GRADE 11

MATHEMATICS INVESTIGATION

DATE_____

MARKS: 55

I

TIME: 1 Hour 15 minutes

INSTRUCTIONS AND INFORMATION

- 10. Read the following instructions carefully before answering the questions.
- 11. This task consists of 4 parts
- 12. Answer ALL sections.
- 13. Clearly show ALL calculations, diagrams, graphs, et cetera which you have used in determining your answers.
- 14. Answers only will not necessarily be awarded full marks.
- 15. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 16. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 17. Diagrams are NOT necessarily drawn to scale.
- 18. Write neatly and legibly.

SECTION A

Part 1

Solve the following equations by using the Quadratic formula and answer the subsequent questions:

1	$12x^2 + 5x - 2 = 0$	(3)
a.	Are the roots equal or unequal?	(1)
b.	Are the roots rational or irrational?	(1)
c.	Are the roots real or non-real?	(1)
2.	$3x^2 + 6x + 1 = 0$	(3)
a.	Are the roots equal or unequal?	(1)
b.	Are the roots rational or irrational?	(1)

c.	Are the roots real or non-real?	(1)
3.	$x^2 - 6x + 9 = 0$	(3)
a.	Are the roots equal or unequal?	(1)
b.	Are the roots rational or irrational?	(1)
c.	Are the roots real or non-real?	(1)
4.	$2x^2 + 4x + 10 = 0$	(3)
a.	Are the roots equal or unequal?	(1)
b.	Are the roots rational or irrational?	(1)
c.	Are the roots real or non-real?	(1)
		[24]

Part 2

1. Now that you have done the four examples you must determine the value of b^2-4ac which is called the discriminant (Δ).

	Equation	$\Delta = b^2 - 4ac$	
a.	$12x^2 + 5x - 2 = 0$		(1)
b.	$3x^2 + 6x + 1 = 0$		(1)
c.	$x^2 - 6x + 9 = 0$		(1)
d.	$2x^2 + 4x + 10 = 0$		(1)

2. Hence, determine the connection between the discriminant and the nature of the roots of each equation in the table below:

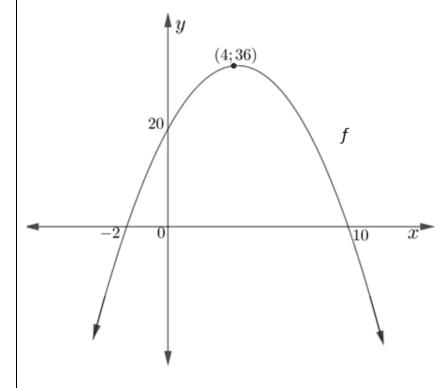
	Discriminant	Roots are:	Roots are:	Roots are:
		Equal/unequal	Rational/Irrational	Real/Non-Real
$\Delta > 0$ and a				
perfect				
square				
$\Delta > 0$ and				
is not a				
perfect				
square				
$\Delta = 0$				
$\Delta < 0$				

 $(1 \times 4 = 4)$

Part 3

1. Draw rough sketches to represent the following functions:

2.


Function	Nature of the roots (from part 2 above)	Rough sketch	
$y = 12x^2 + 5x - 2$			(2)
$y = 3x^2 + 6x + 1$			(2)
$y = x^2 - 6x + 9$			(2)
$y = 2x^2 + 4x + 10$			(2)

[20]

SECTION B

	ation of your knowledge on the nature of roots:	
1.	Prove that the roots of $x^2 + (1-k)x + k - 3 = 0$ are real for all real values of k .	(6)

2.	The graph of $f(x) = -x^2 + 8x + 20$ is sketched below.
	The graph intersects the x -axis at $(-2;0)$ and $(10;0)$, and the y -axis at
	(0;20).
	The point $(4:36)$ is the turning point of f .

2.1	Determine the value of k if $g(x) = 4x + k$ is a tangent to $f(x) = -x^2 + 8x + 20$.

2.2	Use th	e graph $f(x) = -x^2 + 8x + 20$ to determine the values of:	
	2.2.1	p for which $-x^2 + 8x + p = 0$ will have equal roots.	(1)

2.	2.2 b for which $-x^2 + 8x + 20 = b$ will have no real roots.	(1)
2.	2.3 <i>m</i> for which $-x^2 + 8x + m = 0$ will have two positive roots.	(1)
		[9]