EXAMINATIONS AND ASSESSMENT CHIEF DIRECTORATE
Home of Examinations and Assessment, Zone 6, Zwelitsha, 5600
REPUBLIC OF SOUTH AFRICA, Website: www.ecdoe.gov.za

2022 NSC CHIEF MARKER'S REPORT

SUBJECT	MATHEMATICAL LITERACY	
QUESTION PAPER	2	
DURATION OF QUESTION PAPER	3 3RS	
PROVINCE	EASTERN CAPE	
DATES OF MARKING	$9-22$ DECEMBER 2022	

SECTION 1: (General overview of Learner Performance in the question paper as a whole)
Generally, the performance in the examination appears to be better than that of the previous years. It must be noted, however, that the question paper is now in its third year with the new format and thus trends are starting to form with the results. It is evident that higher order thinking skills are still a challenge as indicated by the performance in Question 4 and 5.

Mathematical Literacy P2

Question by question analysis reveals the following trends:

As noted before those questions where learners were required to explain themselves, provide solutions to multistep procedures or prove why a value is as it is given in the text, provided the greatest challenges. These questions are most prevalent in question 3,4 and 5 and thus these questions indicate a lower average than others. It is surprising though that learners fared better in question 2 this year and that generally more learners are attempting higher order questions.

Aside from the excessive inclusion of finance in question 4, the paper is set out according to the modified structure and follows the guidelines set within the exam guidelines.

Paper is not always within the suggested amounts as indicated below:

Code	Content areas	Suggested	Actual
1	Measurement	$85(\pm 5)$	77
2	Maps, plans and other	$55(\pm 5)$	45
3	Probability (minimum)	7	11
	Finance		17
	TOTAL	$\mathbf{1 5 0}$	$\mathbf{1 5 0}$

The inclusion of finance in this manner proved a barrier to learners as several of them were thrown off by it. They could not even answer the most basic reference to break even in context.

The paper has Level 1: 31\%; Level 2: 28\% and Level 3: 20\% and Level 4: 21\% and these are in line with CAPS that requires level 1: 30%; Level 2: 30%; Level $3: 20 \%$; Level 4: 20\% (minimum).

QUESTION 1 is set in line with circular S1 and has 32 marks of cognitive level 1 however the allocation of 3 marks in certain questions is questionable e.g., 1.1.2.

Levels of thinking	Suggested	November 2022
1 - Knowledge	± 45	46
2 - Routine procedures	± 45	43
3 - Multi-step procedures	± 30	30
4 - Reasoning and reflecting	± 30	31

The analysis of the paper as indicated above shows a balanced paper set at CAPS requirements (See the table). The first one for weightings and the second one for cognitive levels.

Learners had no complaints about completing the paper on time. Thus, the time allocation was within range

Although the paper was not that difficult, the quality of the artwork was a challenge that could have put learners at a disadvantage. Learners really needed to apply their knowledge and understanding here and higher order thinking skills were tested in interesting and novel ways.
Inputs from 220 learners form 10 districts across the province revealed that:
28/220 struggled with Q3
39/220 struggled with Q4 especially the sketches
29/220 struggled with Q5
92/220 had the greatest challenge with maps
78/220 had the greatest challenge with measurement
This trend was also revealed in the results with several learners experiencing serious challenges with their orientation in space and their approach to
3-Dimensional shapes.

SECTION 2: Comment on candidates' performance in individual questions (It is expected that a comment will be provided for each question on a separate sheet).

QUESTION 1

(a) General comment on the performance of learners in the specific question. Was the question well answered or poorly answered?
Generally, the best answered question. All learners attempted the question with varied levels of success. The average for this question is 66\%. The higher performance could be attributed to the fact that these are all Level 1 questions.

Looking at the performance it is clear that certain sub questions were a challenge e.g. 1.1.3; 1.1.4; 1.2.2 and 1.3.5. These questions relate to working with time; deciphering an assembly diagram and simply measuring using a ruler. These has been challenges for some time now and really need the attention of the all stakeholders.
(b) Why the question was poorly answered? Also provide specific examples, indicate common errors committed by learners in this question, and any misconceptions.
Although it is one of the questions that was answered the best learners still lost marks in the following ways:
1.1.2 learners referred to instruments of time and not the format.
1.1.3 most learners did not include that the time was in the afternoon and lost a mark.
1.1.4 Learners are unable to interpret the 24-hr format or wrote the times instead of just the number of times it was afternoon.
1.1.5 Conversion of time is still a problem. Learner divide by 60 instead of multiplying.
1.2.1 Incorrect interpretation led to various answers, mostly 6 bolts.
1.2.2 This was the question that was answered the worst as learners could not analyse the diagram. They often answered 4 nuts subtracting A, B, D and E from 8.
1.3.2 Learners were unable to use the compass directions accurately and answered Limpopo.
1.3.4 Instead of writing the number of towns learners wrote the names of the towns.
1.3.5 Learners are still unable to accurately measure using a ruler. This is a basic skill that should be reinforced throughout the FET phase.

(c) Provide suggestions for improvement in relation to Teaching and Learning

1. The basic mathematical operations should be emphasized in earlier Grades. Educators should spend the first week of the year simply addressing basic skills which will make it easier for learners to navigate the curriculum since these skills are found in different contexts throughout.
The importance of laying a thorough foundation in Grade 10 cannot be emphasized enough.
2. Assist learners with the skills to unpack complex problems in order to make them more accessible and less intimidating.
3. Educators to train learners to round off ONLY the final answer in the given context.
4. Basic definitions should be taught in a clear and succinct manner.
5. HOD's should ensure that educators prepare sufficiently and execute the ATP's with the necessary enthusiasm in order to cultivate a love for the subject and generate a thirst for knowledge.
6. Question by Question analysis should be encouraged after assessments so that particular challenges can be identified and addressed as early as possible.
(d) Describe any other specific observations relating to responses of learners and comments that are useful to teachers, subject advisors, teacher development etc.
7. The basic mathematical operations should be emphasized in earlier Grades. Educators should spend the first week of the year simply addressing basic skills which will make it easier for learners to navigate the curriculum since these skills are found in different contexts throughout. The importance of laying a thorough foundation in Grade 10 cannot be emphasized enough.
8. Conversions need to be taught, not only at the basiclevel, but also in squared and cubed levels.
3.. Assembly diagrams are often neglected and educators are challenged to expose learners to various types of diagrams so as to demystify this section.
9. time formats and conversions with time are still a sickly point. It is imperative that these be practiced throughout the year.
10. In many cases the actual measurement of maps and sketches is neglected. Educators should make an effort to involve ALL learners in the actual measurement AS WELL AS READING IT IN VARIOUS FORMATS so that learners get acquainted with reading in cm and mm .
Also, map reading skills and the interpretation of bar vs numeric scales should be a regular exercise when working with maps and scales.

QUESTION 2

(a) General comment on the performance of learners in the specific question. Was the question well answered or poorly answered?
Generally, one of the questions that were answered well with a 66% average. Within the question there are some highlights with sub questions scoring above 80\%.

However, there are seven sub-questions that scored below 55% and this is worrying since the first two questions are normally where learners score marks. These areas include 2.1.3 to 2.1.6; 2.3.1; 2.3.3 and 2.3.4.
2.1.3 was the worst performing simply because it was so ambiguous. Thus, many learners responded with 6 instead of 13 seats. 2.1.3 to 2.1.6 all relate to a diagram that learners either had no point of reference for or questions where learners struggled to communicate effectively. However, 2.1.5 is simply providing directions which is a simple skill that should be mastered in Grade 10. 2.3 again provided a challenge for second language speakers as they had to explain various terms in context or use compass directions.
(b) Why the question was poorly answered? Also provide specific examples, indicate common errors committed by learners in this question, and any misconceptions.
This was another question where learners fared better than the other questions. However, marks were often lost because of the following reasons:
Huge language barriers were evident in the manner in which learners had to express themselves in Q 2.1.1; 2.1.4 and 2.3.3 (a) and (b). They were often unable to sufficiently express what they meant and thus could not be allocated the marks.
2.1.2 Learners misread the numbers of seats available or rushed their answers and left out the seats at a particular table.
2.1.3 Learners and educators alike were confused by the language used and thus interpreted it as the seats directly facing the wall with no seats in between. Thus, the response given was 6 instead of 13 .
2.1.4 Learners were confused as to the positioning of the couch and gave obscure reasons for its placement e.g. to visit a friend or for the elderly to sit outside.
2.1.5. Due to a challenge with their orientation in space, not reading the

learners could not provide the correct directions to walk even though a sketch was provided. They used left and right or up and down instead of the compass directions.
2.1.6 This question caused great confusion in its interpretation. Several learners maintained that there were only 18 tables due to the use of the phrase "in the restaurant". Thus, learners regarded the "stoep" area as not being "in" the restaurant but outside.
Thus, the claim was considered valid for the wrong reason.
2.2.1 It is clear that the topic of probability is a neglected one. Several learners did not even know that it was a tree diagram and instead called it an options diagram.
2.2.2 was answered well by those who understood the diagram
2.2.3 In many cases learners listed the actual options instead of the number of options.
2.2.4 Only listing one parameter although 3 were given really through some learners. They did not understand that they had to include all the options or alternatively only look at the option mentioned. They would disregard the option without a label and only work with the 8 options left. Also, several of the learners left the answer as a decimal instead of converting to a percentage. Thus:
$P=\frac{4}{8}=0,5$
2.3.1 The map in itself was not difficult to read, however, getting learners to explain how the bridge was indicated proved a challenge. Learners simply could not find the words to explain this as their capacity to interpret the sketch and the inability to adequately express themselves proved too much to handle. E.g. It is the map showing the route. We cannot use the word route to explain route.
2.3.2 As before, the language barrier was evident in both these cases.
2.3.3 a) For the third time in one question the language ability of learners was tested and learners fell short, listing the route numbers instead of explaining the answer.
2.3.3 b) The challenge here was that the memo provided for an answer of 4 however, learners saw the bridge at the start of the race as another option and listed 5 times instead.
2.3.4 Learners are still not able to interpret compass directions and thus east and west still get confused.

(c) Provide suggestions for improvement in relation to Teaching and Learning

1. The basic mathematical operations should be emphasized in earlier Grades. Educators should spend the first week of the year simply addressing basic skills which will make it easier for learners to navigate the curriculum since these skills are found in different contexts throughout.
The importance of laying a thorough foundation in Grade 10 cannot be emphasized enough.
2. Assist learners with the skills to unpack complex problems in order to make them more accessible and less intimidating.
3. Basic definitions should be taught in a clear and succinct manner.
4. Educators should expose learners to various types of maps and train them to interpret them using the CORRECT mathematical language Bource: $^{\text {wnw.mvcourses.coza }}$
5. It is clear that probability is a neglected topic as several learners were not even able to name the tree diagram. The only way to grow comfortable with this topic is to expose learners to it by starting the drawing with relevant examples from their life-worlds. And using the fractions on the different branches as the tree progresses. Also, then converting the probability to its different forms so that learners can familiarise themselves with it. E.g. As a fraction, a decimal and a percentage.
6. Percentage calculations are an integral part of all of the elements of the ATP and should be incorporated into questions so that learners grow accustomed to using it.
(d) Describe any other specific observations relating to responses of learners and comments that are useful to teachers, subject advisors, teacher development etc.
7. Educators should refer to the CAPS document when teaching and not just past papers. This was evident in the lack of understanding of the orientation of the house.
8. Basic skills like converting and using a scale need to be reinforced and advisors should consider presenting maps and plans workshops to assist educators with knowledge gaps.
9. Expose learners to a variety of question papers with different approaches to the topic in order to allow learners to build confidence in answering level 3 and 4 questions.
10. Percentage calculations are an integral part of all of the elements of the ATP and should be incorporated into questions so that learners grow accustomed to using it.
11. HOD's should ensure that educators prepare sufficiently and execute the ATP's with the necessary enthusiasm in order to cultivate a love for the subject and generate a thirst for knowledge.
12. Question by Question analysis should be encouraged after assessments so that particular challenges can be identified and addressed as early as possible.

QUESTION 3

(a) General comment on the performance of learners in the specific question. Was the question well answered or poorly answered?
With an average of 61\%, this was the last question that learners truly attempted. With the focus on measurement learners would need to have a solid knowledge of these topics in order to answer the level 3 and 4 questions. It is however clear that the level of questioning appeared to demoralise learners as they struggled to navigate the various cognitive levels.

The most challenging sub-questions in this section would be 3.1.3b); 3.2.2; 3.3.1 and 3.3.3 with percentages below 55\%. The skill set that was found lacking in these questions involves: changing the subject of the formula, conversions (imperial and metric), responding to text and working with time. Once again, the issue with time is highlighted. Question 3.3 .3 only had an average of 53% with learners struggling to understand basic measurement tools and converting basic units. This area needs serious attention.
(b) Why the question was poorly answered? Also provide specific examples, indicate common errors committed by learners in this question, and any misconceptions.
3.1.1 Learners still struggle with perimeter, and multiply the sides instead of adding.
E.g. $P=2(89 \times 239)$

$$
=48542 \mathrm{~mm}
$$

Further they provide the correct answer, but forget the unit or provide the incorrect unit
E.g. mm^{2}

OR
They forget to use the brackets when substituting:
E.g. $2 \times 89+239=567 \mathrm{~mm}$
3.1.2 The only challenges here was the conversion to cm as some learner multiply instead of dividing or they copy the incorrect value from the picture.
Thus, $14 \times 10=140 \mathrm{~cm}$

$$
140-2,5-7 \mathrm{~cm}=130,5 \mathrm{~cm}
$$

OR

$$
114 m m-2,5-7=104.5 m m
$$

They use 144 mm instead of 114 mm

3.1 .3 a) question was very poorly answered as learners did not find the correct radius and then proceeded to do incorrect substitutions. Also proving the volume was a new concept to them and thus they found it difficult to attempt since the answer was already given. Alternatively, they used the diameter of the cap as 30 mm or multiplied by 2 instead of squaring.
E.g. $3,142 \times(28 \mathrm{~mm}) 2 \times 8,5 \mathrm{~cm}$

$$
=20938,288 \mathrm{~cm}^{2}
$$

OR
$3,142(14 \mathrm{~mm}) 2 \times 8,5 \mathrm{~cm}$

$$
=5234,57 \mathrm{~cm}^{2}
$$

OR

$$
\begin{aligned}
& 3,142(15 \mathrm{~mm}) 28,5 \mathrm{~cm} \\
= & 6009,075 \mathrm{~cm}^{2}
\end{aligned}
$$

3.1 .3 b) Several learners could substitute into the given formula but found it difficult to change the subject of the formula. Those who did change the subject, invariably substituted incorrectly. Rounding also proved a problem with learners rounding to the incorrect decimal.
E.g. $0,82=$ mass $\div 52,346$

$$
\begin{aligned}
\frac{0,82}{52,346} & =0,0157 \\
& =0,1 \mathrm{~g}
\end{aligned}
$$

OR
E.g. $0,82=$ mass $\div 52,346$

$$
=0,82 \times 52,346
$$

$$
=42,9237 \mathrm{~g}
$$

$$
=42 \mathrm{~g}
$$

3.2.1. This was attempted regularly with partial answers, but several learners once again failed to substitute correctly or forgot a particular value. Some even used values from the graph.
E.g. $1,6 \times 3,785 \times 4 \times 5 \times 29$ (days in Feb)
$=3512,48$ litres
OR
$1,6 \times 3,785 \times 4 \times 5 \times 28($ days in Feb)
$=3391,37$ litres (rounding error)
OR
$1,6 \times 3,785 \times 4 \times 5$
$=121,12$ litres
OR
$1,6 \times 3,785 \times 4 \times 28$ $=678,79$ litres
OR
$4 \times 5 \times 28=560$
$560 \times 1,6=896$ litres
OR
$4 \times 5 \times 28=560$
$560 \times 1,6=896$ gallons
Thus $\frac{896}{3,785}=236,724$ litres

(c) Provide suggestions for improvement in relation to Teaching and Learning

1. Teachers are to encourage learners to read questions carefully. i.e. find out whether a question should be rounded to one or two decimal places.
2. Learners should be taught to break complex problems up into smaller manageable chunks.
3. Throughout the question conversion remains a challenge and thus basic skills in this area need to be revised.
4. Ensure that learners are taught that we need to work with the same unit when doing calculations. E.g. we cannot divide cm by mm.
5. Educators need to clearly train learners to distinguish the difference between the units of area volume and perimeter.
6. Ensure that various forms of substitution are practiced and that learners understand how to make a variable the subject of the formula.
7. Calculator skills are an essential part of learner training and needs to be reinforced daily.
8. Educators need to imprint the meaning of action words in texts e.g., Show, justify etc.
9. When we interrogate learner scripts it becomes clear that many educators still teach in their mother tongue which creates an even bigger challenge (backlog) for learners. Even the most basic concepts are a challenge to these learners since they have not been exposed to them.

(d) Describe any other specific observations relating to responses of learners and comments that are useful to teachers, subject advisors, teacher development etc.

1. Measurement is a key issue within the subject and educators should spend enough time revising the basics i.e., area, perimeter, surface area and volume. It should not be assumed that these have been taught to a satisfactory level in previous Grades.
2. Educators are to make use of a variety of questions at various cognitive levels in order to stimulate the processing of complex problems within written texts. i.e. Learners should understand that questions can be linked and that the answers provided in a previous question can be used in those that follow.
3. Highlighting or underlining the key concepts assists learners to find the most important information within a text, which makes it less intimidating. (Extra notes in a question are there to guide the learner. They should use them)
4. Learners should be exposed to more 3 dimensional sketches in order to stimulate their spatial awareness.
5. Do not simply request learners to convert simple units within assessments, task them to convert squared and even cubed units of measurements so that it becomes familiar practice.
6. As per the CAPS document, learners need to know in which context to round up and in which to round down.
7. When verifying an answer or statement, learners should be taught to provide all calculations followed by their stated conclusion.
8. Content specific Topic tests should be done after every section of work to allow teachers to speak to these specific challenges.

QUESTION 4

(a) General comment on the performance of learners in the specific question. Was the question well answered or poorly answered?
This question was the worst performing with an average of only 46%. It had several challenging areas to it including 11 marks on Finance. Several learners struggled, with only 3 out of the 8 questions performing above 70%. Unfortunately, these three questions do not carry the bulk of the marks and for 4.3.1 to answer this section and 4.2 compounded it even further.

Question 4.1.1 speaks to interpreting an assembly diagram and clearly there is a challenge in this area as this is the worst performing sub-question in the entire paper. Most of the learners could not spatially align themselves with the various aspects of the birdhouse and thus were unable to respond. Question 4.1.3 fares better since the first part of the question is basic substitution into to the area formula.
Question 4.2 was a test of the application of a changing ratio to an assembly diagram and this proved too much for learners as most did not know how to apply the second ratio. It is thus clear that the application of ratios still remains a problem.
(b) Why the question was poorly answered? Also provide specific examples, indicate common errors committed by learners in this question, and any misconceptions.
4.1.1 Misinterpreting the birdhouse diagram caused learners to omit or add too many pieces.

Further conversion and rounding to the nearest hundred seemed to elude learners as the rounded to any value.
E.g. $\quad 19+23+14+25+41+23$

$$
=145 \mathrm{~cm}
$$

$$
=1,45 \mathrm{~mm} \text { or } 14500 \mathrm{~mm}
$$

OR

$$
19+25+10+25+41+23
$$

$$
=143 \mathrm{~cm}
$$

OR
Rounding errors like: $19+25+10+231+41+23$

$$
\begin{aligned}
& =141 \mathrm{~cm} \\
& =1410 \mathrm{~mm}=1400 \mathrm{~mm}
\end{aligned}
$$

4.1.2 The request to verify was difficult for learners as the struggle to define it in the given context.
Learners unable to understand importance of thickness. They correctly wrote:
$14 \mathrm{~cm}-10 \mathrm{~cm}=4 \mathrm{~cm}$ and stopped there, concluding that the statement was incorrect
Spatial awareness with respect to assembly diagrams are a real issue, learners simply said that 14 cm fits on 14 cm otherwise there would be a gap/space, without any calculation.
4.1.3 The first part done well by most learners, however, as soon as a compound shape was introduced, they once again struggled with radius and they multiply instead of squaring.
Learners use $4,2 \mathrm{~cm}$ instead of $2,1 \mathrm{~cm}$, add instead of subtracting and round incorrectly.
E.g. Area of rectangle $=23 \times 14=322 \mathrm{~cm}^{2}$

Size of hole $=3,142 \times(4,2)^{2}$
$=55,425 \mathrm{~cm}^{2}$
TSA $=322-55.425=266,58 \mathrm{~cm}^{2}$
OR
E.g. Area of rectangle $=23 \times 14=322 \mathrm{~cm}^{2}$

Size of hole $=3,142 \times(4,2)^{2}=3,142 \times 8,4=26,393 \mathrm{~cm}^{2}$
OR
Instead of subtracting, learners add the areas.
TSA $=322+13,85622=335,8562 \mathrm{~cm}^{2}$
Then they round incorrectly also: Thus $335,8 \mathrm{~cm}^{2}$.
Thus, learners' loose marks for random skills that should be considered as basics. Learners were penalized for incorrect rounding.
4.2. The question was just left out by many learners as this higher order application of measurement where ratio is involved provided a challenge for them. The use of ratios in its various forms confuses learners as they do not know when to multiply and when to divide. Add to that, having different spread rates and the use of the word "subsequent" and you just compounded the problem. With the result, many learners received 0 for their attempts.
Very few learners were able to navigate this question. They were not able to use the proportion and convert to ml . Some of the challenges are listed below: Learners used 2 coats instead of 3 . One for each spread rate.
E.g. 1: $10 \mathrm{~m}^{2}$

Thus, $\frac{0,2888 m 2}{10}=0,02888 l$
And 1: $14 \mathrm{~m}^{2}$
Now, $\frac{0,2888 m 2}{14}=0,0206285 l$
Thus, $0,02888+0,0206285=0.04951$ litres
No. of birdhouses with 500 ml

$$
\frac{0,500 l}{0,04951}=10,1 \text { birdhouses }
$$

Thus correct

Several multiplied by 10 instead of 14 for the second coat
E.g. 1: $10 \mathrm{~m}^{2}$

Thus, $\frac{0,2888 m 2}{10}=0,02888 \mathrm{l}$
$0.02888 \times 2=0.05776$ litres
No. of birdhouses with 500 ml

$$
\frac{0,500 l}{0,05776}=8.67 \text { birdhouses }
$$

Thus correct
Constantly multiplied everything by 7 regardless of the context.
E.g. 1: $10 \mathrm{~m}^{2}$

Thus, $\frac{0,2888 m 2}{10}=0,02888 l$
$0.02888 \times 7=0,202$ litres
And 1: $14 \mathrm{~m}^{2}$
Now, $\frac{0,2888 m 2}{14}=0,0206285 l$
$0,0206285 l \times 7=0,1444$ litres
Thus, $0,0202+0,1444=0.1646$ litres
No. of birdhouses with 500 ml

$$
\frac{0,500 l}{0,1646}=3.04 \text { birdhouses }
$$

Thus incorrect
4.3.1 a) Answered well.
$4.31 \mathrm{~b})$ This question caused several challenges as learners tried to approximate values from the graph. The graph in itself was difficult to read and thus values used by learners ranged.
Also, learners do not divide 287,4 by 6
E.g. R287,6 + R21,40 + R10,70
$=$ R 319,70
OR
they add all the expenses for the birdhouse
E.g. R250+R100+R $287,5+R 21,4+$ R10,70 = R669.10
4.3.2 Learners 'especially second language learners, found this challenging as they could not express themselves adequately.
Some of the incorrect responses include "the place where graphs meet"
OR
Where cost price and selling price are the same OR
They gave the coordinates of the break-even point

4.3.3 Some learners took the value from 4.3.1 and used it in 4.3.3.
E.g. Exp: $\mathrm{R} 350+\mathrm{R} 319.70 \times 15=\mathrm{R} 5145,50$
\quad Inc: $\mathrm{R} 150 \times 12=\mathrm{R} 1800$
Therefore, a loss
OR
Learners used expenses formula to calculate both profit and loss.
Exp: R350 + R80 $\times 15=$ R1550
Inc: R350 + 150 $\times 12=$ R2150
Thus, profit is made

(c) Provide suggestions for improvement in relation to Teaching and Learning

1. More attention is to be given to assembly diagrams and their interpretation.
2. Simple exercises can be done to increase learner's spatial awareness by allowing them to bring 3d items to class to analyse and interpret.
3. Educators should ensure that they teach learners to interpret break-even point in context using graphs and simple text.
4. Educators need to clearly train learners to distinguish the difference between the units of area volume and perimeter.
5. Ensure that various forms of substitution are practiced and that learners understand how to make a variable the subject of the formula.
6. Calculator skills are an essential part of learner training and needs to be reinforced daily.
7. Educators need to imprint the meaning of action words in texts e.g., Show, justify etc.
8. When we interrogate learner scripts it becomes clear that many educators still teach in their mother tongue which creates an even bigger challenge (backlog) for learners. Even the most basic concepts are a challenge to these learners since they have not been exposed to them.

(d) Describe any other specific observations relating to responses of learners and comments that are useful to teachers, subject advisors, teacher development etc.

1. Measurement is a key issue within the subject and educators should spend enough time revising the basics i.e., area, perimeter, surface area and volume. It should not be assumed that these have been taught to a satisfactory level in previous Grades.
2. Educators are to make use of a variety of questions at various cognitive levels in order to stimulate the processing of complex problems within written texts. i.e. Learners should understand that questions can be linked and that the answers provided in a previous question can be used in those that follow.
3. Do not simply request learners to convert simple units within assessments, task them to convert squared and even cubed units of measurements so that it becomes familiar practice.
4. As per the CAPS document, learners need to know in which context to round up and in which to round down.
5. When verifying an answer or statement, learners should be taught to provide all calculations followed by their stated conclusion.
6. Content specific Topic tests should be done after every section of work to allow teachers to speak to these specific challenges.

QUESTION 5

(a) General comment on the performance of learners in the specific question. Was the question well answered or poorly answered?
With an average of 50% this is the second worst performing question with only 3 out of the 7 sub-questions attaining more than 60\%. The other sub-questions have a combined average of only 37%.

Once again, the questions that require the manipulation of time and/or making a variable the subject of the formula (5.2 and 5.4) suffered greatly, with 5.4 hardly attempted by some learners. Attempts at 5.3.3 (an application of percentage change) were varied with very few learners actually grasping what is expected of them. It is clear that these skills will need to be reinforced with vigour within the classroom context.
(b) Why the question was poorly answered? Also provide specific examples, indicate common errors committed by learners in this question, and any misconceptions.
5.1 Answered well, but some learners responded with the names of the elements and not the numbers. We need to read the text carefully before we respond.
5.2.1 Answered well except for the common mistake of converting incorrectly or using the incorrect unit.
E.g. $\frac{315}{100}=3,15$ decades

OR
$2022-1707=315$ decades
5.2.2 Answered well but some learners struggled to calculate the correct number of days per month and misunderstood the concept of "between".
E.g. Nov. $30-11=19$

Dec. 16 days, thus a total of 35 days
5.3.1 Answered well aside from getting the ratio in the wrong order and not simplifying completely.
E.g. 150; 250

15; 25
OR
250; 150
5; 3
5.3.2 This question was answered well however, rounding errors were rife.
E.g. $\frac{1092,1916}{3,281}=332,8 \mathrm{~m}$ OR 332 m
5.3.3 This question was answered poorly as learners could not decide which amounts to use and they were unsure of how to manipulate them.
They often used the incorrect values and manipulated them in interesting fashions.
E.g. $1200-1080=120$

Now $\frac{120}{1200}=10 \%$ Thus untrue
OR
$\frac{960}{1200} \times 100=80 \%$ Thus untrue
5.4 This was one of the worst performing questions. Although it really was not that challenging learners faced 2 huge obstacles namely working with time and making a variable the subject of the formula.
First of all, they struggled to subtract time
Secondly, they often forgot the stoppage time or added it instead of subtracting it.
Thirdly, they wrote 3 hrs and 25 min as $3,25 \mathrm{hrs}$.
Fourthly, even when the substitution was done making Speed the subject proved a challenge.
E.g. 12:03-8:06

3h 57 min
Now $4 \min X 8=32$ min stoppage time $3 \mathrm{~h} 57-32 \mathrm{~min}=3 \mathrm{~h} 25 \mathrm{~min}$

Distance $=$ speed $\times 3,25 \mathrm{hrs}$
Speed $=\frac{816 \mathrm{~km}}{3,25 \mathrm{hrs}}$
$=251,08 \mathrm{~km} / \mathrm{h}$
OR
E.g. 12:03-8:06

3h 57 min
Now 4 min $X 8=32$ min stoppage time
$3 \mathrm{~h} 57-+32 \mathrm{~min}=4 \mathrm{~h} 19 \mathrm{~min}$
Converted 19/60 $=4,32 \mathrm{hrs}$
Speed $=\frac{816 \mathrm{~km}}{4,32 \mathrm{hrs}}$

$$
=188,89 \mathrm{~km} / \mathrm{h}
$$

OR
E.g. 12:03-8:06

3h 57 min
Now 4 min $X 8=32$ min stoppage time
3h 57-32 min $=3 \mathrm{~h} 25 \mathrm{~min}$
3 h $25 \min \times 60=205$ min
Speed $=\frac{816 \mathrm{~km}}{205 \mathrm{~min}}$
$=3,98 \mathrm{~km} / \mathrm{min}$

(c) Provide suggestions for improvement in relation to Teaching and Learning

1. Educators need to put more emphasis on the basics as well as terminology. Words like decade should not still be a challenge in Grade 12.
2. We should invest more on calculations with ratio, conversions and time as theses seem to have been neglected.
3. Changing the subject of the formulae, and substitution within formulae should be practiced across all topics throughout the year and not just with measurement.
4. Educators are to make use of a variety of questions at various cognitive levels in order to stimulate the processing of complex problems within written texts. i.e. Learners should understand that questions can be linked and that the answers provided in a previous question can be used in those that follow.
5. Calculator skills are an essential part of learner training and needs to be reinforced daily.
6. Educators need to imprint the meaning of action words in texts e.g., Show, justify etc.
(d) Describe any other specific observations relating to responses of learners and comments that are useful to teachers, subject advisors, teacher development etc.
7. educators should teach learners to us their calculators to convert time as this will reduce the mistakes made.
8. As per the CAPS document, learners need to know in which context to round up and in which to round down.
9. When verifying an answer or statement, learners should be taught to provide all calculations followed by their stated conclusion.
10. Content specific Topic tests should be done after every section of work to allow teachers to speak to these specific challenges.

basic education

Department：
Basic Education
REPUBLIC OF SOUTH AFRICA

MARKS： 150
TIME： 3 hours

This question paper consists of 14 pages and an addendum with 5 annexures．

INSTRUCTIONS AND INFORMATION

1. This question paper consists of FIVE questions. Answer ALL the questions.
2. Use the ANNEXURES in the ADDENDUM to answer the following questions:

ANNEXURE A for QUESTION 2.1
ANNEXURE B for QUESTION 2.2
ANNEXURE C for QUESTION 4.1
ANNEXURE D for QUESTION 4.3
ANNEXURE E for QUESTION 5.1
3. Number the answers correctly according to the numbering system used in this question paper.
4. Start EACH question on a NEW page.
5. You may use an approyed calculator (non-programmable and non-graphical), unless stated otherwise.
6. Show ALL calculations clearly.
7. Round off ALL final answers appropriately according to the given context, unless stated otherwise.
8. Indicate units of measurement, where applicable.
9. Maps and diagrams are NOT drawn to scale, unless stated otherwise.
10. Write neatly and legibly.

QUESTION 1

1.1 Various clocks indicating time are shown below.

Use the information above to answer the questions that follow.
1.1.1 Which ONE of the following (X, Y or Z) best describes the time displayed on EACH clock?

X Nine minutes to the next hour
Y Forty-five minutes to the next hour
Z A quarter to the next hour
1.1.2 Name the TWO time formats used to display time on the clocks.
1.1.3 Write down, in words, the time displayed on clock \mathbf{B}.
1.1.4 Write down the number of clocks that clearly indicates a time in the afternoon.
1.1.5 Convert 16 hours and 45 minutes to minutes.

	TYPE OF FASTENER				
	A Screw	$\begin{gathered} \hline \mathbf{B} \\ \text { Bolt } \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { Bolt } \end{gathered}$	$\begin{gathered} \mathbf{D} \\ \text { Washer } \end{gathered}$	$\begin{gathered} \hline \mathbf{E} \\ \text { Nut } \end{gathered}$
	\square			(0)	(0)
Quantity	8	6	\ldots	8	8
[Adapted from www.bin.com]					

Use the information above to answer the questions that follow.
1.2.1 Determine the number of type \mathbf{C} bolts used to assemble the deck chair.
1.2.2 State the number of nuts left over after step $\mathbf{1}$ is completed.
1.2.3 Name the last piece required to complete the assembly of the deck chair.
1.3

Use the map above to answer the questions that follow.
1.3.1 Identify the type of scale used in the map.
1.3.2 Name the province that lies east of North West.
1.3.3 Identify the national roads passing through Vryburg.
1.3.4 Write down the number of destination towns/cities shown on the map.
1.3.5 Measure, in mm, the direct distance (as the crow flies) from Bloemhof to Lichtenburg.

QUESTION 2

2.1 ANNEXURE A shows a restaurant's seating plan for customers.

Use the information on ANNEXURE A to answer the questions that follow.
2.1.1 Give ONE possible reason why this restaurant has so many windows.
2.1.2 Calculate the maximum number of chairs available for customers.
2.1.3 Determine the number of seats directly facing the wall on the south side.
2.1.4 Give ONE reason why the restaurant has couches at the entrance.
2.1.5 A person at table 18 leaves her seat and walks towards her friend at table 4. She uses the arrow path shown on the seating plan.

Use compass directions to describe her path from table 18 to table 4.
2.1.6 Norma claims that there are less than 21 tables for customers in this restaurant.

State, with a reason, whether her claim is valid.
ANNEXURE B shows the choices on the set menu for a function at the restaurant.
Customers can choose:

- One protein: chicken (C), beef (B) or fish (F)
- One side order: vegetables (V) or a salad (S)
- One dessert: ice cream (I) or malva pudding(M)

Use the information on ANNEXURE B to answer the questions that follow.
2.2.1 Name the type of diagram illustrated on ANNEXURE B.
2.2.2 Write down the missing outcome at 2.2.2(a) and the protein choice at 2.2.2(b).
2.2.3 State the number of combinations with beef as the protein.
2.2.4 Determine, as a percentage, the probability of randomly selecting a meal with malva pudding as the dessert.
2.3 Below is a simplified route map of the Los Angeles Marathon (LAM) in the United States of America. The LAM route is 26,2 miles.

Use the information above to answer the questions that follow.
2.3.1 Explain the meaning of route map.
2.3.2 Describe what is meant by 'Map not to scale'.
2.3.3 The runners in the Los Angeles Marathon have to pass underneath a bridge at certain points during the marathon.
(a) Explain how this is indicated on the route map.
(b) Write down the number of times that a runner who completes the marathon will pass underneath a bridge.
2.3.4 Write down the general direction in which the runners will face when they start in Flower Street.

QUESTION 3

3.1

Every learner in a Technology class is expected to have Prestik and Pritt (glue stick). The Prestik is packed in a rectangular-shaped sleeve and the Pritt in a cylindrical container.

The dimensions of the rectangular face of the Prestik sleeve and the cylindrical Pritt container are given below.

[Source: plastilon.co.za and mcsofficesupplies.co.za]
Use the information above to answer the questions that follow.
3.1.1 Calculate the perimeter of the front of the Prestik sleeve.

You may use the formula: \quad Perimeter $=2 \times($ length + width $)$
3.1.2 Calculate, in cm , the height of the opening/closing part of the Pritt container.
3.1.3 The actual height of the glue in the Pritt container is $8,5 \mathrm{~cm}$ and the volume of the glue, rounded to THREE decimal places, is $52,346 \mathrm{~cm}^{3}$.
(a) Show how the volume of the glue was calculated if the diameter of the glue is 28 mm .

You may use the formula: \quad Volume $=\mathbf{3 , 1 4 2} \times$ radius $^{2} \times$ height
(b) Determine (rounded to the nearest gram) the mass of the glue in the Pritt container, if the density of the glue is $0,82 \mathrm{~g} / \mathrm{cm}^{3}$.

You may use the formula: Density $=$ Mass \div Volume
3.2 Water is a scarce resource in South Africa. The graph below shows how the volume of water in a toilet cistern has been reduced over the years. The picture next to the graph shows a toilet pan with a toilet cistern.

BAR GRAPH: TOILET FLUSH VOLUME OVER THE YEARS					TOILET PAN WITH A TOILET CISTERN
	 Before		$\begin{array}{\|c\|} \hline 3.5 \\ \hline \\ \hline \end{array}$		

NOTE: 1 gallon = 3,785 litres
Use the information above to answer the questions that follow.
3.2.1 Calculate (in litres) the volume of water used during February 2022 by a family of five, if each person flushed the toilet an average FOUR times a day during the month.
3.2.2 State ONE way in which a person can save water in this context.

Ouma intends baking two milk tarts for her friends who will be arriving at 17:30. She uses the ingredients and information below. She can only bake one milk tart at a time. While the first milk tart is in the oven, she prepares the second milk tart in order to put it in the oven the moment the first one is taken out.

[Adapted from allrecipes.com]
NOTE: 1 cup $=250 \mathrm{ml}$
Use the information above to answer the questions that follow.
3.3.1 Ouma would like the second milk tart to be taken out of the oven 15 minutes before her friends arrive.

Determine the time Ouma must place the first milk tart in the oven.
3.3.2 Convert the baking temperature to degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$, rounded to the nearest 10 degrees.

You may use the following formula: $\left.\quad{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathbf{F}-\mathbf{3 2}\right)^{\circ}\right) \times \frac{\mathbf{5}}{\mathbf{9}}$
3.3.3 Determine how many litres of milk Ouma needs to bake the two milk tarts.

QUESTION 4

Itumeleng makes and sells birdhouses at a local flea market.
ANNEXURE C shows the diagram of the parts of the birdhouse and the assembly instructions.
He uses a single board that is 14 cm wide and 20 mm thick to make one birdhouse.
Picture of a completed birdhouse

Front exposed (part with hole)

Use the information above and ANNEXURE C to answer the questions that follow.
4.1.1 Show (rounded to the nearest hundred) that the length of the board needed for a single birdhouse is 1500 mm .
4.1.2 Itumeleng stated that in Step 2, the 10 cm side of the floor will go against the back.

Verify, showing all calculations, whether his statement is CORRECT.
4.1.3 The front part of the birdhouse has a circular hole with a diameter of $4,2 \mathrm{~cm}$ drilled into it.

Calculate (in cm^{2}) the exposed surface area of the front part of the birdhouse.

You may use the following formulae:

Area of a rectangle $=$ length \times width

$$
\begin{equation*}
\text { Area of a circle }=3,142 \times(\text { radius })^{2} \tag{6}
\end{equation*}
$$

4.2 Itumeleng paints the exposed exterior surface area of the birdhouse.

The total surface area of the birdhouse that will be painted is $0,2888 \mathrm{~m}^{2}$.
He applies three coats of paint according to the spread rate instructions on the paint tin, as follows:

- First coat: $10 \mathrm{~m}^{2} /$ litre
- Subsequent coats: $14 \mathrm{~m}^{2} /$ litre

Itumeleng stated that he will be able to paint seven birdhouses with $500 \mathrm{~m} \ell$ of paint.
Verify, showing ALL calculations, whether his statement is CORRECT.

Itumeleng has the following expenses for his birdhouse business:

- Rental of the stall at the flea, R250 per week
- Transport, R100 per week
- Wooden boards, R287,40 for a bundle of six boards
- Paint, R21,40 per birdhouse
- Sundries, R10,70 per birdhouse

ANNEXURE D shows the graph representing Itumeleng's weekly income and expenses for his birdhouse business.

Use ANNEXURE D and the information above to answer the questions that follow.
4.3.1 The equation to calculate his weekly expenses can be written as follows:

Expenses $=$ R350 $+\boldsymbol{p} \times$ number of birdhouses made,
where $\boldsymbol{p}=$ variable cost for each birdhouse made
(a) Show how the value of R350 (his fixed weekly cost) was calculated.
(b) Calculate the value of \boldsymbol{p}, the variable cost of making one birdhouse.
4.3.2 Explain break-even point in this context.
4.3.3 During one of the weeks, Itumeleng made 15 birdhouses, but only sold 12.

Show, by means of calculations, if he made a profit or a loss for that week.

QUESTION 5

Danny and Susan are on their way to visit some of the tourist locations in Japan.

ANNEXURE E shows a road infographic of their planned tour with the various tourist locations that would be visited.

Use the information above and ANNEXURE E to answer the questions that follow.
5.1 The tourist location details (in random order) for the tour are given below.
(a) Start in Tokyo
(b) Visit Mount Fuji
(c) Visit the world's largest aquarium to see the different types of fish in Osaka
(d) At Nara they plan to visit the large wooden temple and the deer park.
(e) The trip will end at Itsukushima which is known for the Great Torii Gate that is standing in water at high tide.
(f) Drive though Kamakura at a speed not exceeding $40 \mathrm{~km} / \mathrm{h}$

Complete the table below by inserting the tourist location details in the correct order.
NOTE: Location details for 01 and 06 have been given in the table.

Location	Tourist location details
01	a
02	\ldots
03	\ldots
04	\ldots
05	\ldots
06	e

5.2 Mount Fuji is an active volcano. The last volcanic eruption was on 16 December 1707 and it followed several weeks after an earthquake on 11 November 1707.
5.2.1 Calculate how many decades ago Mount Fuji erupted.
5.2.2 Write down the total number of days between the earthquake and the last volcanic eruption.

In Tokyo they will visit the Tokyo tower which is a communication and observation tower. The tower is 1092,1916 feet tall and has two viewing decks. The main deck is 150 m above the ground and the top deck is 250 m above the ground.

Some of the ticket prices per person are as follows:

TOKYO TOWER VIEWING DECKS		
	MAIN DECK	TOP DECK
Adult (19 years and older)	1200 yen	3000 yen
High school (16 to 18 years old)	1000 yen	2800 yen
Group reservation for main deck (group of 20 people or more, but less than 50)		
Adult	1080 yen	
High school	900 yen	
Group reservation for main deck (group of 50 people or more)		
Adult	960 yen	
High school	800 yen	

Use the information above to answer the questions that follow.
5.3.1 Write, in simplified form, the ratio of the height above the ground of the main deck to the top deck.
5.3.2 Convert, in metres, the height of the tower if $1 \mathrm{~m}=3,281$ feet.
5.3.3 Danny stated that if they had been in a group of 60 people observing from the main deck, they could have received 30% discount on an adult ticket.

Verify whether his statement is CORRECT showing ALL calculations.
5.4 On their return journey Danny and Susan took a train from Hiroshima to Tokyo.

- The train left Hiroshima station at 08:06.
- It stopped at eight stations en route for 4 minutes at a time.
- It reached Tokyo at 12:03.
- The distance the train travelled is 816 km .

Calculate the average speed at which this train travelled.
You may use the formula: \quad Distance $=$ speed \times time

TOTAL: 150

basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

This addendum consists of $\mathbf{6}$ pages with 5 annexures.

SEATING PLAN OF THE RESTAURANT

ANNEXURE B

QUESTION 2.2

CHOICES FROM A SET MENU AT THE RESTAURANT

ANNEXURE C
QUESTION 4.1

ANNEXURE D

QUESTION 4.3

ANNEXURE E

QUESTION 5.1

ROAD INFOGRAPHIC OF JAPAN SHOWING TOURIST LOCATION DETAILS

[Adapted from Vectorstock.com]

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

These marking guidelines consist of 21 pages, an analysis grid and notes. Hierdie nasienriglyne bestaan uit 21bladsye, 'n analiserooster en notas.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out (cancelled) an attempt to a question and NOT redone the solution, mark the crossed out (cancelled) version.
- Consistent accuracy (CA) applies in ALL aspects of the marking guidelines; however, it stops at the second calculation error.
- NOTE: consistent accuracy (CA) does not apply in cases of a breakdown.
- If the candidate presents any extra solution when reading from a graph, table, layout plan and map, then penalise for every extra item presented:
- As a general marking principle, if a candidate has incurred one mistake and there is evidence of sound mathematics thereafter, then that candidate should lose one mark only.
- Rounding is an independent mark.
- In opinion type questions marks will only be awarded if relevant calculations are shown

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek (kanselleer) en nie oordoen nie, sien die doodgetrekte (gekanselleerde) poging na.
- Volgehoue akkuraatheid (CA) word in ALLE aspekte van die nasienriglyne toegepas, dit hou op by die tweede berekeningsfou
- Let wel: volgehoue akkuraatheid (CA) geld nie in die geval van 'n afbreuk nie.
- Wanneer 'n kandidaat aflesings vanaf'n grafiek, tabel, uitlegplan en kaart geneem en ekstra antwoorde gee, penaliseer vir elke ekstra item.
- ' n Algemene nasien beginsel is dat indien' n kandidaat een fout maak en daarna voortgaan met korrekte wiskunde, dat die kandidaat slegseen punt verloor
- Afronding tel as 'n afsonderlike punt.
- In Opinie tipe vrae sal punte slegs toegekenword indien relefante berekeninge aangetoon is.

Note: Questions marked with * refers to the notes. / rae gemerk met *, verwys na die notas.
Questions where the numbers are encircled are the ones where we have a tolerance range.
Vrae waar die nommer omkring is, is die waar ons 'n toleransie omvang het.

QUESTION/VRAAG 1 [27 MARKS/PUNTE] Answer Only AO - full marks			
Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
1.1.1	$\mathrm{Z} \quad \checkmark \checkmark$ A	2A correct time	$\begin{array}{\|l\|} \hline \text { M } \\ \text { L1 } \\ \text { E } \\ \hline \end{array}$
1.1.2*	24 hour /uur $\checkmark \checkmark \mathrm{A}$ 12 hour /uur. $\checkmark \mathrm{A}$	$2 \mathrm{~A} 1^{\text {st }}$ display $1 \mathrm{~A} 2^{\text {nd }}$ display	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 1 \\ & \mathrm{E} \end{aligned}$
1.1.3*	\checkmark A Quarter to one in the afternoon/ pm or post meridiam Kwart voor een in die middag / nm $\checkmark \mathrm{A} \quad \mathrm{OR} / O F \quad \checkmark \mathrm{~A}$ Fifteen minutes to one in the afternoon Fifteen minutes before one in the afternoon Vyftien minute voor een, namiddag	1A correct time 1 A afternoon OR/OF 1A correct time 1A afternoon	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 1 \\ & \mathrm{E} \end{aligned}$
1.1.4*	$2 \quad \checkmark \checkmark \mathrm{~A}$ \qquad	2 A correct number	$\begin{aligned} & \hline \text { M } \\ & \text { L1 } \\ & \text { E } \\ & \hline \end{aligned}$
Copyright reserved/ Kopiereg voorbehou		$\text { Holewaal } \begin{gathered} \text { Please turn over } \\ \text { Source: wnwainomassebliet } \end{gathered}$	

果家

 Sfelewar

\qquad Please turn over/ Blaai om asseblief

[^0]Kopiereg voorbehou

Please turn over/ Blaai om asseblief

Please turn over/ Blaai om asseblief

Rodenar

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
3.3.1	$\begin{aligned} & 17: 30-15 \mathrm{MA}-40 \mathrm{~min}-40 \underset{\mathrm{~min}}{\stackrel{\checkmark}{\mathrm{MA}}} \\ & =\sqrt{\vee} \mathrm{CA} \\ & =15: 55 \end{aligned}$	1MA subtracting 15 min from 17:30 1MA subtracting two cooking times 1CA simplification AO (3)	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~L} 2 \\ & \mathrm{M} \end{aligned}$
3.3.2		1SF correct substitution 1CA simplification 1 R rounding AO (3)	$\begin{array}{\|l\|} \hline \text { M } \\ \text { L2 } \\ \text { E } \end{array}$
3.3.3*	$4 \frac{1}{4} \times 2=8 \frac{1}{2}$ cups/koppies $250 \mathrm{ml}=0,25 \ell^{\checkmark \mathrm{C}}$ Number of litres/Hoeveelheid liter $=8 \frac{1}{2} \times 0,25 \quad \ell=2,125 \ell$ OR/OF $1 \mathrm{cup} /$ koppie $=250 \mathrm{ml}$ 4 cups $/$ koppies $=4 \times 250 \mathrm{~m} \ell=1000 \mathrm{~m} \ell$ $1 / 4$ cup $/ \mathrm{koppie}=1 / 4 \times 250 \mathrm{~m} \ell=62,5 \mathrm{ml}$ For 1 tart she needs /vir 1 tert benodig sy $=1000+62,5=1062,5 \mathrm{ml} \quad \checkmark \mathrm{~A}$ For 2 tarts/vir 2 terte $=1062,5 \mathrm{~m} \mathrm{\ell} \times 2=2125 \mathrm{~m} \ell$ $=2,125 \ell \quad \checkmark \mathrm{CA}$ OR/OF 1 tart /tert : $4 \frac{1}{4} \times \begin{array}{r}\checkmark \mathrm{MA} \\ 250 \mathrm{~m} \mathrm{\ell}\end{array}=1065,5 \mathrm{~m} \mathrm{\ell} \quad \checkmark \mathrm{~A}$ 2 tarts /terte: $1065,5 \mathrm{~m} \mathrm{\ell} \times 2=2125 \mathrm{ml}$ Total /totaal: $2125 \mathrm{~m} \mathrm{\ell} \div 1000=2,125 \ell \quad \checkmark \mathrm{CA}$	1 M multiplying with 2 1A total cups 1C convert to litre 1CA simplification OR/OF 1MA multiplying with 250 1A milk needed for 1 tart 1C convert to litre 1CA simplification OR/OF 1MA multiplying with 250 1A milk needed for 1 tart 1C convert to litre 1CA simplification	$\begin{aligned} & \hline \text { M } \\ & \text { L3 } \\ & \text { M } \end{aligned}$

$8-1$

DEPARTMENT OF BASIC
EDUCATION
PRIVATE BAG XB95, PRETORIA 0001
$2022-11-18$
APPROVED MARKING GUIDELINE
PUBLIC EXAMINATION

Please turn over/ Blaai om asseblief

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
	OR/OF Total area for 7 birdhouses /Totale oppervlakte vir $\begin{aligned} 7 \text { voëlhuisies } & =7 \times 0,2888 \mathrm{~m}^{2}=2,0216 \mathrm{~m}^{2} \\ 1^{\text {st }} \text { coat/laag: } & 1 \ell \text { covers/bedek } 10 \mathrm{~m}^{2} \\ & n \ell \text { covers } / \text { bedek } 2,0216 \mathrm{~m}^{2} \\ n & =\frac{2,0216^{\vee}}{10}=0,20216 \ell \end{aligned} \quad \checkmark \mathrm{~A} .$ $2^{\text {nd }}$ coat/laag: 1ℓ covers/bedek $14 \mathrm{~m}^{2}$ $x \ell$ covers/bedek $2,0216 \mathrm{~m}^{2}$ $x=0,1444 \ell \quad \checkmark \mathrm{~A}$ and $3^{\text {rd }}$ coat $/$ ladag $=0,1444 \ell$ Total paint needed totale hoeveelheid verf nodig $\begin{aligned} & =0,20216 \ell+0,1444 \ell+0,1444 \ell \quad \checkmark \mathrm{MCA} \\ & =0,49096 \ell \quad \checkmark \mathrm{CA} \\ & =490,96 \mathrm{~m} \mathrm{\ell} \quad \checkmark \mathrm{CA} \end{aligned}$ Correct/korrek	OR/OF 1MA multiplying by 7 1MA ratio 1A simplification 1A simplification 1 MCA adding 3 values 1CA simplification 1CA number of millilitres 10 conclusion	
4.3.1 (a)	$\begin{aligned} & \text { Rental + Transport/Huur en vervoer } \\ & \quad \checkmark \mathrm{RT} \\ & =\mathrm{R} 250+\mathrm{R} 100 \quad \checkmark \mathrm{MA} \\ & =\mathrm{R} 350 \end{aligned}$	1 RT correct values 1MA adding correct values	$\begin{aligned} & \hline \mathrm{M} / \mathrm{F} \\ & \mathrm{~L} 1 \\ & \mathrm{E} \end{aligned}$
4.3.1* (b)	Wooden boards each/Houtplanke elk $=\frac{R 287,40}{6}=\mathrm{R} 47,90 \checkmark \mathrm{MA}$ Total cost for one/Totale koste vir een $\begin{aligned} & p=\mathrm{R} 47,90+\mathrm{R} 21,40+\mathrm{R} 10,70 \quad \checkmark \mathrm{MCA} \\ & =\mathrm{R} 80 \quad \checkmark \mathrm{CA} \end{aligned}$	1MA unit price 1MCA adding ALL correct values 1CA simplification	$\begin{aligned} & \mathrm{M} / \mathrm{F} \\ & \mathrm{~L} 2 \\ & \mathrm{M} \end{aligned}$

Please turn over/ Blaai om asseblief

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
	OR/OF Difference in ticket price / Verskil in kaartjie pryse \checkmark MA Discount /afslag $=30 \% \times 1200=360$ yen $^{\checkmark} \stackrel{\mathrm{A}}{ }$ Incorrect / verkeerd $\checkmark \mathrm{O}$ $\begin{array}{cc} \checkmark \mathrm{MA} & \text { OR/OF } \\ 100 \%-30 \%=70 \% & \checkmark \mathrm{~A} \end{array}$ Discounted Amount /Bedrag na afslag $\begin{aligned} & \checkmark \mathrm{MA} \\ = & \frac{70}{100} \times 1200 \\ = & 840 \text { yen } \checkmark \mathrm{A} \end{aligned}$ His statement is incorrect, the price for adults is 960 yen Sy bewering is nie korrek want die bedrag vir volwassenes is 960 jen	OR/OF 1RT correct values 1MA subtracting 1A simplification 1MA percentage calculation 1A simplification 10 verification OR/OF 1MA subtracting 1A simplification 1RT correct values 1MA percentage calculation 1A simplification 10 verification	
5.4	Duration of the trip/Duur van rit $\begin{aligned} & =12: 03-8: 06 \\ & =3 \mathrm{~h} 57 \mathrm{~min} \end{aligned}$ Total stopping time/Totale tyd van stoppe $=8 \times 4 \mathrm{~min}=32 \mathrm{~min} \checkmark \mathrm{~A}$ Time that the train was moving/ Tyd wat trein beweeg $=3 \mathrm{~h} 57 \mathrm{~min}-32 \mathrm{~min}$ $=3 \mathrm{~h} 25 \mathrm{~min} \quad \checkmark \mathrm{CA}$ Distance $=$ speed \times time Afstand $=$ spoed \times tyd $816 \mathrm{~km}=$ speed $\times 3 \mathrm{~h} 25 \mathrm{~min} \quad \checkmark \mathrm{SF}$ $\begin{aligned} \text { Speed } / \text { Spoed } & =\frac{816 \mathrm{~km}}{3 \mathrm{~h} 25 \mathrm{~min}}=\frac{816 \mathrm{~km}}{3,416667 \mathrm{~h}} \quad \checkmark \mathrm{~S} \\ & =238,83 \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{CA} \end{aligned}$	1A duration 1A total stopping time 1CA travelling time 1SF substitution 1S change of subject of the formula 1CA simplification	$\begin{aligned} & \text { M } \\ & \text { L3 } \\ & \text { D } \end{aligned}$
Copyrigh Kopiereg		$\begin{aligned} & \text { lewaal } \end{aligned} \begin{gathered} \text { Please turn } \\ \text { Blaaiomass } \end{gathered}$	

-8

象 1

[^0]: Copyright reserved/

