

MATHEMATICS (PAPER 2)	GR	2

INSTRUCTIONS AND INFORMATION

1. This question paper consists of 8 questions.
2. Answer ALL the questions.
3. Clearly show ALL calculations, diagrams, graphs, et cetera, that you have used in determining your answers.
4. Answers only will NOT necessarily be awarded full marks.
5. Use an approved scientific calculator (non-programmable and non-graphical), stated otherwise.
6. If necessary, round-off answers to TWO decimal places, unless state
7. Answer sheets for QUESTION 1.2 and QUESTION 1 are provided a the end of the question paper. Write you name in the spaces provide n each ansyer s et and submit them together with your ANSWER BOOK.
8. Diagrams are NOT necessarily drawn to sca

9. Number the answers correctly accordir paper.

MATHEMATICS (PAPER 2)	GR

QUESTION 1

The following box and whisker plot and accompanying 5-number summary, shows the marks obtained by Grade 11A for a Mathematics test out of 50 .

The 5 -number summary for Grade 11A:
Min. $=5 ; \mathrm{Q}_{1}=11 ; \mathrm{Q}_{2}=21 ; \mathrm{Q}_{3}=30 ;$ Max. $=45$

Grade 11A

MATHEMATICS (PAPER 2)	GR	4

QUESTION 2

In the following diagram $\mathrm{D}(-10 ; 6), \mathrm{E}, \mathrm{F}$ and $\mathrm{G}(1 ; 9)$ are the vertices of a quadrilateral. The equation of EG is $3 x-y+6=0$. The diagonals of the quadrilateral bisect each other at point K. Point F is on the x-axis and β is the angle of inclination of EG.

MATHEMATICS (PAPER 2)	GR	5

QUESTION 3

In the diagram below, A is the point $(-2 ;-1), \mathrm{B}(-3 ; 4), \mathrm{C}(1 ; 5)$ and $\mathrm{D}(5 ; y)$.

MATHEMATICS (PAPER 2)	GR	6

QUESTION 4

4.1 In the diagram below, $\mathrm{P}(x ;-24)$ is a point such that $\mathrm{OP}=25$, and $\mathrm{R}(12 ; 0)$ with $\mathrm{R} \hat{\mathrm{P}}=\beta$, where $180^{\circ}<\beta<270^{\circ}$.

4.1.1 Calculate the value of x.
4.1.2 Determine the value of each of he lowing WITHOUT the use of a calculator.
(a)

(b)

4.1.3 \sim Oint on OP s an that $\mathrm{OT}=15$.
(a) how thatT $\left(-\frac{21}{5} ;-\frac{72}{5}\right)$ WITHOUT the use of a calculator.
(b) Determine the area of $\triangle \mathrm{ROT}$.
4.2 Simplii to a single trigonometric ratio:

$$
\begin{equation*}
\frac{\tan 225^{\circ}+\sin \left(180^{\circ}-\theta\right) \cos \left(90^{\circ}+\theta\right)}{\cos \left(90^{\circ}-\theta\right) \sin \left(-\theta-540^{\circ}\right)} \tag{6}
\end{equation*}
$$

MATHEMATICS (PAPER 2)	GR	7

QUESTION 5

In the diagram below, $f(x)=a \cos \left(\frac{1}{2} x\right)-\frac{1}{2}$ and $g(x)=-2 \sin (x+p)$ are drawn for $x \in\left[-240^{\circ} ; 240^{\circ}\right]$.

QUESTION 6

A candle holder is made in the shape of a hemisphere where a conical section is drilled out for the candle wax.

In the diagram below, the radius of the hemisphere is represented by R, where $\mathrm{ST}=\mathrm{VT}=R$.
The radius of the cone is represented by r, where $\mathrm{TW}=r$.
The angle at the vertex of the cone is given by θ.

$$
V_{\text {SPHERE }}=\frac{4}{3} \pi R^{3}
$$

$$
V_{\mathrm{CONE}}=\frac{1}{3} \pi r^{2} h
$$

6.1 Express r in terms of and θ. r
6.3 he cone is filled rith $w \in x$ and a wick. The wick is always 1 cm below the level of the yax but he wick n ust not protrude over the level of the flat surface of the hemisphere.
dius of the b-misphere (R) is 12 cm and the angle of the cone (θ) is 36°.
Detern etb volume of wax that must be put into each candle holder.

MATHEMATICS (PAPER 2)	GR

QUESTION 7

CD is a diameter and PC a tangent to the circle. Chord DK is produced to P .
PT intersects KC at $\mathrm{Q} . \mathrm{CDP}=40^{\circ}, \mathrm{DPT}=25^{\circ}$ and $\mathrm{TQ} \mathrm{C}=65^{\circ}$.

MATHEMATICS (PAPER 2)	GR	10

QUESTION 8

In the diagram below, the points T, U and V lie on the circumference of the circle with centre O .

8.2 In the diagram below, the two EQUAL circles with centres O and M are drawn. Chords AB and DM are produced to C . Chord OB is produced to meet AD at $\mathrm{F} . \mathrm{AB}$ is a tangent to the circle with centre M at B , and AD is a tangent at D . $\mathrm{DO} \mathrm{B}=2 x$.

TOTAL:

MATHEMATICS (PAPER 2)	GRADE 11	12

Name and Surname: \qquad Grade: \qquad

ANSWER SHEET A

QUESTION 1
1.2

Grade 11A

Grade 11B

\qquad Grade: \qquad

ANSWER SHEET B

QUESTION 8

8.1

