2                                                                                                                |
|             | This module builds upon the first module and covers additional                                                               |
| ASPRG2A     | fundamentals of programming. Aspects covered include arrays,                                                                 |
| / 0/ 1/02/1 | object-oriented programming, files and MDI Windows                                                                           |
|             | applications.                                                                                                                |
|             | SEMESTER 5                                                                                                                   |
|             | Industrial Leadership 3                                                                                                      |
|             | Managers, diversity and change; Environment competitive                                                                      |
|             | advantage and quality operations; International management;                                                                  |
|             | Managing ethics and social responsibilities; Fundamentals of                                                                 |
| EBILE3A     | planning; Strategic management; Organising; Human resource                                                                   |
|             | management; Leading; Motivation; Communication;                                                                              |
|             | Interpersonal skills; Group dynamics; Innovation and planned                                                                 |
|             | changes and Controlling.                                                                                                     |
|             | Operations Management 3.1                                                                                                    |
|             | Production planning; Production control; Quality control & quality                                                           |
| EBMAX3A     | management; Purchasing; Rating and productivity; Project                                                                     |
|             | management; Application of quality management; Maintenance                                                                   |
|             | management; Case studies; Use of computer in solving problems.                                                               |
|             | Operations Management Techniques 3                                                                                           |
|             | Multi-dimensional LP; Matrix algebra; Involved LP problems;                                                                  |
|             | Sensitivity analysis and dual simplex algorithm; Changing the LP                                                             |
| EBMAT3A     | problem; Duality theory; Transportation and assignment models;                                                               |
|             | Integer programming; Dynamic programming; Network models;                                                                    |
|             | Project management; Waiting lines & queuing theory; Markov                                                                   |
|             | analysis; Use of computer in solving problems.                                                                               |
|             | Operations Management Technology 3                                                                                           |
| EBOMG3A     | Fundamentals of Manufacturing; Fundamentals of Systems;                                                                      |
|             |                                                                                                                              |
| 2001100/1   | Fundamentals of Manufacturing Systems; Integrated Manufacturing and Management Systems; Material and                         |

|         | Technological Information Flows in Manufacturing Systems;<br>Product Planning and Design; Process Planning and Design;<br>Quality Engineering; Capital Investment for Manufacturing;<br>Principles of Computer-integrated Manufacturing (CIM); Factory<br>Automation (FA), Computer-aided Manufacturing (CAM) and<br>Computer-integrated Manufacturing (CIM) Systems;<br>Fundamentals of Information Technology; Computer-based<br>Production Management Systems; Manufacturing Strategy; |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | Global Manufacturing; Industrial Structure and Manufacturing<br>Efficiency; Industrial Input-Output Relations; Manufacturing                                                                                                                                                                                                                                                                                                                                                              |  |
|         | Excellence for Future Production Perspectives.                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| EBOEG3A | Organisational Effectiveness 3<br>Information systems analysis and design; Performance<br>improvement programs; Entrepreneurship theory; Financial plan;<br>Marketing plan; Business plan; Computer applications;<br>Consultation theory; Project management (review); A 6-month<br>industrial project under supervision of an industrial mentor.                                                                                                                                         |  |
|         | SEMESTER 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| EBMAP1A | Operations Management Practice 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

| Syllabi:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ADVANCED DIPLOMA IN OPERATIONS MANAGEMENT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                           | (Course code: AD0400)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Module                                    | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Code                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| SEMESTER 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| EBQMA4A                                   | Quality Management<br>Quality definition; Quality in manufacturing; Foundations of<br>Quality; Customer service, satisfaction, and engagement;<br>Workforce contributions at workplace; Manufacturing process;<br>Tools and techniques for Quality; Design for Quality; Process<br>improvement and Six Sigma.                                                                                                                                                                                                    |  |
| EBRMO4A                                   | <b>Research Methodology for Operations Management</b><br>Research as a way of thinking and the role of research in product<br>and service industries; Research process or concept map,<br>Identification of research approaches and evaluating research<br>strategies; Formulation of research problems; Research main<br>question and sub-questions; Setting research aim(s) and<br>objectives; Conceptualization and design of research; Critically<br>reviewing literature and secondary data; Types of data: |  |

|         | quantitative and qualitative; Constructing an instrument for Data collections; How to select a research sample; Collecting primary data through experimentation, measurement, observation, interviews and questionnaires; Data management/analysis and data presentation techniques, The writing of research proposal; Writing research report, Research Ethics.                                                                                                                                                                                                                                                                                                                                                 |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Supply Chain Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EBSCM4A | Purchasing and supply management in perspective; The task of<br>purchasing and supply management; Process and procedures;<br>Policies and strategies; Assessment and selection of suppliers;<br>Sustainable purchasing and supply management; Price and cost<br>analysis; Electronic commerce and procurement applications.                                                                                                                                                                                                                                                                                                                                                                                      |
|         | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | Financial Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EBFIM4A | Principles of financial management; Analysing and interpreting financial statements; Budgeting; Capital investment decisions; Risk and return; Risk and management tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | Workplace Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EBWDE4A | Introduction to facilities planning and materials handling;<br>Workplace design and shape, The ergonomic workplace design<br>Product, process, and schedule design; Flow systems, activity<br>relationships, and space requirements; Principles of material<br>handling; Plant layout generation; Warehousing operations;<br>Manufacturing systems and material handling; Facilities systems<br>Quantitative techniques for facilities planning; Evaluating,<br>selecting, and implementing the facilities plan, Improving work<br>performance; Minimizing the physical strain; Designing workload<br>of the working person; Facilitating task execution. Occupational<br>health and safety; Workplace elements. |
| EBMAS4A | Manufacturing Systems<br>This module takes an in-depth look into production systems;<br>Providing the students with an understanding of product<br>development and design activities; Production planning and<br>control methods, as well as the coordination of the entire<br>manufacturing processes.; Hands-on experience in the practical<br>sessions will ensure an understanding of the complexity and<br>challenges of the various production systems; In addition, the<br>module focuses on the practical application of the taught<br>theoretical concepts in industrial companies.                                                                                                                     |
|         | Modelling in Operations Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EBMOM4A | Continuous systems: classification of systems, system's abstraction and modelling, types of systems and examples, system variables, input-output system description, system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|            | response and analysis of system behaviour; System simulation                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | (computer-aided: Arena software), real-world system examples;<br>Discrete systems: difference equations, numerical simulation of<br>continuous-time dynamics, discrete-event systems, and real-<br>world system examples.                                                                                                                                                                                                                              |
|            | Syllabi:                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| POSTO      | GRADUATE DIPLOMA IN OPERATIONS MANAGEMENT                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | (Course Code: PG0400)                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Module     | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Code       |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | YEAR MODULES                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | <b>Operations Management Project Planning and Design</b>                                                                                                                                                                                                                                                                                                                                                                                               |
| EBOPD5A    | Overview of the project cycle; Starting, organising and preparing<br>a project; Dealing with ethical dilemmas, Project quality<br>management; Preparing the capstone project; Planning, project<br>organisation, financial control, controlling and leading projects<br>within the operations management environment; Investigating<br>real-life cases from industry.                                                                                  |
| EBODI5A    | <b>Operations Management Project Design and Implementation</b><br>Product design; Process Design; Field survey; Workshop design;<br>Emphasizing project design and implementation from an<br>organisational perspective by acquiring data and validating the<br>relationship between the project and the overall strategy of the<br>organisation (governance); Investigating real-live operations<br>management cases.                                 |
|            | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EBAMA4A    | Advanced Modelling in Operations Management<br>Introduction to discrete event simulation; Simulation project<br>methodology, event calendar and implications; Advanced statistic<br>distributions; Making decisions with simulation; Introduction to<br>advanced modelling techniques; Modelling material handling<br>devices; Conveyor modelling; Continuous systems; Discrete<br>systems; System simulation software, real-world system<br>examples. |
| EBQRM5A    | Quality and Reliability Management<br>Leadership and Total Quality Management (TQM); Organisation<br>for TQM; Customer satisfaction; Total employee involvement;<br>Supplier partnership; Total productive maintenance; Quality<br>circles; Inspection; Kaizen and continuous improvement; 5S, Six<br>sigma and Lean; Reliability engineering; Business process<br>reengineering; Value engineering.                                                   |
| SEMESTER 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EBOMS5A    | Advanced Manufacturing Systems                                                                                                                                                                                                                                                                                                                                                                                                                         |

| EBAIM5A | Industry 4.0/smart factory; Programmable Logic Control (PLC)<br>programming; Internet of Things (IoT) Technology; Robotics<br>programming; Computer Numerical Control (CNC) Programming.<br><u>Advanced Industrial Management</u><br>Business strategic formulation process; internal and macro-<br>environmental assessments; Industry assessment; Selection of<br>best business strategy; Implementation of business strategy and<br>managing change; Components of successful strategy<br>implementation; Short-term objectives, functional tasks and<br>policies; strategic control and evaluation; strategic leadership and |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | governance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EBAFD5A | <b>Business Finance</b><br>Just in time processes and financial implications; Financial calculations in Just-in-time processes; Project evaluation and review; Financial strategy; Sources of Funding; Pricing Decisions; Management control systems; Performance management.                                                                                                                                                                                                                                                                                                                                                    |

## 11.9 MECHANICAL ENGINEERING

| Syllabi:<br>DIPLOMA IN MECHANICAL ENGINEERING (3 year programme)<br>(Course code: DI0840) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module<br>Code                                                                            | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                           | SEMESTER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| НКСОХ1А                                                                                   | Applied Communication Skills 1.1<br>Communication theory: what is meant by communication; elements<br>common to all forms of communication; Reading for academic<br>purpose: what it means to read a written text purposefully; Writing<br>process and referencing: writing requires knowledge of grammar,<br>punctuation, spelling, style, structure and audience; Listening<br>process: why people fail to listen; the different types of listening;<br>aspects of intercultural listening, Creative thinking, critical thinking<br>and disability communication: critical thinking. |
| EEESK1A                                                                                   | <b>Engineering Skills 1</b><br>The Engineering Profession: Different types of engineering.<br>Mechanical, electrical, civil, chemical, computer etc. The engineering<br>team; artisans, technicians, technologists and engineers. Engineering<br>Teamwork: Engineering design. Teamwork versus group work. Basic                                                                                                                                                                                                                                                                       |

|         | principles of; engineering project management (plan, organise, lead<br>and control), project costing, budgeting and resource management.<br>What is a business plan? Engineering and the Environment: social<br>responsibility, environmental impact, natural resources,<br>sustainability of the engineering activity. Legal and safety<br>considerations. Ethics in Engineering: professional ethics,<br>responsibility, engineering norms, ECSA and their function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AAECH1A | Engineering Chemistry 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | Matter and measurement; Atoms; Molecules and ions; Formulas,<br>Equations and moles; Chemical reactions in aqueous solution;<br>Periodicity and atomic structure; Ionic bonds; Covalent bonds and<br>molecular structure; Chemical equilibrium; Acids and bases; Organic<br>chemistry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | ICT Skills 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ASICT1A | Recognizing Computers; Using current versions of Microsoft<br>Windows Professional; Common Elements; Microsoft Word;<br>Microsoft Excel; Microsoft PowerPoint; Microsoft Outlook, getting<br>connected and using the Internet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AMMAT1A | <b>Engineering Mathematics 1</b><br>Binomial expansion, radian measure and limits of functions: Binomial theorem, Radian measure. Applications of radian measure. Differentiation techniques: Limits of functions, Differentiation from first principles, Derivatives of polynomials & product rule, The quotient and chain rules, Derivatives of trig functions, Derivatives of exponential & log functions, Higher order derivatives, Implicit differentiation, Logarithmic differentiation, Applications. Integration techniques: Integration (Indefinite integrals), Definite integrals, Area enclosed by two curves, Simpson's rule. Vectors: Rep & magnitude of vectors. Resolving vectors, Unit vectors and direction vectors, Scalar multiplication, addition and sub, Dot product, the angle between two vectors and work done, Determinant of a 2 x 2 matrix. Cross product and the moment of a vector. Complex numbers: Rep. of complex numbers and operations, Equality of complex numbers, Argand diagram, polar form & De Moivre's, Calculating roots. |
| APHYS1A | <b>Physics 1</b><br>Units of measurement, Waves and sound, Principles of Linear<br>Superposition and Interference, Electromagnetic waves, Interference<br>and Wave nature of light, Reflection of Light: Mirrors, Refraction of<br>Light, Lenses and optical instruments, Vectors and scalars, Kinematics<br>in one dimension, Forces and Newton's Law of Motion, Work and<br>Energy, Impulse and Momentum, Electric Forces and Electric Fields,<br>Electric Potential and Potential Energy, Electric circuits, Fluids,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|         | Tennesting and best Transfer of best Nuclear Division and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Temperature and heat, Transfer of heat, Nuclear Physics and Radioactivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | Social Intelligence 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EESIN1A | Leadership styles: Democratic, Autocratic, Consensus etc. Economic<br>systems of governance: Capitalism, Socialism and Communism.<br>Etiquette in society and the workplace. Soft skills, Cultural influences.<br>Success in Engineering: Professionalism, Ethics, Responsibility,<br>Discipline, Time management, Acquiring information and<br>Independent learning.                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| НКСОҮ1А | Applied Communication Skills 1.2<br>Social Intelligence: Characteristics of Social Intelligence;<br>Paragraphing: The structure of a paragraph, Elements of a Paragraph,<br>Report writing: Different types of reports, Purpose of a report,<br>Perception: What does perception involve? Facts vs Opinions: Facts,<br>opinions. Subjectivity and Objectivity: Introduction, Subjectivity,<br>objectivity. Denotations and Connotations: Denotation, connotation.<br>Bias: Age Bias, Belief system or Religious Bias, Disability, Visual<br>Literacy: Different types of visual literacy. Graphics: Tables, Bar<br>Graphs, Histogram, Pie Chart, Line Graph, Pictogram, and Flow Chart.<br>Advertisements: Examples of Figurative language.                                    |
| EMCOA2A | <u>Computing Applications 2</u><br>Provides basics of computing applications, integrates computation<br>and visualization into a flexible computing environment, and offers a<br>diverse family of built-in functions that will give background in a<br>straightforward manner to the basics of program language and ability<br>of student to write their own simple programs to solve typical<br>problems encountered in a variety of modules and in engineering<br>practice. The subject covers elementary programming concepts that<br>include, Variables and built-in Symbolic Math functions, Solving<br>equation and system of linear equations, Range variables, 2D Plots of<br>Functions, 3D Plots of Functions, Programming algorithm syntax,<br>Programming – Loops. |
| AAECH2A | Engineering Chemistry 2<br>Introduction to chemical bonding; Ionic bonds; Covalent bonding and<br>molecular structure; Hydrogen; The Group IA and IIA metals; Boron<br>and Aluminium; Chemical reactions in aqueous solutions; Carbon,<br>Silicon, Germanium, Tin, and Lead; Acids, bases, and non-aqueous<br>solvents; Nitrogen Phosphorus, Arsenic; Oxygen, Sulphur, Selenium,<br>and Tellurium; Halogens.                                                                                                                                                                                                                                                                                                                                                                   |
| EMEDR1A | Engineering Drawing 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|         | Drawing instruments; Drawing skills; Object visualization and drawing; sketch and drawing of chemical engineering process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMMAT2A | equipment's using computer software.<br>Engineering Mathematics 2<br>Differentiation: Inverse trig functions, Hyperbolic functions, Inverse<br>hyperbolic functions, Parametric equations, Maxima and minima,<br>Partial differentiation, Small changes, Rate of change. Integration:<br>Revision of integration, Use of formulae sheet, Inverse functions,<br>Partial fractions, Partial fractions, Integration by parts, Trig. &<br>hyperbolic substitutions, t-formulae, Mean and RMS values.<br>Differential Equations: Differential eq., separation, Using the<br>integrating factor, Applications, Homogeneous differential equations.<br>Matrix Algebra: Operations with matrices, Inverse of a matrix, solve<br>equations using inverse, Cramer's rule, Eigenvalues and –vectors.<br>Probability and Statistics: Data representation, Data summaries,<br>Normal distribution, Conf. intervals, error est. Conf. intervals, error<br>est. Hypothesis testing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| АРНҮР2А | <ul> <li>Physics 2 Practical</li> <li>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors in series and in parallel, RC Circuits. Magnetic Fields, Force on a moving charge, Particle motion in a magnetic field, Mass spectrometer, Current in a magnetic field, Torque on current-carrying coil, Magnetic fields produced by current, Amperes Law. Electromagnetic Induction, Induced EMF, Motional EMF, Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator, Transformers. Alternating Current Circuits, Capacitive Reactance, Inductive Reactance, RLC Circuits. Fluids, Archimedes principle, Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass, The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of gas, Diffusion. Thermodynamics, Thermodynamic Systems, Zeroth Law, First law of thermodynamics, Thermal processes, Specific heat capacities, Second Law of Thermodynamics, Heat engines, Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X Rays, Lasers. Radiation, Ionising radiation, Nuclear Energy and Elementary Particles, Biological Effects of Ionizing Radiation, Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors, Nuclear Fusion. Kinematics in two dimensions, Displacement velocity and acceleration, Equations, Projectile motion. Uniform Circular Motion, Acceleration, Centripetal force, Rotational Kinematics, Rotational Dynamics. Simple Harmonic motion and Elasticity.</li> </ul> |
| АРНҮТ2А | <b>Physics 2 Theory</b><br>Electric Circuits, Alternating Current, Kirchhoff's Rules, Capacitors in<br>series and in parallel, RC Circuits. Magnetic Fields, Force on a moving<br>charge, Particle motion in a magnetic field, Mass spectrometer,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| EMSPA1A   | Current in a magnetic field, Torque on current-carrying coil, Magnetic fields produced by current, Amperes Law. Electromagnetic Induction, Induced EMF, Motional EMF, Magnetic Flux, Faraday's Law, Lenz's Law, Electric Generator, Transformers. Alternating Current Circuits, Capacitive Reactance, Inductive Reactance, RLC Circuits. Fluids, Archimedes principle, Viscous Flow, Ideal gas law and Kinetic Theory, Molecular mass, The Mole, Avogadro's constant, Ideal gas law, Kinetic theory of gas, Diffusion. Thermodynamics, Thermodynamic Systems, Zeroth Law, First law of thermodynamics, Thermal processes, Specific heat capacities, Second Law of Thermodynamics, Heat engines, Carnot's Principle, Refrigeration, Entropy. Nature of the Atom, X Rays, Lasers. Radiation, Ionising Radiation, Nuclear Energy and Elementary Particles, Biological Effects of Ionizing Radiation, Induced Nuclear Reactions, Nuclear Fission, Nuclear Reactors, Nuclear Fusion. Kinematics in two dimensions, Displacement velocity and acceleration, Equations, Projectile motion. Uniform Circular Motion, Acceleration, Centripetal force, Rotational Kinematics, Rotational Dynamics. Simple Harmonic motion and Elasticity. <b>Safety Principles and Law 1</b> Importance of health and safety: What is safety and health concepts as indicated in the OHS Act, Fundamental safety concepts and terms: Fundamental safety terms, legal appointments as per the OHS Act, aduties of the legal appointees as per the OHS Act, safety awareness and fire training, What is hazards and risk in the workplace: What is a hazard, what is a risk, what is the difference between a hazard and a risk, identification of main six hazards in the workplace, occupational hazards, difference between an accident and an incident: general principles of safeguarding powered and driven machines, point of operation safeguards, controls for hand toll hazards, principles of safeguarding powered and driven machines, point of operation safeguards, controls for hand toll hazards, principles of safeguarding powered and drive |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EMMEC1A   | SEMESTER 3 Mechanics 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ENIMIECTA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| r       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Statics: Analysis of vectors in 2-D and 3-D Cartesian spaces;<br>Equilibrium of mechanical system and application to the calculation<br>of reaction; Resultant, Moments of force and coordinates of Centre<br>of gravity (Centroid); Friction; Dynamics; Linear and angular motion;<br>Momentum and impulse; Work energy and power and Radial<br>acceleration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | Project 1 (WIL Mechanical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EMPRJ1A | The module is intended to offer hands-on workshop exposure to students. It shapes the behavior of graduates to the mechanical and general manufacturing environment and develop safety awareness in campus controlled environment in preparation for future workplace based learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | Electrical Engineering 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPEEN1A | Electrical Principles: The electron theory, Heat, Magnetism, Friction,<br>Pressure, Light, Chemical Action, Batteries, International system of<br>measurement. Basic Electrical Concepts: The electrical circuit,<br>Electrical current flow, Electrical current, Electromotive force and<br>voltage, Definitions of electric, magnetic and other SI units,<br>Resistance, Resistors. Network Theorems in Direct Current Circuits:<br>Kirchhoff's laws, Superposition theorem, Thevenin theorem, Norton's<br>Theorem, Star-Delta and delta conversion, Delta-Star conversion,<br>Star-delta conversion. Electro Magnetism: The magnetic field,<br>Electromagnetic Force on a current-carrying conductor,<br>Electromagnetic induction, Lenz's law, Faraday's law. Inductance in<br>Direct Current Circuits: Inductive circuits, Inductance, Current growth<br>in an inductive circuit, Current decay in an inductive circuit, Energy<br>stored in an inductor, Types of inductors. Capacitance in Direct<br>Current Circuits: Capacitors, Capacitance, Series capacitor circuit,<br>Parallel capacitor circuits. Parallel Magnetic Cores: Parallel magnetic<br>circuits, electrical analogy, series and parallel in magnetic circuits. |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EMEDR2A | Engineering Drawing 2<br>Advance constructions; Orthographic projection of true planes;<br>Isometric; Interpenetration and development; Machine drawing and<br>Assemblies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AMMAT3A | Mathematics 3<br>Application of Integration: Volumes of solids of revolution, Length of<br>Curves, Double Integrals: Iterated Integrals & Fubini's theorem,<br>Double Integrals, Polar Coordinates. First Order Differentiation<br>Equations: Exact DE, Homogeneous DE, Bernoulli DE, Applications<br>(Excluding Newton's Law of Cooling), D-Operator Methods.<br>Numerical Solutions of First Order Differential Equations: Euler's<br>method, Runge-Kutta order 2, Runge-Kutta order 4. Operator D<br>Methods/Undetermined coefficients: Complementary Solutions, D-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|         | operator & Inverse, binomial or long division method, Theorem 1,<br>Theorem 2, Theorem 3, Special cases, General solution, Applications.<br>Laplace Transforms, and Table of transforms. (Derivation from first<br>principles not for examination purposes), First shifting property,<br>Laplace transforms of derivatives, Inverse Laplace Transforms using<br>tables, Laplace Transforms of discontinuous functions, Inverse<br>Laplace Transforms of discontinuous functions, Solution of<br>differential equations, Application to electric circuits, Application to<br>beams. Fourier Series: Periodic functions and harmonics, sketching                                                                                                                                                            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | of graphs and determining Fourier Series, Series with period 2I, Even<br>and Odd functions, Full range and Half range series, Numerical<br>Harmonic Analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| НКСОХ2А | Applied Communication Skills 2.1<br>Introduction to Group Dynamics: Show understanding of different<br>group characteristics, Communication Theory: Communication<br>Model, Communication Barriers, Communication styles in workplace,<br>PowerPoint Presentations: Planning and preparation of a<br>presentation (Audience, Language, Knowledge of topics, Level of<br>education, Social variables, Values, Needs and Size of Audience, Non-<br>verbal and Intercultural Communication: Introduction to Non-verbal<br>Communication, Logic and Reasoning: Conceptualise vital<br>terminology uses in argumentative writing, construct a logically<br>sound and well- reasoned argument, write and present logical<br>arguments, Meetings and Interviews: Introduction of meetings, Types<br>of meetings. |
| EMMEN1A | Mechanical Manufacturing Engineering 1<br>Safety and safety legislation; Identification and application of<br>materials; Elementary measuring equipment and Elementary hand<br>and Machine tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | SEMESTER 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EMMED2A | Mechanical Engineering Design 2<br>Design process steps; Simple design without calculations; Engineering<br>material selection; Rod connections; Riveted joints; Fasteners and<br>connections; Shafts; Couplings; Keys and splines; Plain bearings; Spur<br>gears; Eccentric loading of connections and Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EMMOM2A | Mechanics of Machines 2<br>Torque acceleration; Vehicle dynamics; Simple lifting machines;<br>Hoists and haulages; Moment of inertia; Simple harmonic motions<br>and Power transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EMSOM2A | Strength of Materials 2<br>Pin jointed structures; Stress and strain; Testing of materials; Stresses<br>in thin rotating cylinders; Thin cylinders; Shafts; Rigid couplings;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|             | Helical springs; Shear force and bending moments in simply                           |
|-------------|--------------------------------------------------------------------------------------|
|             | supported beams and cantilevers.                                                     |
|             | Fluid Mechanics 2 (Mechanics)                                                        |
| EMFMM2A     | Hydrostatics; Fluid dynamics; Fluid power circuit elements; Hydraulic                |
|             | and Pneumatic systems.                                                               |
|             |                                                                                      |
|             | Thermodynamics 2<br>Introduction to thermodynamics; The First Law of thermodynamics; |
| EMTHE2A     | Working fluid; Solving thermodynamics, me first law of thermodynamics,               |
|             | The gas cycles; Mixtures fundamentals.                                               |
|             | Project 2 (WIL Mechanical)                                                           |
| EMPRJ2A     | This module is a builds on and enhance attributes enquired during                    |
| EIVIPICJZA  | Project 1 (WIL Mechanical).                                                          |
|             | Applied Communication Skills 2.2                                                     |
|             |                                                                                      |
|             | Interpersonal Skills in the Workplace: Group Dynamics, Conflict                      |
|             | Resolution, Persuasion, Negotiation, Mediation, the Business Plan:                   |
|             | Introduction to the business plan, Marketing your new business;                      |
|             | Intellectual Property; How to obtain funding for your small business;                |
|             | The Business Pitch, Disability Etiquette: Definition of disability and               |
| НКСОУ2А     | disablism, Different depictions of disability, Words to describe                     |
|             | different disabilities, Disability in South Africa, Models of disability;            |
|             | Disability Etiquette, Job advertisement, Curriculum Vitae and Cover                  |
|             | letter: Analysing job advertisements; aligning your skills with job                  |
|             | advertisements; Designing a professional curriculum vitae; Online job                |
|             | applications, Drafting a cover letter, Written Messages: E-mail                      |
|             | etiquette; Writing Styles; Memoranda, Business Letters; The News                     |
|             | Article.                                                                             |
|             | Computer-Aided Draughting 1                                                          |
| EMCAI1A     | Introduction to a 3D parametric software interface; Creating sections,               |
|             | parts, assemblies and drawings.                                                      |
|             | SEMESTER 5                                                                           |
| ЕММОМЗА     | Mechanics of Machines 3                                                              |
|             | Kinematics; Balancing and Gears.                                                     |
|             | Strength of Materials 3                                                              |
| ЕМЅОМЗА     | Temperature stress; Properties of beam sections; Bending moments                     |
| LINGONISA   | and beam sections; The theory of bending; Fatigue; Short columns                     |
|             | and struts; Strain energy and Shear stress in beams.                                 |
|             | Fluid Mechanics 3                                                                    |
| EMFME3A     | Pipe flow; Viscous flow; Flow under varying head; Fluid friction in                  |
| LIVIFIVIESA | oiled bearings, Channel Flow; Wetted Perimeter and Positive                          |
|             | displacement piston pumps.                                                           |
| EMTHE3A     |                                                                                      |

|              | General thermodynamics; Ideal cycles; Internal combustion engines;                                                                             |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Steam turbines; Refrigeration; Air compressors and Natural flow heat                                                                           |
|              | transfer.                                                                                                                                      |
|              | Mechanical Engineering Design 3                                                                                                                |
|              | Lubrication; Ergonomics; Springs; Bearings; Brakes; Clutches; Spur                                                                             |
| EMMED3A      | gears; Welded joints; Frame structure analysis by computer; Wire                                                                               |
| EIVIIVIEDSA  | ropes; OSH Act; Parametric modelling; Pro-Engineer advanced;                                                                                   |
|              | Mechanical elements into CAD models and Project.                                                                                               |
|              | · · · · · · · · · · · · · · · · · · ·                                                                                                          |
|              | Manufacturing Engineering 2<br>Fault diagnosis; Failure analysis and measuring equipment; Test                                                 |
| EMMEN2A      |                                                                                                                                                |
| EIVIIVIEINZA | methods; Interpretation and action; <b>Powder</b> metallurgy; Metal forming; Erosion; Casting; Plastics- <b>molding</b> and machining; Welding |
|              |                                                                                                                                                |
|              | and joining and Obtaining finish and accuracy.                                                                                                 |
|              | Maintenance Engineering 1<br>Maintenance organisation, Work execution, Parts and materials,                                                    |
|              | Maintenance systems and documentation, Maintenance planning                                                                                    |
| EMMAE1A      |                                                                                                                                                |
| EIVIIVIAETA  | and scheduling, Preventive and corrective maintenance,<br>Computerized maintenance systems, Maintenance safety and                             |
|              |                                                                                                                                                |
|              | efficiency, Reliability centered maintenance, and Evaluation of a                                                                              |
|              | maintenance program. Project 3 (WIL Mechanical)                                                                                                |
|              | The module is a practical component of typical maintenance                                                                                     |
|              | experienced in industry. It is supporting the module Maintenance                                                                               |
| EMPRJ3A      | Engineering 2 covers the machine failure and analytical methods to                                                                             |
| LIVIFIUSA    | monitor the condition of machines. It shapes the behavior of                                                                                   |
|              | graduates to the mechanical maintenance environment and prepares                                                                               |
|              | the student for future workplace based learning.                                                                                               |
|              | SEMESTER 6                                                                                                                                     |
|              | Theory of Machines 3                                                                                                                           |
|              | Introduction to the dynamics and vibrations of mechanical systems;                                                                             |
| ЕМТОМЗА      | Free and forced vibration of linear one and two-degree of freedom                                                                              |
| LINTONISA    | models of mechanical systems; Work-energy concepts; Unbalance                                                                                  |
|              | and base excitation of systems.                                                                                                                |
|              | Applied Strength of Materials 3                                                                                                                |
| ЕМАОМЗА      | Slope and deflection of beams; Leaf springs; Struts; Complex stress                                                                            |
|              | and complex strain and Thick cylinders.                                                                                                        |
|              | Hydraulic Machines 3                                                                                                                           |
|              | Channel flow and Wetted perimeter. Centrifugal pump, single pump,                                                                              |
|              | series pump, parallel pump, pump system characteristics equations                                                                              |
| ЕМНҮМЗА      | (operating point of a pump), radia Flow, axial flow, mixed flow, best                                                                          |
|              | operating speed, best impeller size, Cavitations in pump, Thomas                                                                               |
|              | cavitations, velocity triangle(velocity vector, Euler head and                                                                                 |
|              | manonetric head). Turbines(impulse turbine: pelton wheel, reaction                                                                             |
|              |                                                                                                                                                |

|             | turbine and velocity triangle). Fluid system (hydraulic system,         |
|-------------|-------------------------------------------------------------------------|
|             | hydraulic accumulator, hydraulic intensifier, hydraulic ram, hydraulic  |
|             | lift, hydraulic crane, hydraulic coupling, hydraulic torque converter,  |
|             | air lift pump and gear wheel pump.                                      |
|             | Steam Plant 3                                                           |
| EMSPL3A     | Steam plant; Psychrometry; Rotary compressors; Heat transfer; Gas       |
|             | turbines; Cooling towers and Legislation and Forced convection.         |
|             | Machine Design 3                                                        |
|             | Shaft Design, Belt Design and Selection, Gear Design (Spur and          |
|             | Helical) Fatigue, Machine Screws and Fastener Design, Limits and Fits   |
| EMMDE3A     | (Tolerances); Machine Design project to be written in the Harvard       |
|             | Style; Problem Statement, Literature Review, Evaluation of              |
|             | Preliminary Ideas, Component design (calculations), CAD of              |
|             | components and assembly, Summary and Conclusion.                        |
|             | Maintenance Engineering 2                                               |
| EMMAE2A     | Condition Monitoring; Failure analysis; Vibration Analysis; Fault       |
| LIVIIVIALZA | detection techniques and tools: Thermography Analysis, Oil Analysis,    |
|             | Ultrasound Analysis.                                                    |
|             | Modelling and Engineering Computation 2                                 |
|             | In this module, the students develop specific skills to program and use |
|             | computational techniques to solve engineering problems. The             |
| EMMEC2A     | module provides an introduction to Numerical methods relevant to        |
| EIVIIVIECZA | Mechanical systems, including integration, solution of linear           |
|             | equations, and ordinary differential equations. Presents simulation     |
|             | approaches use for examples in Mechanical Engineering, particularly     |
|             | from dynamics, and structural analysis using MATLAB programming.        |
| EMEXM1A     | Workplace Based Learning 1 (Mechanical)                                 |

| Syllabi:                                           |                                                               |  |  |
|----------------------------------------------------|---------------------------------------------------------------|--|--|
| DIPLOMA IN MECHANICAL ENGINEERING (Extended 4 year |                                                               |  |  |
| programme)                                         |                                                               |  |  |
| (Course code: DE0841)                              |                                                               |  |  |
| Module                                             | Module Description                                            |  |  |
| Code                                               |                                                               |  |  |
|                                                    | SEMESTER 1                                                    |  |  |
| AAXCH1A                                            | Foundation Chemistry 1                                        |  |  |
|                                                    | Atoms, molecules & ions; Stoichiometry; Reactions in aqueous  |  |  |
|                                                    | solution; Rate and extent of reactions; Chemical equilibrium; |  |  |
|                                                    | Acids, bases and salts; Electrochemistry.                     |  |  |

|             | Foundation Mathematics 1                                          |
|-------------|-------------------------------------------------------------------|
| AMXMA1A     | Intro to Algebra, Expressions & equations, Linear & simultaneous  |
|             | equations, Polynomial equations, Matrix algebra, Hyperbolic       |
|             | functions.                                                        |
|             | Foundation Physics 1                                              |
| APXPH1A     | Mechanics: Force and Newton's laws; Momentum and impulse;         |
| APAPHIA     | Vertical projectile motion in one dimension; Work, energy &       |
|             | power; Doppler effect.                                            |
|             | SEMESTER 2                                                        |
| AAXCH2A     | Foundation Chemistry 2                                            |
| ААЛСПZА     | Organic molecules; The chemical industry.                         |
|             | Foundation Mathematics 2                                          |
| ΑΜΧΜΑ2Α     | Polynomial equations, Partial fractions, Trigonometry (radian     |
| AIVIAIVIAZA | measure), Binomial series, Functions, Intro to differentiation,   |
|             | Intro to integration.                                             |
|             | Foundation Physics 2                                              |
| АРХРН2А     | Electrostatics; Electric circuits; Electrodynamics; Optical       |
| AFAFRZA     | phenomena; Properties of materials; Emission and absorption       |
|             | spectra.                                                          |
|             | Foundation Drawing 1                                              |
|             | Letter and number notation; Line notation; Handling of apparatus; |
| EMXDR1A     | Measurement notation; Geometrical construction; Orthographic      |
|             | projections; Arcs of penetration and developments; Detailed       |
|             | works drawing; Composite drawings.                                |

| Syllabi:<br>ADVANCED DIPLOMA IN MECHANICAL ENGINEERING<br>(Course code: AD0840) |                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module<br>Code                                                                  | Module Description                                                                                                                                                                                                                                                                                                                                                                          |
| SEMESTER 1                                                                      |                                                                                                                                                                                                                                                                                                                                                                                             |
| EMEPR4A                                                                         | Engineering Professionalism<br>Provide students with the knowledge and understanding of the general<br>and necessary responsibilities of the engineering profession, the roles<br>of engineers in society, and the need for professionalism and ethics in<br>the engineering profession.                                                                                                    |
| EMECN4A                                                                         | Engineering Economics<br>Explain financial statements and perform ratio analysis, cost control<br>and its application; Classify and distribute overheads, depreciation,<br>perform depreciation calculations, determine the effects of overheads<br>to production cost; Apply standard costing and its utility variances,<br>budgetary control, marginal costing to production; Explain the |

|         | significance of waste extraction, waste recovery in relation to                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | engineering costing.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|         | Applied Engineering Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| EMAEM4A | Perform numerical analysis; Perform error analysis; Solve and estimate<br>solutions of ordinary and partial differential equations; Demonstrate<br>the solutions of equations using examples from mechanical<br>engineering systems; Apply the solution techniques in polar; Cylindrical<br>and spherical co-ordinates to mechanical engineering problems.                                                                                                                      |  |  |  |
| EMMTS4A | Material Science<br>Identify different types of engineering materials; Processes that<br>enhance their properties, selection and their uses.                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|         | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|         | Thermo-Fluids and Turbo Machinery                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| EMTFM4A | Apply the laws of Thermodynamics and Fluid Mechanics to predict and<br>analyse Rotor-dynamics in Turbo Machines; Specifically Turbines and<br>Compressors, with emphasis on flow regimes, energy transformation<br>and performance characteristics.                                                                                                                                                                                                                             |  |  |  |
|         | Heat and Mass Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| EMHMT4A | The optimal transfer of mass and energy in modern industry cannot be over-emphasised. This module will equip students with the appropriate tools required in the prediction and analysis of the performance of units/systems involved in this process.                                                                                                                                                                                                                          |  |  |  |
|         | Solid Mechanics and Stress Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| EMSMS4A | The purpose of this module is to equip the students with the fundamental principles of determining Stress and strain in a Mechanical system and apply Finite Element Method for numerical representation and analysis of Stress distributions in a loaded Mechanical system.                                                                                                                                                                                                    |  |  |  |
|         | Vibration and Control Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| EMVCE4A | This module introduces students to the theory and practice of control systems engineering, by emphasizing on the practical application of the subject to the analysis and design of feedback systems. Its enables the student to develop representative models of real vibrating systems, to determine and control the dynamic systems performance and behaviour parameters under a given set of constraints.                                                                   |  |  |  |
|         | YEAR MODULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| EMRMD4A | <b>Research Methods and Engineering Design Project</b><br>The student will be guided in order to: identify a mechanical<br>engineering design problem, set the objectives, develop the<br>methodology, determine the project plan, determine the budgetary<br>constraints of the project, systematically develop a solution using a<br>step-by-step scientific approach, and present the solution in a<br>scientifically written design project report to a panel of assessors. |  |  |  |

| Syllabi:<br>POSTGRADUATE DIPLOMA IN MECHANICAL ENGINEERING |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (Course code: PG0840)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Module                                                     | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Code                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| SEMESTER 1                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| EMEAM5A                                                    | Advanced Engineering Mathematics<br>The purpose of this module is to provide participants with the skills,<br>knowledge and attitudes required to further extend the concepts<br>learned in Advanced Mathematics 1 to include the topics of Integral                                                                                                                                                                                                                          |  |  |  |
|                                                            | Calculus, Complex Numbers, Differential Equations, Statistics and<br>Linear Algebra. The module aims to show the relevance of mathematics<br>to engineering and applied science. This module, in conjunction with<br>Applied Engineering Mathematics, also facilitates articulation to Degree<br>courses in all streams of Engineering and forms a basis for more<br>specialist branches of mathematics.                                                                      |  |  |  |
| EMEMS5A                                                    | Engineering Modelling and Simulations Module 1<br>The module is aimed at identifying simple mechanical engineering<br>systems in order to build representative analytical models for<br>simulating their behaviour and system characteristics using<br>computational techniques. It identifies and models simple<br>fundamental laws and principles in which mechanical engineering<br>systems are operating and their physical activities.                                   |  |  |  |
| EMEIC5A                                                    | Internal Combustion Engine Analysis<br>The module enables students to apply the fundamental principles of<br>thermo-chemistry that govern the design, analysis and operation of<br>internal combustion engines. The emphasis here is on thermodynamics,<br>combustion chemistry and mass flow processes relevant for the design,<br>performance, efficiency, emission control and fuel requirements of<br>both the Spark Ignition (SI) and Compression Ignition (CI) engines. |  |  |  |
| EMEMM5A                                                    | <u>Maintenance Management</u><br>Requires managerial experience in business practice in the<br>maintenance environment. It will provide the understanding of the<br>principles, ethics, and skills to manage maintenance activities in<br>organizations, under different organizational circumstances.                                                                                                                                                                        |  |  |  |
|                                                            | SEMESTER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| EMECM5A                                                    | <u>Continuum Mechanics</u><br>This module offers an in depth clear understanding of the tensor<br>notation, three-dimensional stress strain relationships, Stress strain law<br>in elasticity, and Stress functions in the determination of principal<br>stresses, principal planes and their principal directions. Analysis of the                                                                                                                                           |  |  |  |

|         | kinematic and mechanical behaviour of materials modelled on a                                                                              |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | continuum assumption. Development of the constitutive equations to                                                                         |  |  |  |
|         | characterise the behaviour of specific ideal materials, which are                                                                          |  |  |  |
|         | homogeneous and isotropic in nature.                                                                                                       |  |  |  |
|         | Energy Systems                                                                                                                             |  |  |  |
| EMEES5A | The module enables students to identify, discuss and evaluate different                                                                    |  |  |  |
|         | energy systems, old and new technologies. Also included is a study of                                                                      |  |  |  |
|         | mechanisms and processes for cycles and system integration, the sizing                                                                     |  |  |  |
|         | of plant components for required output, what they cost, and what is                                                                       |  |  |  |
|         | their benefit or impact (plus mitigation strategies) on the natural                                                                        |  |  |  |
|         | environment. The module also enables student to proffer solutions to                                                                       |  |  |  |
|         |                                                                                                                                            |  |  |  |
|         | a given energy demand scenario using the <i>Thermoptim</i> software.                                                                       |  |  |  |
|         | Engineering Modelling and Simulations Module 2                                                                                             |  |  |  |
|         | This course examines a variety of engineering system modelling and<br>simulation methods, as well as numerical and computer based solution |  |  |  |
|         |                                                                                                                                            |  |  |  |
|         | techniques utilized in industrial and engineering environments.                                                                            |  |  |  |
| EMEMS5B | Techniques for finding solutions to these systems include: graphical,                                                                      |  |  |  |
|         | algebraic, numerical, state space, simulation and computational                                                                            |  |  |  |
|         | processes. Case studies in industry and engineering applications are                                                                       |  |  |  |
|         | used to illustrate the techniques and modelling concepts. Examples of                                                                      |  |  |  |
|         | simulation and analysis methods will be related to the linear and non-                                                                     |  |  |  |
|         | linear, deterministic and non-deterministic systems.  Production and Manufacturing                                                         |  |  |  |
|         | The purpose of this module is to enable the student understand the                                                                         |  |  |  |
|         | concepts of production and manufacturing, and to apply the knowledge                                                                       |  |  |  |
|         | in designing of appropriate manufacturing systems for optimal                                                                              |  |  |  |
|         | productivity. This module will give student in-depth knowledge of how                                                                      |  |  |  |
| EMEPM5A | to use Hand and Power tools effectively. More so, the module give a                                                                        |  |  |  |
|         | practical introduction to what can be a very complex subject ,and                                                                          |  |  |  |
|         | significant update and revised to include new material on current                                                                          |  |  |  |
|         | health and safety legislation, gauging and digital measuring                                                                               |  |  |  |
|         | instruments as well as modern measuring techniques such as laser scan                                                                      |  |  |  |
|         | micrometre, co-ordinate and visual measuring systems.                                                                                      |  |  |  |
|         | Refrigeration and Air-conditioning                                                                                                         |  |  |  |
|         | This module aims at providing students with in-depth knowledge on                                                                          |  |  |  |
| EMERE5A | how to design, develop simulate and analyze Heating, Refrigeration and                                                                     |  |  |  |
|         | Air Conditioning processes and systems in a given industrial or                                                                            |  |  |  |
|         | commercial setup. It also enables learners to explore new                                                                                  |  |  |  |
|         | developments in the field.                                                                                                                 |  |  |  |
|         | YEAR MODULE                                                                                                                                |  |  |  |
|         | Applied Research Methodology in Mechanical Engineering                                                                                     |  |  |  |
| EMEAR5A | This module offers students a clear understanding of research                                                                              |  |  |  |
|         | methodologies, sourcing and interpretation of researched topics, how                                                                       |  |  |  |
|         | methodologies, sourcing and interpretation of rescarcined topics, now                                                                      |  |  |  |

| to explain research work done in seminar presentations, and the |
|-----------------------------------------------------------------|
| compilation of a technical report on the selected topic.        |

## NOTES

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |