KZN - DEPARTMENT OF EDUCATION GREENBURY SECONDARY SCHOOL

JUNE EXAMINATION 2018

GEOGRAPHY P2

DATE: 05/06/18

pp10

EXAMINER: MODERATOR:	D. RAMASAMI F. PARUK	TIME: 1.5 HOURS MARKS: 75
NAME:		
GRADE/ DIV:		
EDUCATOR		

QUESTION	CONTENT	MARKS
ONE	Multiple choice questions	15
TWO	Map calculations	20
THREE	Map and photo interpretation	25
FOUR	Geographical Information System	15

MARKS:		
		75

GRADE:

11

INSTRUCTIONS AND INFORMATION

RESOURCE MATERIAL

- An extract from topographical map 2627CD PARYS
- 2. Orthophoto map 2627 CD 19 PARYS
- NOTE: The resource material must be collected by schools for their own use.

INSTRUCTIONS AND INFORMATION

- 1. Write your NAME and REG NUMBER in the spaces on the cover page.
- 2. Answer ALL the questions in the spaces provided in this question paper.
- 3. You are provided with a 1:50 000 topographical map (2627CD PARYS) and an orthophoto map (2627 CD 19 PARYS) of a part of the mapped area.
- 4. You must hand the topographical map and the orthophoto map to the invigilator at the end of this examination session.
- You may use the blank page at the back of this question paper for all rough work and calculations. Do NOT detach this page from the question paper.
- 6. Show ALL calculations and use supplied formulae, where applicable. Marks will be allocated for these.
- Indicate the correct unit of measurement in the final answer of calculations.
 NO marks will be allocated for answers with incorrect units.
- 8. You may use a non-programmable calculator and a magnifying glass.
- The area demarcated in RED on the topographical map represents the area covered by the orthophoto map.
- 10. The following English terms and their Afrikaans translations are shown on the topographical map:

ENGLISH
Aerodrome
Caravan Park
Diggings
Golf Course
Gap
Holiday Resort
Island
Burification Plan

Island
Purification Plant
River
Sewage Works

AFRIKAANS
Vliegveld
Karavaanpark
Uitgrawings
Gholfbaan

Poort Vakansieoord

Eiland

Watersuiweringsaanleg

Rivier Rioolwerke

GENERAL INFORMATION ON PARYS

Parys is a town in the Free State in South Africa. It is located on the banks of the Vaal River approximately 115 km south of Johannesburg. The completion of the railway line to Parys in 1905 suddenly made Parys more accessible to the public and this, in turn, led to the growth of the town as a holiday resort and industrial centre. Many artists have settled in the town and the variety of new, interesting shops and attractions make it the ideal breakaway from Gauteng and other big centres. Parys lies within the Vredefort Dome World Heritage Site. The Vredefort Crater is the largest verified impact crater on Earth. The Vredefort Dome was added to the list of UNESCO World Heritage Sites for its geological interest.

Coordinates: 26°54'S 27°27'E

[Adapted from http://en.wikipedia.org/wiki/Parys, South Africa, Freestate]

QUESTION ONE

MULTIPLE CHOICE QUESTIONS

The following questions are based on the 1:50 000 topographical map, as well as the orthophoto map. Various options are provided as possible answers to the following questions. Choose the answer and circle only the letter (A - D) of the correct answer.

1.1.	The contour interval of the TOPOGRAPHIC map is A) 5M B) 10M C) 20M	
	D) 15M	
1.2.	The map projection used on the topographical map is	
	A) Gauss Conform ProjectionB) Lamberts ProjectionC) MercatorD) Universal Transverse.	
1.3.	The height of the trignometrical station in J6 is	
	A) 31m B) 1456,4m C) 31 + 1456,4m is D) 1456,4 - 31m	
1.4.	The feature at 26° 49' 48"S and 27° 21' 54"E	
	A) Hiking trail B) Perennial water C) Cultivated land D) Secondary road	
1.5.	Parys is found in	
	A) Gauteng B) Free State C) Northwest Province D) Western Cape	

1.6.	One of the functions of the Vaal River is to
	A) separate two provinces B) Separate the farms and the residential areas C) Prevent people from attacking people of Parys D) Non of the above
1.7.	Feature 10 on the Orthophoto map is evidence of
	A) farming B) mining C) forestry D) fishing
1.8.	The scale of the topographic map is than the scale of the orthophoto map
	A) 5 times smaller B) 5 times larger C) 50 times smaller D) 10 times larger
1.9.	The orthophoto map is an example of a/anaerial photograph.
	A) Vertical C) Oblique C) High oblique D) Low oblique
1.10.	The magnetic declination in 2017 will be
	A) Smaller B) Bigger C) Same D) None of the above .
1.11.	The magnetic bearing compared to the true bearing will bethan the given magnetic declination
	A) Greater B) Smaller C) Same D) None of the above
1.12.	The direction of K from S on the topographic map is
	A) SW B) NE C) WSW D) SSW

1.1	3. The	main primary activity at	Q on the	topographic map i	S	
	A) B) C) D)	Farming Forestry Mining Orchards				
1.14	. The	longitudinal position in t	he reference 26	27 is		
	A) B) C) D)	26° S 26° E 27° S 27° E			·	
1.15	5. the ro	oad 3 on the orthophoto	map is			
	B) C)	Another road Arterial road Secondary road Main road				
					(15 x 1)	[15]
	MAP C.	ALCULATIONS	QUEST	TION TWO		
2.1.	Calcula	te the distance in metre	s, between poir	it 8 and point 12 on	the orthopho	to map map.
						(3)
2.2.1.		e the average gradient oto map.	between point 6	3 and spot height 13	383 (SW of 3)	on the
	P 450 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			*****		
•						
:-						
-					******	(4)

	2. Interpret the gradient calculated in 2.2.1.	
2.3.	Calculate the true bearing of spot height 1514 (E4) from spot height 1493 (D5)	(2
4.	Calculate the magnetic bearing of the points in question 2.3 for 2011.	
		W/00/866
•	Calculate the vertical exaggeration of a cross section drawn from the orthophoto may a vertical scale of 2cm represents 50m.	
	Give one importance of calculating vertical exaggeration.	(.,
		(2) [20]
	QUESTION 3	
300 miles (1950 · 1950	MAP AND PHOTO INTERPRETATION Identify two factors that restrict farming in C6 a)	
	b)	(4)

	a)
	b)
	c)
2.2.	State the main purpose of the feature at X (J8)
2.3.	Name the following land uses/ feature
	1
	5
	O
	K
	P
	Identify the type of slope at 4 on the orthophoto map
2. \$	State the nearest town you will reach using rail transport in a south easterly direction
3. §	State two services that may be found at T.
-	
S-	

QUESTION 4

GEOGRAPHICAL INFORMATION SYSTEM

4.1.	Define the term GIS.	
4.2.	Give two advantages of remote sensing.	(2)
	a)	
	b)	
.3.	Define the following and give an example of each:	
	Spatial resolution	
	Passive remote sensing	
		(2)
	Raster Data	(2)
	Vector Data	
		(2)
4.	Name the device used in remote sensing.	
		(1)
		[15]

TOTAL = 75

GOOD LUCK

ROUGH WORK

KZN - DEPARTMENT OF EDUCATION

GREENBURY SECONDARY SCHOOL

JUNE EXAMINATION 2018

GEOGRAPHY P2

pp10

GRADE:

EXAMINER:

11

D. RAMASAMI

MODERATOR: F. PARUK

DATE: 05/06/18

TIME: 1.5 HOURS

MARKS: 75

NAME:	MEMO	

GRADE/ DIV:

11

EDUCATOR

DR

QUESTION	CONTENT	MARKS
ONE	Multiple choice questions	15
TWO	Map calculations	20
THREE	Map and photo interpretation	25
FOUR	Geographical Information System	15

MARKS:	
	75

QUESTION ONE

MULTIPLE CHOICE QUESTIONS

The following questions are based on the 1:50 000 topographical map, as well as the orthophoto map. Various options are provided as possible answers to the following questions. Choose the answer and circle only the letter (A - D) of the correct answer.

1.1.	The contour interval of the TOPOGRAPHIC map is	
	A) 5M B) 10M C) 20M D) 15M	C
1.2.	The map projection used on the topographical map is	
	A) Gauss Conform ProjectionB) Lamberts ProjectionC) MercatorD) Universal Transverse.	A
1.3.	The height of the trignometrical station in J6 is	
	A) 31m B) 1456,4m C) 31 + 1456,4m is D) 1456,4 31m	B
1.4.	The feature at 26° 49' 48''S and 27° 21' 54''E	
	A) Hiking trailB) Perennial waterC) Cultivated landD) Secondary road	B
1.5.	Parys is found in	
	A) GautengB) Free StateC) Northwest ProvinceD) Western Cape	В

1.6.	One of the functions of the Vaal River is to	
	A) separate two provincesB) Separate the farms and the residential areasC) Prevent people from attacking people of ParysD) Non of the above	A
1.7.	Feature 10 on the Orthophoto map is evidence of	
	A) farmingB) miningC) forestryD) fishing	B
1.8.	The scale of the topographic map is than the scale of the orthophoto	map
	A) 5 times smallerB) 5 times largerC) 50 times smallerD) 10 times larger	A
1.9.	The orthophoto map is an example of a/anaerial photograph.	
	A) VerticalC) ObliqueC) High obliqueD) Low oblique	A
1.10.	The magnetic declination in 2017 will be	
	A) SmallerB) BiggerC) SameD) None of the above .	B
1.11.	The magnetic bearing compared to the true bearing will bethan the gdeclination	given magnetic
	A) GreaterB) SmallerC) SameD) None of the above	A
1.12.	The direction of K from S on the topographic map is	
	A) SW B) NE C) WSW D) SSW	C

1.13.	The main pr	imary a	activity at Q	on the	6 e c	Apographic orthophoto map is .			
	A) Farmir B) Forest C) Mining D) Orcha	ry I					_	Α	
1.14.	The longitud	inal po	sition in the i	efere	ence 2627	7 is			
	A) 26° S B) 26° E C) 27° A D) ° S 1 E) 27° E							Α	
1.15.	the road 3 or	n the o	rthophoto ma	ap is					
	A) Anothe B) Arterial C) Second D) Main ro	road lary roa	ad					<u>C</u>	
							(15 x 1)	[15]	
	MAP CALCUL			netwe		ON TWO 8 and point 12 on the state of the s	he orthoph	oto map ma	ın.
_,1.	$0.3 = 10.3 cm^{-1}$			30111		o and point 12 or a			μ.
,	G = 10,5 +2								
	= 5,25 kM	/ (5	2 - 5,3)						
	= 5250 M	1 (5	20c - 530c)					(3)
			e gradient be	twee	n point 6	and spot height 138	83 (sw of 3) on the	
	Orthophoto ma $\it G$	ρ. =	ΥΙ	•	H E	✓			
	Ci		1400 - 1383 p			ì			
ÿ -		=	17m /		1,47 KM	<u> </u>			
3 <u>-</u>			1 1 1 1 1		1470m V	/			
6 <u>-</u>		2	17/17		1470/17				
-	40-4-1	=	1	548	86,47				
=									
-									(4)

2.2.	Interpret the gradient calculated in 2.2.1.	
	We have to walk 86,17 m to rise im from the point we started.	K-4-0-0-1-1-1-1-1
		(2
3.	Calculate the true bearing of spot height 1514 (E4) from spot height 1493 (D5)	(3
	Calculate the magnetic bearing of the points in question 2.3 for 2011. MB = TB r Mb = 226° - 230') + 18° 52' \to	
	= 244° 52' (244° 52' - 248° 52' /	
		(2)
	VE = VS/HS = 2cm rep 5cm / 1 10:000	
	2 1cm rep 25 m 1 1 10 000	
	= 1 2500 / = 10000 = 4 times /	(4)
	Give one importance of calculating vertical exaggeration.	(1)
,	Identify features / get true idea of reality	
a		(2)
		[20]
	QUESTION 3	
	MAP AND PHOTO INTERPRETATION	
	ldentify two factors that restrict farming in C6 a) <u>Steep ਵੀਯੂਦ</u> ਤੇ	
ı	b) Lack of water	
		(4)

3.2.	Refer to the topographic map and orthophoto map to answer the following questions:	
3.2.1	. Name three things that has stimulated the growth of Parys	
	a) Holiday resort	_
	b) World Heritage Site	_
	c) Industries	_ (3
3.2.2.	State the main purpose of the feature at X 908)	(
3.2.3.	Name the following land uses/ feature	,
	1 Cemetery	
	5 farming	
	O Ruddings / Ruins	
	K Windpump	•
	P Built up avea	(10
3.3.1.	Identify the type of slope at 4 on the orthophoto map Gentle	_
3.3.2.	State the nearest town you will reach using rail transport in a south easterly direction.	(
3.3.3.	State two services that may be found at T.	
	Shop	_
	Hospital	_ (
		[2

QUESTION 4

GEOGRAPHICAL INFORMATION SYSTEM

Define the term GIS.	
Computer tech used to study Geog-infor	
Give two advantages of remote sensing.	
a) Covers large area	
b) Guers inaccessible areas	
Define the following and give an example of each:	
Spatial resolution Clarity in terms of shape a location	
Passive remote sensing Geating an image by picking up radiation	of the
et th	
Raster Data Information represented by pixels or grid cells.	
lector Data Information represented by points lines and polygo	ns.
lame the device used in remote sensing.	
lame the device used in remote sensing. Satellite	

TOTAL = 75

GOOD LUCK

ROUGH WORK