

PROVINCIAL EXAMINATION NOVEMBER 2021 GRADE 11 MARKING GUIDELINES

PHYSICAL SCIENCES (CHEMISTRY) (PAPER 2)

6 pages

QUESTION 1

1.1	В	$\checkmark \checkmark$	(2)
1.2	D	$\checkmark \checkmark$	(2)
1.3	С	$\checkmark\checkmark$	(2)
1.4	В	**	(2)
1.5	D	**	(2)
1.6	А	\checkmark	(2)
1.7	С	<i>√ √</i>	(2)
1.8	А	\checkmark	(2)
1.9	В	\checkmark	(2)
1.10	С	\checkmark	(2) [20]
1.10 QUES	C STION	√√ 2	(2) [20]
1.10 QUES 2.1	C STION The te atmos	\checkmark 2 emperature at which the vapour pressure of a substance equals pheric pressure. \checkmark	(2) [20] (2)
1.10 QUES 2.1 2.2	C STION The te atmos 2.2.1	 ✓✓ 2 emperature at which the vapour pressure of a substance equals pheric pressure. ✓✓ As the molecular mass increases, the boiling point increases. ✓✓ (cannot be DIRECTLY PROPORTIONAL, not shown by graph) 	(2) [20] (2) (2)
1.10 QUES 2.1 2.2	C TION The te atmos 2.2.1 2.2.2	 ✓✓ 2 emperature at which the vapour pressure of a substance equals pheric pressure. ✓✓ As the molecular mass increases, the boiling point increases. ✓✓ (cannot be DIRECTLY PROPORTIONAL, not shown by graph) As the molecular mass increases, ✓ the strength of the intermolecular forces increases. ✓ Therefore more energy is needed to overcome/ weaken the intermolecular forces. ✓ (No mark if BROKEN is used instead of overcome or weaken.) Thus the boiling point increases. 	(2) [20] (2) (2) (3)
 1.10 QUES 2.1 2.2 2.3 	C The te atmos 2.2.1 2.2.2 2.3.1	 ✓✓ 2 emperature at which the vapour pressure of a substance equals pheric pressure. ✓✓ As the molecular mass increases, the boiling point increases. ✓✓ (cannot be DIRECTLY PROPORTIONAL, not shown by graph) As the molecular mass increases, ✓ the strength of the intermolecular forces increases. ✓ Therefore more energy is needed to overcome/ weaken the intermolecular forces. ✓ (No mark if BROKEN is used instead of overcome or weaken.) Thus the boiling point increases. H₂O/water ✓ 	(2) [20] (2) (2) (3) (1)
 1.10 QUES 2.1 2.2 2.3 	C STION The te atmos 2.2.1 2.2.2 2.3.1 2.3.2	 ✓✓ 2 emperature at which the vapour pressure of a substance equals pheric pressure. ✓✓ As the molecular mass increases, the boiling point increases. ✓✓ (cannot be DIRECTLY PROPORTIONAL, not shown by graph) As the molecular mass increases, ✓ the strength of the intermolecular forces increases. ✓ Therefore more energy is needed to overcome/ weaken the intermolecular forces. ✓ (No mark if BROKEN is used instead of overcome or weaken.) Thus the boiling point increases. H₂O/water ✓ Hydrogen bonds ✓✓ 	 (2) [20] (2) (2) (3) (1) (2)

2.3.3 Hydrogen bonds are stronger than dipole-dipole forces ✓ therefore more energy is needed to overcome/weaken the forces. ✓ Thus the boiling point is higher than expected. (2)
 [12]

MARKING GUIDELINES	PHYSICAL SCIENC (Paper 2)	CES (CHEMISTRY) GRADE 11
--------------------	------------------------------	-----------------------------

 $\checkmark\checkmark$

(2)

(2)

QUESTION 3

3.1 3.1.1

- 3.1.2 [Ca]⁺² $2[x F_{xx}^{xx}]^{-1}$
- 3.2 A polar covalent bond is a bond in which the electron density is shared unequally between the two atoms. $\checkmark \checkmark$

√√

OR

A bond between two non-metals where the difference in electronegativity is more than 1. $\checkmark\checkmark$	(2)
3.3.1 HF/Hydrogen fluoride ✓	(1)
3.3.2 CaSO₄/Calcium sulphate ✓	(1)
Electronegativity is a measure of the tendency of an atom in a molecule to attract bonding electrons. $\checkmark\checkmark$	(2)
$\Delta EN = 4 - 1 = 3 \checkmark$ $\therefore \text{ Ionic bond }\checkmark$	(2)
Polar molecule ✓	(1)
Δ en = 4 − 2,1 = 1,9 ✓ ∴ polar bond ✓ Thus, the molecule is polar.	(2) [15]
	A bond between two non-metals where the difference in electronegativity is a.3.1 HF/Hydrogen fluoride \checkmark 3.3.2 CaSO ₄ /Calcium sulphate \checkmark Electronegativity is a measure of the tendency of an atom in a molecule to attract bonding electrons. \checkmark $\Delta EN = 4 - 1 = 3 \checkmark$ \therefore lonic bond \checkmark Polar molecule \checkmark $\Delta en = 4 - 2, 1 = 1, 9 \checkmark$ \therefore polar bond \checkmark Thus, the molecule is polar.

MARKING GUIDELINES	PHYSICAL SCIENC (Paper 2)	ES (CHEMISTRY) GRADE 11
--------------------	------------------------------	----------------------------

QUESTION 4

4.1	What is the relationship between the pressure and volume of a gas, when temperature is kept constant? $\checkmark\checkmark$			
4.2	4.2.1 Volume ✓			
	4.2.2 Temperature/Mass of gas ✓			
4.3	The pressure of an enclosed gas is inversely proportional to the volume it occupies at constant temperature. $\checkmark\checkmark$			
4.4	OPTION 1	OPTION 2	٢	
	p1V1 = p2V2 ✓	p1V1 = p2V2 ✓		
	(150)(350) = (400)X√	(150)(0,35) = (0,400)X✓		
	X = 131,25 cm ³ ✓	X = 131,25 cm ³ ✓		
		Note: ✓ Equation ✓ Substitution ✓ Answer with correct units	(3)	
4.5	At high pressure, a real g	as's particles will occupy space and have a volume. \checkmark		

The attraction and repulsive forces between the particles become significant. ✓ Thus a real gas will liquefy at high pressures.

(2) [11]

MARKING GUIDELINES	PHYSICAL SCIEN (Paper 2)	ICES (CHEMISTRY) GRADE 11
--------------------	-----------------------------	------------------------------

QUESTION 5

		MARKING GUIDELINE	S	PHYSICAL SCIENCE (Paper 2)	S (CHEMIST GRAE	RY) DE 11
5.7	$n(SO_3) = 1,56 \times \frac{1}{2}$ = 1,56 mod m = nM = (1,56)(32 + 3) = 124,8 g.mol ⁻¹	$\frac{2}{2} \checkmark$ $(16)) \checkmark$	No ✓ (✓ (te: Using mole ratio Substitution Answer		(3) [19]
QUE	STION 6					
6.1	Endothermic 🗸					(1)
6.2	Products have n	nore energy than the reac	tant	s. √		
	OR					
	More energy is a	absorbed than released.	/			(1)
6.3	C√					(1)
6.4	Decreases the a reaction. ✓	activation energy, ✓ by pre	ovidi	ng an alternative pathw	ay for the	(2)
6.5	The cold decreases the kinetic energy of the particles, slowing them down, \checkmark thus reducing the volume they will take up (reducing swelling). \checkmark				(2) [7]	
QUE	STION 7					
7.1	A loss of electro	ns ✓ ✓				(2)
7.2	N₂ + 6e- → 2N ³⁻	√ √				(2)
7.3	N₂/Nitrogen ✓✓					(2)
7.4	HNO₃ : (+1) + (N N: +5 ✓ ✓	N) + (-6) = 0	N N	ote: lark for answer only		(2) [8]
QUE	STION 8					
8.1	An acid is a prot	on (H+ ion) donor. ✓✓				(2)
8.2	H ₂ SO ₄ + MgCO ₃	$a \rightarrow MgSO4 \checkmark + [H2O + O]$:02]	\checkmark		(2)
8.3	Bronsted-LovBronsted-Lov	vry acid: HBr,	e ba Con	ise is Br⁻/NaBr√ jugate base is HCN√		(4) [8]
					TOTAL:	100