

TIME: 2 HOURS

This question paper consists of 11 pages including Data Sheet

INSTRUCTIONS AND INFORMATION

- 1. Start EACH question on a NEW page.
- 2. Number your answers correctly according to the numbering system used in this question paper.
- 3. Leave ONE line between two sub-questions, e.g., between QUESTION 2.1 and QUESTION 2.2.
- 4. A non-programmable calculator may be used.
- 5. Appropriate mathematical instruments may be used.
- 6. Show ALL formulae and substitutions in ALL calculations.
- 7. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 8. Give brief motivations, discussions, etc. where required.
- 9. You are advised to use the attached data sheets.
- 10. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A-D) next to the question number (i.e 1.1 D) in the ANSWER BOOK.

- 1.1 The minimum amount of energy needed for a reaction to start is called......
- A Activation energy
- B Catalyst
- C Heat of reaction
- D Bond energy

(2)

- 1.2. Which ONE of the following statements about a chemical reaction is CORRECT?

 The actual yield of a chemical reaction is usually......
- A Equal to the percentage yield
- B Greater than the percentage yield
- C Less than the theoretical yield
- D Greater than the theoretical yield

(2)

- 1.3. Which ONE of the following statements is CORRECT for an endothermic reaction?
- A The temperature of the surroundings increases
- B The enthalpy change for the reaction is negative
- C Heat flows from the surroundings into the system
- D The enthalpy of products is less than the enthalpy of reactants

(2)

1.4 Consider an incomplete chemical equation below:

$$X + 2HNO_3 \rightarrow Zn(NO_3)_2 + H_2O + CO_2$$

Which ONE of the following is represented by X in the above equation?

- A ZnCO₃
- B ZnHCO₃
- C $ZnCO_2$
- D $Zn(OH)_2$

(2)

- 1.5 The number of ions present in 3 moles of MgCl₂ is........
- A 3, 612 X 10²⁴
- B $5,418 \times 10^{24}$
- C $1,08 \times 10^{24}$
- D $7,22 \times 10^{24}$

1.6	According to the kinetic-molecular theory, molecules of different gases at the same		
	temperature always have the same		
A B C D	Pressure Volume Kinetic energy Average kinetic energy		
		(2)	
1.7	Two different gases of the same volume at STP will have the same		
A	Mass		
В	Density		
C	Molar mass		
D	Number of molecules		
		(2)	
		[14]	

Q UESTION 2 (Start on a new page)

A fixed mass of oxygen is used to verify one of the gas laws. The results obtained are shown in the graph below.

- 2.1 Write down a mathematical expression, in symbols, for the relationship between the variables shown in the graph. (1)
- 2.2. Give the name and state the gas law investigated. (3)
- 2.3 Explain the relationship in QUESTION 2.1 in terms of the kinetic theory of gases. (2)
- 2.4 Write down TWO variables that must be kept constant during this investigation and briefly describe how this is done. (4)
- 2.5 From the graph, write down the volume of oxygen, in cm³, when the pressure is 120 kPa. (2)
- 2.6 Using the graph and the information provided, calculate the pressure, in kPa, exerted on the gas when it is compressed to 5 cm³. (4)

2.7 Write down TWO conditions under which oxygen gas will deviate from ideal gas behaviour. (2)

[18]

QUESTION 3 (start on a new page.)

Consider the reaction represented by the equation below.

$$CO_{2(g)} + 2H_2O_{(l)} \rightarrow CH_{4(g)} + 2O_{2(g)}$$

During the reaction the temperature of the reaction mixture **DECREASES**

Bond energies (D) in (kJ.mol⁻¹):

C=O D = 602	H-O D = 459	C-HD = 411	O=O D = 494	
				(2)

- 3.1 Define the term enthalpy change.
- 3.2 Does the enthalpy change (ΔH) for this reaction have a positive or negative value? Explain the answer by referring to the energy involved. (3)
- 3.3 Sketch a labelled potential energy versus course of reaction graph for this reaction. On the graph, show the position of the reactants, products, ΔH and activation energy. (6)

[11]

QUESTION 4 (Start on a new page)

The chemical reaction for the production of the drug, aspirin, from two compounds, **X** and **Y**, is represented by the balanced equation below.

$$2C_7H_6O_3 + C_4H_6O_3 \rightarrow 2C_9H_8O_4 + H_2O$$

$$X \qquad Y \qquad \text{aspirin}$$

A chemist reacts 14 g of compound X with 10 g of compound Y.

- 4.1 Define the term *limiting reagent* in a chemical reaction. (2)
- 4.2 Perform the necessary calculations to determine which one of compound X or compound Y is the limiting reagent. (5)

The actual mass of aspirin obtained is 11, 5 g.

4.3 Calculate the percentage yield of aspirin (5)

[12]

QUESTION 5 (Start on a new page)

In order to determine the empirical formula and molecular formula of a compound, C_xH_y , a certain mass of the compound is burnt completely in excess oxygen to produce 47, 1 g CO_2 and 19, 35 g H_2O as the only products.

- 5.1.1 Define the term *empirical formula*. (2)
- 5.1.2 Use relevant calculations to determine the empirical formula of the compound. (8)
- 5.1.3 The molar mass of the compound is 28 g.mol⁻¹. Determine by using calculations the value of **x** and **y**. (3)

A sample of IMPURE calcium carbonate (limestone) of unknown mass required a continuous supply of strong heat to decompose according to the following equation:

After the completion of reaction, 11, 76 g CaO was produced. The percentage purity of calcium carbonate is found to be 80%.

- 5.2 Calculate the mass of the impure calcium carbonate.
- 5.3. In an experiment, a learner added 1, 5 g of sodium carbonate (Na_2CO_3) to hydrochloric acid (HCl). A volume of 306 cm³ of carbon dioxide gas was formed and collected under standard pressure at room temperature. Take the molar gas volume at room temperature (V_m) as 24,45 dm³. The unbalanced equation for the reaction is:

$$Na_2CO_{3(s)} + 2HCl_{(aq)} \rightarrow 2NaCl_{(aq)} + H_2O_{(1)} + CO_{2(g)}$$

- 5.3.1 Calculate the mass of sodium carbonate that reacted (6)
- 5.3.2 Calculate the percentage of sodium carbonate in excess (4)

[29]

(6)

QUESTION 6 (Start on a new page)

A solution of potassium hydroxide (KOH) is prepared by dissolving 3, 36 g crystals of KOH in 250 cm³ of solution.

- 6.1 Define the term *concentration*. (2)
- 6.2 Calculate the concentration of potassium hydroxide solution. (4)

 25 cm^3 of a potassium hydroxide solution of concentration 0, 25 mol.dm^{-3} completely neutralises a dilute solution of sulphuric acid (H_2SO_4) in a flask.

The incomplete equation below represents the reaction that takes place:

$$2KOH + H_2SO_4 \rightarrow K_2SO_4 + H_2O$$

- 6.3.1 Define the term standard solution
 6.3.2 Calculate the number of moles potassium hydroxide (KOH)
 6.3.3 Calculate the mass of sulphuric acid in the flask
 (5)
- [16]

TOTAL: 100

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Avogadro's constant Avogadro Ronstante	N _A	6,02 x 10 ²³ mol ⁻¹
Molar gas constant Molêre gaskonstante	R	8,31 J-K ⁻¹ -mol ⁻¹
Standard pressure Standaarddruk	pθ	1,013 x 10⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K

TABLE 2: FORMULAE/TABEL 2: FORMULES

$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$	pV =nRT
$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$n = \frac{V}{V_m}$	$c = \frac{n}{V}$ OR/OF $c = \frac{m}{MV}$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS

AMATHOLE WEST DISTRICT

GRADE 11

PHYSICAL SCIENCES
MARKING GUIDELINE
12 SEPTEMBER 2023

MARKS: 100

Stanmorephysics

This MARKING GUIDELINE consists of 7 pages including cover page

QUESTION 1

[14]

QUE	STION 2	
2.1	$p \propto \frac{1}{V} OR/OF \vee \propto \frac{1}{p} \checkmark$	(1)
2.2	Boyle's law $\sqrt{\ }$, The pressure of an enclosed gas is inversely proportional to the volume it occupies at constant temperature $\sqrt{\ }$	(3)
2.3	When the volume of the container is decreased, the particles will be closer together $\sqrt{\ }$, hence the particles will collide more with each other and the wall of the container leading to increase in the pressure. $\sqrt{\ }$	
2.4	Mass of the gas $\sqrt{-}$ ensure there's no leakage. $\sqrt{-}$ Temperature $\sqrt{-}$ gradually increase the pressure without having much effect on the temperature. $\sqrt{-}$	
2.5		
2.6	$P_1v_1 = p_2v_2 \sqrt{120(30)} \sqrt{120(5)} 120(5$	(4)
	Note May use any set of values from the graph that gives the correct answer	
2.7	High pressures √ Low temperatures √	(2)

[18]

[11]

QUESTION 4

4.1 Limiting reagent is the substance that is totally used up in a chemical reaction. √√
 (2)

4.2 From the ballanced equation;

$$n(C_7H_6O_3)/m(O_1H_6O_3) = 2/1 = 2\sqrt{$$

From the data supplied;

$$n(C_7H_6O_3) = m/M$$

= 14/138

= 0,1014mol √

 $n(C_4H_6O_3)=m/M$

= 10/102

= 0, 098mol √

 $n(C_7H_6O_3)/n(C_4H_6O_3) = 0, 1014/0, 098$

Therefore, C₄H₆O₃(Y) is the limiting reagent. √

(5)

4.3 C₄H₆O₃: C₉H₈O₄

1 : 2

0,098 : x

 $n(C_0H_8O_4) = 0, 196 \text{ mol } \sqrt{}$

m = nM

m = 0, 196 x 180 √

m = 35, 28g

percentage yield = $\frac{actual\ yield}{theoretical\ yield} x\ 100\%\ \sqrt{}$

$$=\frac{11.5}{35.28} \times 100\% \sqrt{}$$

(5)

[12]

QUES	TION 5		
	5.1.1	Empirical formula: Smallest whole number ratio of elements that make up the spostance. VV	(2)
	5.1.2	OPTION 1 OPTION 2 $\text{MH in H}_2\text{O} = \text{M/M} \ $ $\text{SH in H}_2\text{O} = 2/18 \times 100 \ $ $\text{SH in H}_2\text{O} = 2/18 \times 100 \ $ $\text{SH in H}_2\text{O} = 11,11\%$ $\text{In H}_2\text{O}$ $\text{In M}_2\text{O} = 2 \times 1,075$ $\text{In M}_2\text{O} = 2 \times 1,075$ $\text{In M}_2\text{O} = 2,15 \ \text{In M}_2\text{O} = 2,15 \$	(8)
		$\begin{array}{lll} n \ (\text{CO}_2) = \text{m/M} & \%\text{C in CO}_2 = 12/44 \times 100 \ \sqrt{} \\ = 47,1/44 \ \sqrt{} & = 27,27\% \\ = 1,07 \ \text{mol} & \text{m(C) in CO}_2 = 27,27\% \ \text{of } 47,1 \ \text{g} \ \sqrt{} \\ n(\text{C}) = n \ (\text{CO}_2) & = 12,84 \ \text{g} \ (\text{to } 12,85 \ \text{g}) \\ = 1,07 \ \text{mol} \ \sqrt{} \\ & = 1,07 \ \text{mol} \ \sqrt{} \end{array}$	
		mol C: mol H 1, 07: 2, 15 √ 1: 2 √ mol C: mol H 1, 07: 2,15 √ 1: 2	
	5.1.3	Empirical formula: CH_2 POSTIVE MARKING FROM QUESTION 5.1.2 $M(CH_2) = 1(12) + 2(1) = 14g.mol^{-1}$ $(14)n = 28 $ $n = 2$ molecular formula: $(CH_2)2$ $C_2H_4 x = 2; y = 4 $	(3)
5.2		$n(CaO)=m/M \sqrt{11,76/56=0,21 \text{ mol}}$ $(CaCO_3): (CaO)$ 1:1 $n_{(CaCO_3)}=0,21 \text{ mol } \sqrt{100}$ $m(CaCO_3)=nM$ $=(0,21)(100) \sqrt{100}$	(6)
	5	% purity = $\frac{pure\ sample}{impure\ sample} \times 100\%$ = $\frac{21}{80} \times 100\% \sqrt{=26,25\%} $	

```
5.3.1 V = 306 \text{ cm}^3

= 0,306 \text{ dm}^3

n (CO_2) = \sqrt{74}

= 0,308/24,45 \sqrt{}

= 0,0125 \text{ mol}

m (Na_2CO_3) = n(Na_2CO_3) = 0,0125 \text{ mol } \sqrt{}

= 0,0125 \sqrt{} \times (23(2) + 12 + 3(16)) \sqrt{}

= 1,33 \text{ g} \sqrt{}

5.3.2 Mass (Na_2CO_3) \text{ excess} = 1,5 - 1,33\sqrt{}

= 0,17 \text{ g} \sqrt{}

\% \text{ excess} = (0,17/1,5) \times 100 \sqrt{}

= 11,33\%\sqrt{} (4)
```

[30]

QUEST	ON 6	
6.1	Concentration is the amount of solute per litre of solution.	(2)

6.2	OPTION 1	OPTION 2	(4)
	C = m/MV $$ = 3,36 $$ (56) (0,25) $$ = 0,24 mol.dm ⁻³ $$	n = m/M = 3,36/56 $$ = 0,06 mol c = n/V $$ = 0,06/0,25 $$ = 0,24 mol.dm ⁻³ $$	
6.3.1	Solution of known concentration √√		(2)
6.3.3	n = CV $$ n(KOH) = (0,25) (0,025) $$ = 6,25 x 10 ⁻³ mol $$		(3)
6.3.4	$n(H_2SO_4) = 0.5n(KOH) $ = 0.5 (6.25×10 ⁻³) = 3.125 × 10 ⁻³ mol $m(H_2SO_4) = nM $ = 3.125 ×10 ⁻³ (98) $$ = 0.31 g $$	(mole ratio 1:2)	(4)

[15]

Total = [100]

