

DEPARTMENT OF

EDUCATION

MATHEMATICAL LITERACY PI

PRE-JUNE EXAM

19 MAY 2023

Stanmorephysics

MARKS: 100

TIME: 2 hours

THIS QUESTION PAPER CONSISTS OF 8 PAGES INCLUDING THIS COVER PAGE

Copyright reserved Please turn over

Determinated from Stanmorephysics.com

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of FOUR questions. Answer ALL the questions.
- 2. Number the answers correctly according to the numbering system used in this question paper.
- 3. Start EACH question on a NEW page.
- 4. You may use an approved calculator (non-programmable and non-graphical), unless stated otherwise.
- 5. Show ALL calculations clearly.
- 6. Round off ALL final answers appropriately according to the given context, unless stated otherwise.
- 7. Indicate units of measurement, where applicable.
- 8. Diagrams are NOT necessarily drawn to scale, unless stated otherwise.
- 9. Write neatly and legibly.

Determinated from Stanmorephysics.com

QUESTION 1

1.1. Hazel operates a Spaza Shop and orders his stock, in cartons, from makro. Given below is an extract from a makro catalogue and all prices include 15% VAT. The price of each carton is written below each item.

1.1.2 Write down the cost price for a 2-liter bottle of soda cold drink. (2)

1.1.3 Identify items which cost the same amount per carton. (2)

1.1.4 Determine the total number of items on the carton. (2)

1.1.5 Calculate the total cost price of the items on the cartons above. (3)

QUESTION 2

2.1

HAZEL decides to start a new business venture and bake chocolate muffins. She sells the muffins for R25,00 each.

Her only fixed cost is paying her 16-year-old niece R500 a month to maintain the business' social media page.

Her variable costs include the ingredients and the electricity. She calculated that the variable cost per muffin is R15,00.

Use the information above to answer the following questions.

- 2.1.1 Define the term fixed cost in the given context. (2)
- 2.1.2 Explain why electricity is classified as a variable cost. (2)
- 2.1.3 HAZEL states that she will make R1 500 profit if she sells 200 muffins.

Verify, showing all calculations whether her statement is correct. (6)

2.2.

HAZEL did not qualify to receive NSFAS and approached the bank for a loan to pay for her university fees for one year.

She applied for a loan of R30 000, 00 with the following conditions:

- A once-off initiation fee of R1 207, 50 (15% VAT inclusive)
- A monthly service fee of R69
- An interest rate of 24, 5% compounded annually.

Use the information above to answer the questions that follow.

- 2.2.1 Determine the amount of VAT charged on the initiation fee. (3)
- 2.2.2 HAZEL stated that the total loan value will be R19 364, 25 more than the original amount if she paid it off over a 24-month period.

Verify, showing all calculations, if HAZEL statement is correct. (8)

2.2.3 State one reason why a student would choose to study in a province different from their home province. (2)

2.3

MR MAAKE is 35 years old and earns a gross salary of R27 500. She contributes 7.5% of his annual gross income towards pension fund. He is married with one child and a member of the medical aid scheme.

TABLE 1: TAX RATES FOR 2022/23 TAX YEAR (1 Mar.2022 to 28 Feb.2023)

TAX	TAXABLE	RATES OF TAX (R)
BRACKET	INCOME(R)	
1	$1 + 226 \cdot 000$	18% of taxable income
2	226 001 - 353 100	40 680 +26% of taxable income above 226 000
3	353 101 - 488 700	73 726 + 31% of taxable income above 353 100
4	488 701 - 641 400	115 762 + 36% of taxable income above 488 700
5	641 401 - 817 600	170 734 + 39% of taxable income above 641 400
6	817 601 - 1 731 600	239 452 + 41% of taxable income above 641 400
7	1 731 601 and above	614 192 + 45% of taxable income above 1 731 600

[Adapted from www.sars.gov.za]

TABLE 2 below shows the tax rebates and medical credits for 2022/23 tax year.

TABLE 2: TAX REBATES AND MEDICAL AID CREDITS FOR THE 2022/23 TAX YEAR

TAX REBATE		
Primary	R16 425	
Secondary (65 and olser)	R9 000	
Tertiary (75 and older)	R2 997	
MEDICAL CREDITS PER MONTH FOR	MEDICAL FUND MEMBERS	
Main member	R347	
First dependent	R347	
Each additional dependent	R234	
First dependent	R347	

[Adapted from www.sars.gov.za]

Use TABLE 1 and TABLE 2 above to answer the questions that follow.

- 2.3.1. Explain the word gross income as it is used in the given context. (2)
- 2.3.2. Determine MR MAAKE annual taxable income for the year 2022/23. (5)
- 2.3.3 Calculate his monthly tax. (6)
- 2.3.4. Due to the repo rate in the country his salary was reduced from R27500 to R24800. Calculate the percentage decrease.[40]

Determinable from Stanmorephysics.com

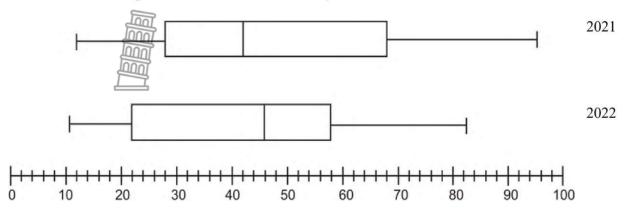
QUESTION 3

The data below shows the percentage marks achieved by grade 12 mathematical literacy learners.

The class consist of 20 learners.

64 57 58 62 59 **A** 60 61 62 71 62 65 66 64 75 80 **B B** 92 85

A is the lowest percentage mark.


Use the information above to answer the questions that follow.

3.1.1. State the difference between discrete data and continuous data.	(2)
3.1.2. Determine the percentage of the data set that lies between the lower quartile and the upper quartile.	(2)
3.1.3. Calculate the value of A, if the Range value obtained by learners is 36.	(3)
3.1.4. Write down the modal percentage.	(2)
3.1.5. Determine the value of B, if the mean value obtained by learners is 68.	(6)
3.1.6. Determine the median of the data.	(3)
3.1.7. Determine the probability as a fraction of randomly selecting a learner who obtained more than 80%.	(2)
3.1.8. Determine the inter-quartile range of the data.	(4) [24]

QUESTION 4

4.1 The box-and-whisker plots below show the March Test Mathematical Literacy results for the 2022 and 2021 Mokone High School Mathematical Literacy classes.

Use the diagram above to answer the questions that follow.

- 4.1.1 Write down the minimum and maximum marks for the 2021 class. (2)
- 4.1.2 The class of 2021 had 120 Mathematical Literacy learners. Calculate the number of learners who got a mark that was less than the Lower Quartile (Q1) as well as the value of Q1. (4)
- 4.1.3 Calculate the interquartile range (IQR) for the 2022 class marks.

4.1.4 Compare the two box-and-whisker-plots and decide on the class whose learners performed better in the March test. Justify your answer. (4)

4.2

MR Maake lives in Tzaneen Aqua Park, in the Greater Tzaneen Municipality and uses prepaid electricity that is sold to customers at a VAT inclusive rate.

TABLE 10 below shows the cost of prepaid units of electricity.

TABLE 3: COST OF PREPAID UNITS OF ELECTRICITY BLOCK UNITS (kWh) RATE c/kWh (INCLUDING VAT)

BLOCK	K UNIT (KWH) RATE c/KWH	
		(INCLUDING VAT)
1	0-50	144.72
2	51-350	186.02
3	351-600	261.87
4	ABOVE 600	308.37

[Source: https://www.enochmgijima.org.za/electricity_tariffs2021/2022]

Use TABLE 3 and information above to answer the questions that follow.

4.3.1 State any TWO reasons why it is an advantage for the municipality to sell prepaid electricity.

(2)

4.3.2 Determine the number of units MR MAAKE received when he bought prepaid electricity for R68,02.

(3)

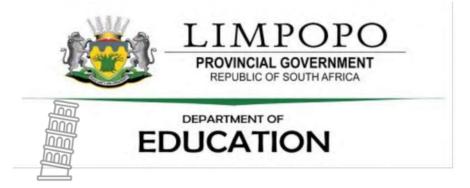
4.3.3 MR MAAKE stated that the percentage profit the municipality makes when a customer buys 290 kWh of electricity is more than 34%.

Verify, by showing ALL calculations, if his claim is VALID.

You may use the formula:

% Profit =
$$\frac{\text{selling prie for units-cost price for the units}}{\text{ost price for the units}} \times 100\%$$

(6)


[25]

TOTAL: 100

^{*} Prepaid electricity: Paying for electricity before using it.

^{*} VAT (Value Added Tax) = 15%

^{*} The municipality buys electricity from Eskom at an average VAT inclusive price of R1,33 per kWh.

MOPANI WEST DISTRICT

GRADE 12

MATHEMATICAL LITERACY

PRE-JUNE EXAM MEMO P1

MARKS: 100

TIME: 2 hours

Copyright Please turn

1.1.1	The amount buyers will pay for the goods	2E explanation	F
	HAZEL is selling ✓ ✓ O	(2)	L
			1
1.1.2	$\frac{R55}{R} = R9.17 \checkmark A$	2A correct answer (2)	F
	6		L
			1
1.1.3	Dish washer, toilet cleaner, pilchards 🗸 🗸	2A for toilet cleaner,	F
		for dish wash, pilchard	L
		R85	1
		(2)	
1.1.4	=13 // A	2A correct answer	F
		AO (2)	L
			1
1.1.5	Total Cost	1A all correct values	F
	Price=R85+R85+R85+R90+R55+R9+R70+R	1M adding	L
	160 +R100+95+R70+90+60 ✓A ✓M	1CA answer	1
	=R1 073 ✓ CA	2 values left out	
		1 out of 3 (3)	

Question 1

QUESTION 2

32x N 000		C 1 0 C	
2.1.1	Fixed costs refer to the costs (R500) that are	2A definition	F
	constant/stays the same despite how many	(2)	L1
	muffins are produced. 🗸 🗸	859 850	
2.1.2	Because the electricity cost does not stay the	20 explanation given.	F
	same/ remain constant every month. 🗸	(2)	L1
2.1.3	√ RT	1RT values	F
	Profit per muffin / Wins per muffin	1M subtract.	L3
	$= R25 - R15 $ \checkmark M	1CA R10	
	Profit per muffin / Wins per muffin	1M multiply by 200	
	= R10 ✓ CA 1M subtract 500.		
	✓M	10 Correct.	
	Profit selling 200 muffins.	(6)	
	$= (200 \times R10) - R500 \text{ /M}$	1000	
	Profit selling 200 muffins.		
	= R1 500		
	Therefore, HAZEL is correct. ✓O		
	OR		
	Income selling 200 muffins.		

Grade 12	
$= R25 \times 200$	
Income selling 200 muffins.	
= R 5 000	
Expenses for 200 muffins	
$= R500 + (R15 \times 200)$	
Expenses for 200 muffins	
= R500 #R3 000	
Expenses for 200 muffins	
= R3 500	
$Profit = R5\ 000 - R3\ 500$	
Profit = R1 500	
Therefore, HAZEL is correct.	

2.2

2.2.1	VAT $15 \div 115 \times R1 \ 207,50 \checkmark MA$ = R157,50 $\checkmark A$ OR/OF VAT = R1 207.50 $\times \frac{100}{115} \checkmark MA$ = R1 050 $\checkmark MA$ ∴ R1 207,50 - R1 050 = R157,50 $\checkmark A$	1A correct percentage 1M multiplying by correct amount 1CA amount of VAT MA dividing correct values 1M subtracting values 1CA amount of VAT AO (3)	F L2
2.2.2	Year 1 R30 000 × 24,5% = R7 350 \checkmark MA R30 000 + R7 350 = R37 350 \checkmark CA Year 2 R37 350 × 24,5% = R9 150,75 R37 350 + R9 150,75 = R46 500,75 \checkmark CA Monthly service fee = R69 × 24 = R1 656 \checkmark A Total cost of loan = R46 500,75 + R1 656 + R1 207,50 \checkmark M = R49 364,25 \checkmark CA Difference = R49 364,25 - R30 000	1MA calculating interest 1CA 2nd year principal 1CA accumulated amount 1A service fee 1M adding all amounts 1CA total cost of loan 1CA difference 1O verification (8)	F L4

	= R19 364,25 ✓ CA		
	She is correct / O		
2.2.3	Their course (degree/diploma) of interest is	2O reason	F
	not offered in their province (diploma)		L4
	Freedom from parents		
	To explore other provinces		
	Influence of friends		
	Any other relevant reason 🗸 🗸 O		

2.3

2.3.1	Gross income is the amount of her salary	2O correct	F
	(income) before deductions are made.	explanation	L1
		(2)	M
2.3.2	Annual taxable income excluding bonus:	1M multiplying by 12	F
	Pension fund	1 Pension fund	L4
	$= R27500 \times \frac{705}{100}$	1A subtraction	
	=R2062.50 ✓A	1M method	
	Annual taxable income	1CA answer/accuracy	
	=(R27500 −R2 062.50) ✓M	(5)	
	=R25 437.50. ✓CA		
	=R25 437.50× 12 ✓MA		
	=R305 250 ✓ CA		
2.3.3	1303 230 • 611		F
2.3.3	Annual tax:	1SF Sustitution	L4
	=40 680 +26% (R305 250-226 000) ✓SF	1A correct tax rate	
	=R61 285,80 √ CA	1M subtracting rebate	
	=R61 285− R16425 ✓MA	and MTC	
	=R44 860	1CA medical	
	=R44 860− (347+347+234) √ MA	1M dividing by 12	
	=R43 932	1CA answer/accuracy	
	Monthly tax	(6)	
	=R43 932÷12 √ M		
	=R3 661 ✓ CA		
2.3.4	Percentage= $\frac{24800-27500}{27500} \times 100 \ \checkmark M$	1MA subtracting	F
	=-9,8% ✓A	correct values	L
	OR Percentage	1M dividing by	
	decrease=(R27500-R24800)÷ R24800 ×	R27500	
	100 MA M	1A answer	
	=9,8% \(\sqrt{A} \)	OR	
	2,070 11	1SF for substitution	
		1M dividing by R8	
		481	

	Oluce 12	
	1A answer	
	(3)	

QUESTION 3

3.1			
3.1.1	Discrete data is a set of values that can be counted as a	1 discrete	D
	whole number. ✓A	1	L2
	Continuous data is data that you measure as a decimal	continuous	
	number. 🗸 A	(2)A	
3.1.2	50% √√ A	2A correct	DL1
		answer	
3.1.3	Range = Maximum value – Minimum value	1MA	
	$36 = 92 - A \checkmark MA$	subtracting	
	A = 92-36	correct	
	=56 ✓ A	values	
	-30 √ A	300 00 00 00 00 00 00 00 00 00 00 00 00	
		1A answer	
		(2)	
3.1.4	62 √√ A	2A	
3.1.5	Mean	1SF	
	□SF	substitution	
	$68 = \frac{64+57+58+62+59+56+61+62+71+62+65+66+64+75+80+B+B+92+85}{20}$	mean	
	20	correctly	
	$68 = \frac{2B+673}{20} \square \mathbf{MA}$	1MA dividing by 9	
	20	by 9	
	2B + 1199 = 1360	1MA dividing	
	$2B = 161 \square MA$	by 2	
	B=80.5	1CA	
	$B = 81 \square CA$	simplification	
		OR/OF	
	OR/OF	1SF	
	2D + 1100 - 69× 20 D B (A	substitution	
	$2B + 1199 = 68 \times 20$	mean correctly	
	2B = 1610 MA	1MA	
	B=80.5	multiplying by	
	B = 81□	9	
		1MA dividing	
		by 2	
		EA	
		simplification	
	ė.		
		(6)	
3.1.6	Median:	1M	\vdash
3.1.0	56 57 58 59 60 61 62 62 62 <mark>64</mark>	arranging	
	30 31 30 37 00 01 02 02 02 <mark>04</mark>	arranging	

	Grade 12		
	<mark>64</mark> 65 66 71 75 80 81 81 85 92	data	
	✓ M	1M concept	
	56; 57; 58; 59; 61; 62; 62; 64; 64; 65; 66; 71; 75; 80; 81; 81; 85; 92	of median	
	$Median = \frac{64+64}{2} \checkmark M$	1CA answer	
	= 64	(3)	
	= 64 ✓ CA		
3.1.7	Probability = $\frac{4}{20}$	1RT correct	P
	20	%	L2
		1M	M
		fractional	
		(2)	
3.1.8	56 57 58 59 <mark>60 61</mark> 62 62 62 <mark>64</mark>	1M	DG
	<mark>64</mark> 65 66 71 75 80 81 81 85 92	arranging	L3
	Quartile 1	values	
	$=\frac{60+61}{2}$ \checkmark A	1A Q1	
	=60.5	1A Q3	
	-00.3	1M concept	
	Quartile 3	of IQR	
	$=\frac{75+80}{}$	1CA answer	
	2	(4)	
	= 77.5 ✓ A		
	Interquartile range		
	=Q3 $-$ Q1		
	$= 77.5 - 60.5 \checkmark M$		
	= 17 ✓ CA		

QUESTION 4 4.1

4.1			
4.1.1	Minimum=12% √ RG	1 RG for the	DH
	Maximum=96% √ RG	minimum	L2
		1 RG for the	
		maximum	
		(2)	
4.1.2	Lower Quartile Mark=28% ✓RG Number of	1RGfor Lower	DH
	learners=120 \(\sqrt{A4} \sqrt{M} \)	Quartile	L3
	=34 √ CA	1A for 120	
	OR	1M for dividing by 4	
	Lower Quartile Mark=28% ✓RG Number of	1CA for the answer	
	learners=28% of 120 \checkmark A	OR	
	=25100×120 √ M	1RG for Lower	
	=34 √ CA	Quartile	

	Grade 12		
	OR	1A for 25% of 120	
	Lower Quartile Mark=28% ✓RG Number of	1M for method	
	learners=0,28×120 ✓ ✓ M	1CA for the answer	
	=34 ✓ CA	OR	
		1RGfor Lower	
		Quartile	
		1M for 0,25	
		1M for multiplying	
	<u></u>	1CA for the answer	
		(4)	
4.1.3	Lower Quartile=22% ✓RG Upper	1RG for Lower	DH
	Quartile=58% ✓RG IQR=58%-22% ✓SF	Quartile	L3
	=36% √ CA	1RG for Upper	
		Quartile	
		1SF substitution	
		1CA for	
		answer/accuracy	
		(4)	
4.1.4	2021 Class ✓ A	1A for the class	DH
	Higher maximum mark ✓ O	10 maximum mark	L4
	Higher Lower Quartile ✓ O	10 for Lower	
	Higher Upper Quartile ✓O	Quartile	
	50.	10 for Upper	
		Quartile	
		(4)	

4.2

4.2.1	Immediately get money from customers	10 reason	F
1.2.1	It easy to collect its income from electricity	10 reason	$ _{L1}$
	No bad debts on prepaid electricity	(2)	M
	It enables its customers to save electricity and		
	the municipality can supply more customers		
	It gets more income on customers that use		
	more electricity 🗸		
	Accept any other logical explanation.		
4.2.2	Units purchased = $\frac{R68.02}{1.4472}$	1MA division with	F
	= 47 kWh ✓	the correct values	L3
	-4/ KWIIV	1A answer	M
		(3)	
4.2.3	Municipality's cost = 290 × 1,33 ✓	1A municipality's	F
	= R385,50 /	cost	L4
	Customer pays:	1MA multiplication	M
	$=50 \times 1,4472$	and simplification in	
	= R72,36 ✓	block 1	

Gra	ade 12
=240 × 1,8606	1MA multiplication
= R446,544 ✓	and simplification in
Total price paid	block 2
= R72,36 + R446,544	1SF substitution in
= R518,90	formula
% Profit	1CA answer
$=\frac{R518.90-R385.50}{100}$	1O answer (6)
R385.50	
= 34,60 %	
Valid ✓	

