

Source: www.mycourses.co.za

2

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

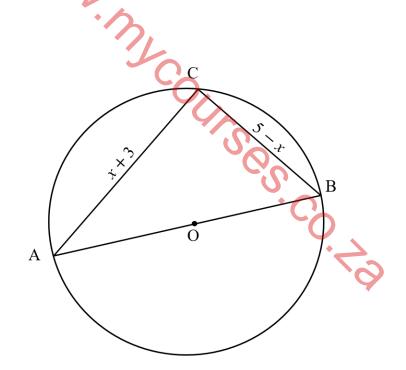
- 1. This question paper consists of TEN questions. Answer ALL the questions.
- 2. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- You may use an approved scientific calculator (non-programmable and non-3. graphical), unless stated otherwise.
- 4. Answers only will not necessarily be awarded full marks.
- 5. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. Number the answers correctly according to the numbering system used in this question paper.
- 8. Write neatly and legibly.

1.1 Solve for *x*:

 $1.1.1 \quad x^2 + 5x - 6 = 0 \tag{3}$

1.1.2
$$5x^2 + x - 3 = 0$$
 (correct to 2 decimal places) (3)

$$1.1.3 \quad (2x-1)(x+3) \ge -3 \tag{5}$$


$$1.1.4 \quad \sqrt{x} - \sqrt{x-5} = 1 \tag{4}$$

1.2 Solve for *x* and *y* simultaneously if:

$$2x - y = 1$$
 and $y^2 - xy = x + 7$ (6)

1.3 The diagram below shows a circle with centre O, that passes through the vertices of ΔABC .

AB is the diameter, AC = (x+3) units and BC = (5-x) units.

Calculate the value of x that will make AB, the diameter, a minimum length.	(5)
	[26]

MATHEMATICS P1

(EC/NOVEMBER 2022)

QUESTION 2

Simplify: 2.1

$$\frac{2^{2x} - 4^{x+1}}{4^x + 2^{2x-1}} \tag{4}$$

2.2 Solve for *x*:

2.2.1
$$3x^{\frac{3}{2}} = 81$$
 (3)

$$2.2.2 \quad 2^x + 5 = 3.2^{1-x} \tag{5}$$

2.3 Given:
$$\frac{1+\sqrt{2}}{3+2\sqrt{2}} = \sqrt{a} + b.$$

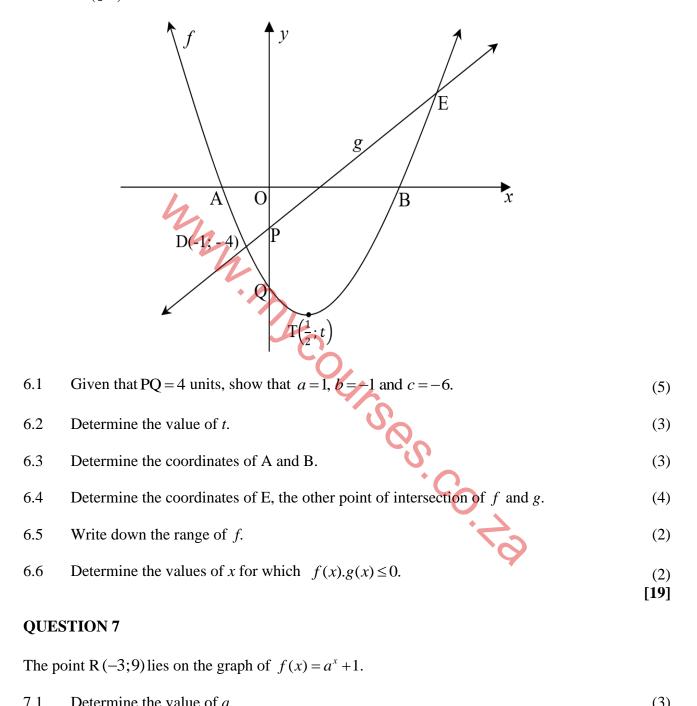
Given: $\frac{1}{3+2\sqrt{2}} = \sqrt{a+b}$.	
N.	(5)
Determine the values of a and b , WITHOUT using a calculator.	(5) [17]
TION 3	
Given the linear pattern: $-2 \cdot 3 \cdot 8$:	

QUESTION 3

3.1	Given the linear pattern: -2 ; 3, 8;	
	3.1.1 Determine the formula for the n^{th} term of the pattern.	(2)
	3.1.2 Calculate the value of T_{18} .	(2)
	3.1.3 Which term in the pattern has a value of 473?	(2)
3.2	In a linear pattern, $T_{11} = -19$ and $T_{23} = 65$. Determine the number of negative terms in the pattern.	(5) [11]
QUES	ΓΙΟΝ 4	
Given t	he quadratic pattern: 204; 176; 150; 126;	
4.1	Determine the next two terms of the pattern.	(2)
4.2	Determine T_n , the general term of the pattern, in the form $T_n = an^2 + bn + c$.	(4)

4.3 Determine the value(s) of *n* if $T_n = 36$. (4)

4.4 Calculate ALL the negative terms in the pattern. (5) [15]


Given: $f(x) = \frac{-2}{x-1} + 3$.

5.1	Write down the equations of the asymptotes of f .	(2)	
5.2	Determine the coordinates of the x - and y -intercepts of f .		
5.3	Draw a neat sketch of f , clearly indicating all intercepts with the axes and any asymptotes.	(4)	
5.4	Write down the equation of the axis of symmetry of f that has a negative gradient.	(2)	
5.5	The graph of $g(x) = ax + b$ is drawn parallel to the line of symmetry of f with a negative gradient. Determine the values of a and b given that g passes through the point $(5; -2)$.	(3)	
5.6	Determine the distance between the points of intersection of f and g . Leave your answer in surd form.	(5)	
5.7	Determine the equation of <i>h</i> , if $h(x) = -f(x+3)$.	(2) [21]	

5

6

The diagram below shows the graphs of $f(x) = ax^2 + bx + c$ and g(x) = 2x-2. The graphs intersect at D(-1;-4) and E. *f* cuts the *x*-axis at A and B, the *y*-axis at Q and has a turning point at T($\frac{1}{2}$; *t*). *g* cuts the *y*-axis at P.

/ • 1		(\mathbf{J})
7.2	A new function g is obtained when f is reflected about its asymptote. Write down	

the equation of g. (2) [5]

- 8.1 The interest rate on an investment is x % per annum compounded monthly. Calculate the value of x given that the corresponding effective interest rate is 9,92%. (3)
- 8.2 A printer's value depreciates according to the reducing balance method, over a period of 7 years at a rate of 12% p.a., to R28 607,30. Calculate, to the nearest rand, the original price for the printer.
- 8.3 Pratham made an initial deposit of R32 000 into an investment account that paid interest at 8,6% p.a. compounded monthly. Another deposit of R23 000 was made 3 years later. The interest rate changed to 10,5% p.a. compounded quarterly 4 years after the initial deposit.
 - 8.3.1 How much was in Pratham's investment account at the end of 4 years? (5)
 - 8.3.2 At the end of 6 years since he started his investment, Pratham decided to use all his balance as a deposit for a car that cost R220 000 and borrow the rest from a bank.

How much did he need to borrow?

(4) [**15**]

(3)

9.1	 Two events A and B are such that: P(A) = 0,35 P(A or B) = 0,75 	
	Determine P(B) if:	
	9.1.1 A and B are mutually exclusive	(3)
	9.1.2 A and B are independent	(4)
9.2	130 learners were asked about their favourite social media platforms. They chose from Facebook (F), WhatsApp (W) and Instagram (I). The results are shown below:	
	 63 learners like Facebook 81 learners like WhatsApp 37 learners like Instagram 18 learners like Facebook and WhatsApp but not Instagram 12 learners like Facebook and Instagram but not Facebook <i>x</i> learners like Instagram and Facebook but not WhatsApp <i>x</i> learners like Instagram only <i>y</i> learners like WhatsApp only 11 learners like all three 8 learners did not like any of the social media platforms 	(4)
	9.2.2 Determine the values of <i>x</i> and <i>y</i> .	(3)
	9.2.3 Calculate the probability that a learner chosen at random likes only ONE social medium platform from the three mentioned above.	(2) [16]
QUE	STION 10	
choos	robability that Lwandi chooses to do Mathematics in Grade 10 is 65%. If he does not e Mathematics, the probability that he attains a distinction in Accounting is 20% but if poses Mathematics, the probability of achieving a distinction in Accounting is 60%.	
Calcu	late the probability that Lwandi attains a distinction in Accounting.	[5]

TOTAL: 150

INFORMATION SHEET: MATHEMATICS

$x = \frac{-b \pm \sqrt{b^2 - 4a}}{2a}$	<u>_</u>		
A = P(1+ni)	A = P(1 - ni)	$A = P(1-i)^n$	$A = P(1+i)^n$
$T_n = a + (n-1)d$		$\mathbf{S}_n = \frac{n}{2} \left(2a + (n-1)a \right)$	1)
$T_n = ar^{n-1}$	$S_n = \frac{a(r^n - 1)}{r - 1}$; r	≠1	$S_{\infty} = \frac{a}{1-r}; -1 < r < 1$
$F = \frac{x\left[(1+i)^n - 1\right]}{i}$		$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$	
$f'(x) = \lim_{h \to 0} \frac{f(x)}{f(x)}$	h) - f(x)		
$d = \sqrt{(x_2 - x_1)^2 + (x_2 - x_1)^2} + \frac{1}{2} \sqrt{(x_2 - x_1)^2 + (x_2 - x_1)^2} + \frac{1}{2} \sqrt{(x_2 - x_1)^2 + (x_2 - x_1)^2} + \frac{1}{2} (x_2 - x_1)^2 + (x_2 $	$(y_2 - y_1)^2$	$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$	
y = mx + c	$y - y_1 = m(x - x_1)$	$m = \frac{y_2 - y_1}{x_2 - x_1}$	$m = \tan \theta$
$(x-a)^2 + (y-b)$	$r^2 = r^2$		
In AABC:	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^{2} = b^{2} + c^{2} - 2bc.\cos A$ $area \ \Delta ABC = \frac{1}{2}ab.\sin C$	Sec. Sec.	
$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$		$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$	
$\cos(\alpha+\beta)=\cos\alpha$	$\alpha .\cos\beta - \sin\alpha .\sin\beta$	$\cos(\alpha-\beta)=\cos\alpha.$	$\cos\beta + \sin\alpha . \sin\beta$
$\cos 2\alpha = \begin{cases} \cos^2 \alpha + 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha \end{cases}$	$-\sin^2 \alpha$ $^2 \alpha$ $\alpha - 1$	$\sin 2\alpha = 2\sin \alpha . \cos \alpha$	α
$\overline{x} = \frac{\sum x}{n}$		$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$	
$P(A) = \frac{n(A)}{n(S)}$		P(A or B) = P(A) +	P(B) - P(A and B)
$\hat{y} = a + bx$		$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$	<u>(</u>)

Copyright reserved