PROVINCIAL EXAMINATION

NOVEMBER 2021
GRADE 11
MARKING GUIDELINES

PHYSICAL SCIENCES (CHEMISTRY) (PAPER 2)

QUESTION 1

$1.1 \quad$ B $\checkmark \checkmark$ (2)
$1.2 \mathrm{D} \quad \checkmark$(2)
1.3 C(2)
$1.4 \quad$ B $\checkmark \checkmark$
(2)
1.5 D(2)
1.6 A(2)
1.7 C(2)
1.8 A(2)
$1.9 \quad$ B $\checkmark \checkmark$(2)
1.10 C(2)

QUESTION 2

2.1 The temperature at which the vapour pressure of a substance equals atmospheric pressure. $\checkmark \checkmark$
2.2 2.2.1 As the molecular mass increases, the boiling point increases. $\checkmark \checkmark$ (cannot be DIRECTLY PROPORTIONAL, not shown by graph)
2.2.2 As the molecular mass increases, \checkmark the strength of the intermolecular forces increases. \checkmark Therefore more energy is needed to overcome/ weaken the intermolecular forces. \checkmark (No mark if BROKEN is used instead of overcome or weaken.) Thus the boiling point increases.

$2.3 \quad$ 2.3.1 $\mathrm{H}_{2} \mathrm{O} /$ water \checkmark

2.3.2 Hydrogen bonds $\checkmark \checkmark$
2.3.3 Hydrogen bonds are stronger than dipole-dipole forces \checkmark therefore more energy is needed to overcome/weaken the forces. \checkmark Thus the boiling point is higher than expected.

MARKING GUIDELINES	PHYSICAL SCIENCES (CHEMISTRY) (Paper 2)
GRADE 11	

QUESTION 3

$3.1 \quad 3.1 .1$

3.1 .2

$$
\begin{equation*}
\checkmark \checkmark \tag{2}
\end{equation*}
$$

3.2 A polar covalent bond is a bond in which the electron density is shared unequally between the two atoms. $\checkmark \checkmark$

OR

A bond between two non-metals where the difference in electronegativity is more than $1 . \checkmark \checkmark$
3.3 3.3.1 HF/Hydrogen fluoride \checkmark

3.3.2 $\mathrm{CaSO} 4 /$ Calcium sulphate

3.4 Electronegativity is a measure of the tendency of an atom in a molecule to attract bonding electrons. $\checkmark \checkmark$
$3.5 \Delta \mathrm{EN}=4-1=3$
\therefore lonic bond \checkmark
3.6 Polar molecule \checkmark
$3.7 \Delta \mathrm{en}=4-2,1=1,9 \checkmark$
\therefore polar bond \checkmark
Thus, the molecule is polar.

Downloaded from testpapers.co.za

MARKING GUIDELINES	PHYSICAL SCIENCES (CHEMISTRY) (Paper 2)
GRADE 11	

QUESTION 4

4.1 What is the relationship between the pressure and volume of a gas, when temperature is kept constant? $\checkmark \checkmark$
4.2 4.2.1 Volume \checkmark

4.2.2 Temperature/Mass of gas \checkmark

4.3 The pressure of an enclosed gas is inversely proportional to the volume it occupies at constant temperature. $\checkmark \checkmark$
4.4 OPTION 1
$\mathrm{p} 1 \mathrm{~V} 1=\mathrm{p} 2 \mathrm{~V} 2 \checkmark$
$(150)(350)=(400) X \checkmark$
$X=131,25 \mathrm{~cm}^{3} \checkmark$

OPTION 2

$\mathrm{p} 1 \mathrm{~V} 1=\mathrm{p} 2 \mathrm{~V} 2 \checkmark$
$(150)(0,35)=(0,400) X \checkmark$
$X=131,25 \mathrm{~cm}^{3} \checkmark$

Note:
$\checkmark ~$ Equation
\checkmark Substitution
\checkmark Answer with correct units

4.5 At high pressure, a real gas's particles will occupy space and have a volume.

The attraction and repulsive forces between the particles become significant.
Thus a real gas will liquefy at high pressures.

QUESTION 5

5.1 The flask is open. \checkmark

The SO_{2} gas is able to escape.
Thus the mass will decrease.
5.2 Accept between 6,4 s and 6,6s $\checkmark \checkmark$
5.3 OPTION 1
$\Delta m=m f-m i \checkmark$
$=116-160 \checkmark$
$=-44 \mathrm{~g}$
\therefore mass decreases by $44 \mathrm{~g} \checkmark$

OPTION 2

$\Delta \mathrm{m}=\mathrm{mi}-\mathrm{mf} \checkmark$
$=160-116 \checkmark$
$=44 \mathrm{~g} \checkmark$

Note:

\checkmark Equation
\checkmark Substitution
\checkmark Positive final answer

5.4 Positive marking from 5.3

OPTION 1

$$
\begin{aligned}
\% \text { yield } & =\frac{\Delta m(\text { impure })}{\Delta m(\text { pure })} \times 100 \checkmark \\
& =\frac{135-160 \checkmark}{-44 \checkmark} \\
& =56,82 \% \checkmark
\end{aligned}
$$

OPTION 2

$$
\begin{aligned}
\% \text { yield } & =\frac{\Delta m(\text { impure })}{\Delta m(\text { pure })} \times 100 \checkmark \\
& =\frac{160-135 \checkmark}{44 \checkmark} \\
& =56,82 \% \checkmark
\end{aligned}
$$

Note:
\checkmark Equation
\checkmark Substitution (numerator)
\checkmark Substitution (denominator)
\checkmark Final answer
5.5
$n\left(O_{2}\right)=\frac{m}{M}$
$=\frac{50}{32} \checkmark$
$\begin{aligned} n\left(\mathrm{SO}_{2}\right) & =\frac{m}{M} \\ & =\frac{100}{64} \checkmark \\ & =1,56 \mathrm{~mol} \checkmark\end{aligned}$

> Note:
> \checkmark Substitution $\left(\mathrm{SO}_{2}\right)$
> \checkmark Substitution $\left(\mathrm{O}_{2}\right)$
> \checkmark Both answers
$=1,56 \mathrm{~mol}$
OPTION 1
$\mathrm{SO}_{2}: \mathrm{O}_{2}$
$2: 1 \checkmark$ (using ratio)
1,56: 0,78
$\therefore \mathrm{SO}_{2}$ limiting reactant \checkmark

OPTION 2

$\mathrm{SO}_{2}: \mathrm{O}_{2}$
$2: 1 \checkmark$ (using ratio)
3,12: 1,56
$\therefore \mathrm{SO}_{2}$ limiting reactant \checkmark

MARKING GUIDELINES	PHYSICAL SCIENCES (CHEMISTRY) (Paper 2)
GRADE 11	

$$
5.7 \begin{gathered}
n\left(\mathrm{SO}_{3}\right)=1,56 \times \frac{2}{2} \checkmark \\
=1,56 \mathrm{~mol} \\
m=n M \\
=(1,56)(32+3(16)) \checkmark \\
=124,8 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \checkmark
\end{gathered}
$$

Note:
\checkmark Using mole ratio
\checkmark Substitution
\checkmark Answer

Note:
\checkmark Using mole ratio
\checkmark Substitution
\checkmark Answer
(3)

QUESTION 6

6.1 Endothermic \checkmark
6.2 Products have more energy than the reactants.

OR
More energy is absorbed than released. \checkmark
6.3 C \checkmark
6.4 Decreases the activation energy, \checkmark by providing an alternative pathway for the reaction. \checkmark
6.5 The cold decreases the kinetic energy of the particles, slowing them down, \checkmark thus reducing the volume they will take up (reducing swelling).

QUESTION 7

7.1 A loss of electrons $\checkmark \checkmark$
$7.2 \quad \mathrm{~N}_{2}+6 \mathrm{e}-\rightarrow 2 \mathrm{~N}^{3-} \checkmark \checkmark$
7.3 $\quad \mathrm{N}_{2} /$ Nitrogen $\checkmark \checkmark$
7.4 $\mathrm{HNO}_{3}:(+1)+(\mathrm{N})+(-6)=0$
$\mathrm{N}:+5 \checkmark \checkmark$

Note:
Mark for answer only

(2)

QUESTION 8

8.1 An acid is a proton ($\mathrm{H}+\mathrm{ion}$) donor. $\checkmark \checkmark$
$8.2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{MgCO}_{3} \rightarrow \mathrm{MgSO} 4 \checkmark+[\mathrm{H} 2 \mathrm{O}+\mathrm{CO} 2] \checkmark$
8.3 - Bronsted-Lowry acid: HBr, \checkmark Conjugate base is $\mathrm{Br} / \mathrm{NaBr} \checkmark$

- Bronsted-Lowry base: $\mathrm{CN}^{-}(\mathrm{NaCN}), \checkmark$ Conjugate base is HCN \checkmark

