

NATIONAL SENIOR CERTIFICATE

GRADE 1

PHYSICAL SCIENCES
COMMON TEST
SEPTEMBER 2023

TIME: 2 hours

MARKS: 100

Stanmorephysics

This question paper consists of 8 pages, one graph sheet, and two data sheets.

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- Write your name on the ANSWER BOOK.
- This question paper consists of SEVEN questions. Answer ALL the questions in the ANSWER BOOK.
- Start EACH question on a NEW page in the ANSWER BOOK.
- Number the answers correctly according to the numbering system used in this question paper.
- Leave ONE line between two subsections, for example between QUESTION 2.1 and QUESTION 2.2.
- You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEET.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your final numerical answers to a minimum of TWO decimal places.
- 11. Give brief motivations, discussions, et cetera where required.

QUESTION 1 MULTIPLE CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question number (1.1 — 1.6) in the ANSWER BOOK, for example 1.7 D.

- 1.1 The number of moles of chloride ions in 111g of calcium chloride, CaCl2, is ...
 - A 1
 - B 2
 - C 0.5
 - D 1.47

(2)

- 1.2 Which ONE of the following contains 6,02 × 10²³ atoms?
 - A 18 g of Ar gas.
 - B 32 g of O₂ gas.
 - C 5,6 dm³ of NH₃ gas at STP.
 - D 22,4 dm3 of CO gas at STP.

(2)

- 1.3 Which ONE of the following processes is EXOTHERMIC?
 - A Melting of ice.
 - B Evaporation of water.
 - C Combustion of petrol in a car engine.
 - D Reacting a salt in water to form an ice-pack. (2)
- 1.4 Consider the following chemical reaction:

$$NH_3(g) + H_2O(\ell) \rightarrow NH_4^+(aq) + OH^-(aq)$$

In this equation, H2O is the ...

- A base because it donates a proton.
- B acid because it accepts a proton.
- C base because it accepts a proton.
- D acid because it donates a proton.

(2)

1.5 Which ONE of the following species CANNOT be an ampholyte?

- A H₂O
- B HPO₄²-
- C HSO₄
- D SO₄²-

(2)

1.6 When 50 cm³ of sulphuric acid, H₂SO₄, of concentration 0,1 mol·dm⁻³ is diluted to a volume of 200 cm³, the concentration of the new solution (in mol·dm⁻³) will be...

- A 0.025
- B 0,25
- C 0,05
- D 0,033

(2) [12]

QUESTION 2

Aspirin is known by the chemical name acetylsalicylic acid. It is made up of C, H and O only. A sample of aspirin has the following percentage composition:

0

C H 58,065% 7,527%

2.1 Define the term empirical formula.

(2)

2.2 What is the percentage of oxygen in aspirin?

(1)

2.3 Determine the empirical formula of aspirin.

- (5)
- 2.4 If the molecular mass of aspirin is 186g.mol⁻¹, determine its molecular formula.

(2) [10]

A 2,3 kg sample of iron (III) oxide, Fe₂O₃, is added to 1,7 kg of carbon monoxide (CO) 3.1 according to the following balanced equation:

$$3Fe_2O_3$$
 (s) + $CO(g) \rightarrow 2Fe_3O_4$ (s) + CO_2 (g)

Define the term limiting reagent. 3.1.1

- (5)
- Identify the limiting reagent in the reaction by means of a suitable 3.1.2 calculation.

(2)

- 3.1.3 Calculate the maximum mass of Fe₃O₄ that can be produced.
- (3)
- 3.1.4 The yield in this reaction was found to be 76%. Calculate the mass of Fe₃O₄ that was actually produced.
- (3)

3.2 The following reaction takes place in a cylinder with a movable lid:

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

5 volumes of SO₂(g) and 3 volumes of O₂(g) are injected into the cylinder at constant temperature.

If the reaction goes to completion, determine the total volume of gas that will be present in the cylinder.

(4)[17]

QUESTION 4

15g of IMPURE Mg(OH)2 was reacted with excess phosphoric acid to produce 16g of Mg₃(PO₄)₂ according to the following balanced equation:

$$3Mg(OH)_2(s) + 2H_3PO_4(aq) \rightarrow Mg_3(PO_4)_2(s) + 6H_2O(\ell)$$

Calculate the percentage purity of the Mg(OH)2. 4.1

(5)

- If 20g of the same impure Mg(OH)2 was used in the above reaction, how will each of 4.2 the following be affected? Choose from INCREASES, DECREASES or REMAINS THE SAME?
 - 4.2.1 The mass of Mg₃(PO₄)₂ produced.

(1)

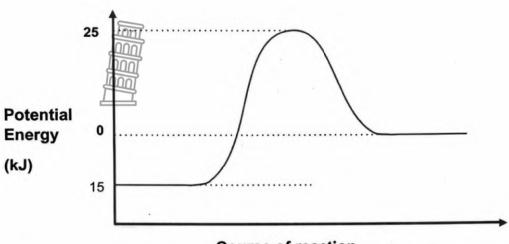
4.2.2 The percentage purity of the Mg(OH)₂.

(1)

Explain the answer to Question 4.2.2. 4.3

(2)[9]

A group of science learners carried out an experiment to verify Boyles's Law for a certain gas. The learners set the pressure to pre-determined values and read off the corresponding volume of the gas for each value of the pressure.


The data collected is shown in the table below. x, y and z represent values in the table.

Pressure (kPa)	Volume (cm³)	$\frac{1}{Pressure} (x 10^{-3} kPa^{-1})$
142,9	315	7
166,7	270	6
200	225	5
250	180	у
x	135	z

5.1	State Boyle's Law in words.	(2)
5.2	For this experiment, identify the:	
	5.2.1 Independent variable.	(1)
	5.2.2 Dependant variable.	(1)
5.3	State TWO variables that must be kept constant in this experiment.	(2)
5.4	Calculate the value of x in the table.	(2)
5.5	The above table has been redrawn above your graph sheet on page 11.	
	5.5.1 Fill in the correct values for y and z in the table.	(2)
	5.5.2 Using the graph sheet provided, plot a graph of volume (V) verses the inverse of	
	pressure $(\frac{1}{p})$. Be sure to submit this sheet together with your answer booklet.	(4)
5.6	Write down a suitable conclusion from the graph.	(2)
5.7	State TWO properties of an Ideal Gas.	(2)
5.8	State TWO conditions under which real gases deviate from ideal gases.	(2)
5.9	On the graph that was drawn in QUESTION 5.5.2, draw a sketch to show the deviation of real gas behaviour from ideal gas behaviour	(2) [22]

Copyright reserved Please turn over

The graph below shows the energy changes for a certain reaction. Study the graph and answer the questions that follow.

Course of reaction

- 6.1 Is the reaction EXOTHERMIC or ENDOTHERMIC? Give a reason for the answer. (2)
- 6.2 Define the term activated complex. (2)
- 6.3 Write down the value for each of the following:
 - 6.3.1 Energy of the reactants (1)
 - 6.3.2 Energy of products (1)
 - 6.3.3 Activation energy for the forward reaction (1)
- 6.4 Calculate the heat of reaction, ΔH . (3)
- 6.5 A catalyst is added to speed up the reaction. What effect will the catalyst have on each of the following? (Choose from INCREASES, DECREASES or REMAINS THE SAME)
 - 6.5.1 Activation energy (1)
 - 6.5.2 The heat of reaction (1)
 - 6.5.3 The energy of the activated complex (1)
 - 6.5.4 Amount of products formed (1)

JESTION 7

group of learners decide to make a mini volcano by reacting baking soda (NaHCO₃) and cetic acid (CH₃COOH) in a TWO step procedure.

STEP 1

They first prepare a standard solution of NaHCO₃ of concentration 0,2 mol.dm⁻³ in a 250 cm³ volumetric flask.

- 7.1 Define a standard solution. (2)
- 7.2 Calculate the mass of NaHCO₃ needed to prepare the standard solution. (4)

STEP 2

They then add 50 cm³ of the standard solution of NaHCO₃ to excess CH₃COOH. The following balanced equation represents the reaction that takes place.

 $NaHCO_3\left(aq\right) \ + \ CH_3COOH\left(aq\right) \ \rightarrow \ CH_3COONa\left(aq\right) \ + \ H_2O(\ell) \ + \ CO_2 \ (g)$

- 7.3 Define an Arrhenius acid. (2)
- 7.4 Calculate the volume of CO₂ produced. Take the molar gas volume to be 23 dm³·mol⁻¹ (4)
- 7.5 Write down the formula for the:
 - 7.5.1 conjugate acid of CH₃COO⁻ (2)
 - 7.5.2 conjugate base of HCO₃ (2)

[16]

TOTAL: 100

DATA FOR PHYSICAL SCIENCES GRADE 11 PAPER 2 (CHEMISTRY)

TABLE 10 PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAAM/NAME	SIMBOOL/SYMBOL	WAARDE/VALUE
Standard pressure Standaarddruk	pθ	1,013 × 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume teen STD	Vm	22,4 dm ³ -mol ⁻¹
Standard temperature Standaardtemperatuur	Tθ	273 K
Charge on electron Lading op elektron	е	-1,6 × 10 ⁻¹⁹ C
Avogadro's constant Avogadro se konstante	NA	6,02 × 10 ²³ mol ⁻¹

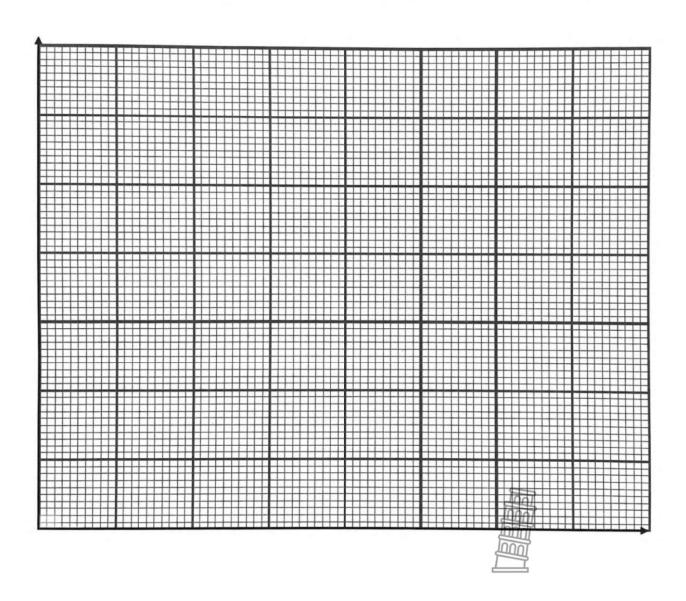
TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$c = \frac{n}{V}$ $c = \frac{m}{MV}$	$P_1V_1 = P_2V_2$
$n = \frac{N}{N_A}$	$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	
$n = \frac{V}{V_m}$		

1		
3	-	
7	=	
	\mathbf{c}	
I.	J	
V=		
	S	
	\simeq	
	3	
-		
1		
7	11	
þ	W.	
1		
	0	
	\equiv	
- 8	=	
9		
- 6		
- A	9	
4	3	
1	2	
t	り	
10	りに	
10	コクロ	
70	はのに	
77	BO HO	
47 mon	FOR SE	
to mony	Troll of	
form Ct	Trom St	
J Lucia Ct	Trom St	
J from Ct	a Trom St	
To more	ed from St	
Jad from Ct	Jed Trom St	
Jan Lucia Ct	ided Trom St	
to many proper	aded from St	
to ded from Ct	odded from St	
Land Lucin Ct	loaded from St	
when dad from Ct	niodded from St	
The day bear Ct	Whiodaed Trom St	
The Land Land	Whioaded from St	
The dad from Ct	ownloaded from St	

TABLE 3: THE PERIODIC TABLE OF ELEME Atomic number Atomic num ber Atomic number Atomic number Atomic number Atomic number Atomic numbe	S	(IV) (V) (VI) (VIII)				8 2 9	3'0 3'2 3'2 3'0	14 16	15 16	1,8 2,1 2,5 3,0 2,5 3,0 2,5	28 31 32 35,5	32 33 34 35	4. Ge 2. As 4. Se 2.8	73 75 79 80	50 51 52 53	1,8 Sn 1,9 Sb 7,1 Te 2,5	119 122 128 127	82 83 84 85	8,1 D 6,1	207 209		69 89	165 167 169 173 175	100 104 102	Es Fm Md No Lr
TABLE 3: 1 (ii) (iii) (iii) (iv) 4 4 4 5 6 (iii) KEY/SLEUTEL KEY/SLEUTEL KEY/SLEUTEL REY/SLEUTEL Substitutive for the following strivitive for the following strivition str	MENT	€ 3						=	13		27		۹'۱			۲'۱			8,1			99	₹ 2.5	86 flaffe	5
TABLE 3: 1 (ii) (iii) (iii) (iv) 4 4 4 5 6 (iii) KEY/SLEUTEL KEY/SLEUTEL KEY/SLEUTEL REY/SLEUTEL Substitutive for the following strivitive for the following strivition str	FELE	12										30	9'1		48	۲'۱						65	159	97	Ä
TABLE 3: 1 (ii) (iii) (iii) (iv) 4 4 4 5 6 (iii) KEY/SLEUTEL KEY/SLEUTEL KEY/SLEUTEL REY/SLEUTEL Substitutive for the following strivitive for the following strivition str	LEO	Ξ											6'١			6'I						2 5	157	96	£
TABLE 3: 1 (ii) (iii) (iii) (iv) 4 4 4 5 6 (iii) KEY/SLEUTEL KEY/SLEUTEL KEY/SLEUTEL REY/SLEUTEL Substitutive for the following strivitive for the following strivition str	TAB	9				104	loogu			mass	nassa		8,1			2,2				195		83	152	95	Am
TABLE 3: TAB	SIODIC	6	umber	jeta/	Г	_		*	7	atomic	atoom	27		29	45			77	-	192		62	150	94	Pu
TABLE 3: TAB	E PER	∞	tomic n	Atoom(_	•			63,5	4	relative	latiewe	56	8,1 Fe	26	4	2,2 Ru	101	92	os	190		2 8	Ē	93	å
(i) 3 4 5 FEVISLEL (III) 4 4 5 FEVISLEL (III) 4 4 5 FEVISLEL (III) 4 6	E L L					vito	ifelt		_	ximate	lerde re	25	ı,5 Mn	55	43	1,9 TC		75	æ	186		9 3	4	92	D 8
(i) 3 4 5 (ii) 4 4 5 12 12 12 12 12 13 14 5 12 13 14 13 14 14 14 15 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	ABLE	9	HITEI	COLET		vitenanc	negativ	,		Appro	Benac		۹'۱			8,1						59	<u> </u>	9	Ра
(i) 3 4 (ii) 3 4 4 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	7	ĸ	EVICE	LETISLI		Flectr	Elektro							51	4	q	92	73	Τa	181		86	5 5	06	4
(a) 3 (b) 4.5 (c) 4.5		4	3											84			91			179					
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		က												45			88			139	Š	Ac			
		7 (6			24	20	င္မ	4	88	ร	88			137					
		- 8	-	I	-			7			23			39			98			33					

Physical Sciences


NSC 11

Common Test September 2023

NAME OF LEA	RNER :	GR 11
0		

Answer sheet for QUESTION 5.5

Pressure (kPa)	Volume (cm³)	$\frac{1}{Pressure} (x 10^{-3} kPa^{-1})$
142,9	315	7
166,7	270	6
200	225	5
250	180	у
x	135	Z

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

PHYSICAL SCIENCES

MARKING GUIDELINES

COMMON TEST

SEPTEMBER 2023

NATIONAL SENIOR CERTIFICATE

GRADE 11

StanmorephysickiFiED

NB: This memorandum consists of 8 pages.

Copyright reserved

QUESTION ONE

1.1 B ✓ ✓

1.2 C ✓✓

1.3 C ✓ ✓

1.4 D 🗸

1.5 D √ √ 1.6 A √ √

[12]

QUESTION TWO

2.1 Simplest whole number ratio of atoms in a compound ✓✓ (2)

2.2 Percentage O = 100 - (58,065 + 7,527)

 $= 34,408\%\sqrt{ }$ (1)

2.3

	С	Н	0	
Mass in 100g	58,065g	7,527g	34,408g	✓
	1771			200
n = m/M	58,065g	<u>7,527g</u>	34,408g	
	12	1	16) 🗸
	=4,83875	= 7,527	= 2,1505	
Stein	orephys com			
Divide by smallest mol	4,83875	7,527	2,1505	✓
-	2,1505	2,1505	2,1505	
Ratio	2,25	3,5	1	
	9	14	4	
				(5)
Empirical formula	C ₉ H	14O4 ✓✓	•	

2.4 M (C₉H₁₄O₄) = 9(12) + 14(1) + 4(16)
$$\checkmark$$
 = 186 g.mol⁻¹

$$\therefore \text{ molecular formula is } C_9H_{14}O_4\checkmark \tag{2}$$

[10]

3.1

3.1.1 The reactant that gets finished first / is used up completely in a chemical reaction (2)

NOTE: For questions 3.1.2 and 3.1.3, award marks if ONE table is provided for both questions.

3.1.2 MARKING CRITERIA:

- Formula $n = \frac{m}{M}$
- Substitution for mass(m) and molar mass (M) for Fe₂O₃
- Substitution for mass(m) and molar mass (M) for CO
- Ratio applied correctly 3:1 or 14,375: 4,792
- Final answer: Fe₂O₃

n Fe₂O₃ : n CO 3 : 1 ✓

Limiting reagent is Fe₂O₃ \(\square\$ (5)

3.1.3 **POSITIVE MARKING FROM QUESTION 3.1.2**

Fe₂O₃: Fe₃O₄

3 : 2

14,375 : x

$$x = \underbrace{\frac{4,375 \times 2}{3}}_{9,58 \text{mol}}$$

n (Fe₃O₄) =
$$\frac{m}{M}$$
 M Fe₃O₄ = $\frac{3}{3}$ (56) + 4(16)
9,58 = $\frac{m}{232}$ = $\frac{m}{232}$ = $\frac{m}{232}$ (3)
m = 2222,56g / 2,22 kg \checkmark

Copyright reserved

3.1.4 **POSITIVE MARKING FROM QUESTION 3.1.3**

Actual mass of Fe₃O₄ produced =
$$\frac{76}{100}$$
 \checkmark × 2222,56 \checkmark = 1689,15 g \checkmark (3)

2 vols SO₂ reacts with 1 vol O₂ 3.2 5 vols SO₂ reacts with 2,5 vols O₂ to produce 5 vols SO₃✓

Total volume =
$$(3-2.5) \checkmark +5 \checkmark = 5.5 \text{ vols} \checkmark$$
 (4) [17]

QUESTION 4

4.1 **MARKING CRITERIA:**

- Substitution of 262 g·mol⁻¹ into formula $(n = \frac{m}{M})$ to convert 16 g of Mg₃(PO₄)₂ to moles. √
- Apply ratio of 3:1 for n(Mg₃(PO₄)₂): n(Mg(OH)₂). √
- Substitution of 58 g·mol⁻¹ to calculate mass of pure Mg(OH)₂. ✓
- Substitution into correct formula to calculate % purity. ✓
- Final answer. ✓

Mg₃(PO₄)₂ produced:
$$n = \frac{m}{\frac{M}{M}}$$
$$= \frac{16}{262\sqrt{}} = 0,061 \text{ mol}$$

Mol of pure Mg(OH)₂ used = $3(0,061) \checkmark = 0,183 \text{ mol}$

Mass of $Mg(OH)_2$ used: m = nM0,183 x 58√ 10,614 g

% purity =
$$\frac{10,612}{15} \times 100 \checkmark$$

= $70,76 \% \checkmark$ (5)

- 4.2.1 Increases. ✓
- (1) 4.2.2 Remains the same. ✓ (1)
- 4.3 The ratio of the mass of pure Mg(OH)₂ in a given sample to the total mass (2)of the sample remains constant. <

[9]

Copyright reserved

5.1 The volume of an enclosed mass of (dry) gas is inversely proportional to the pressure when the temperature remains constant.√√ (2)

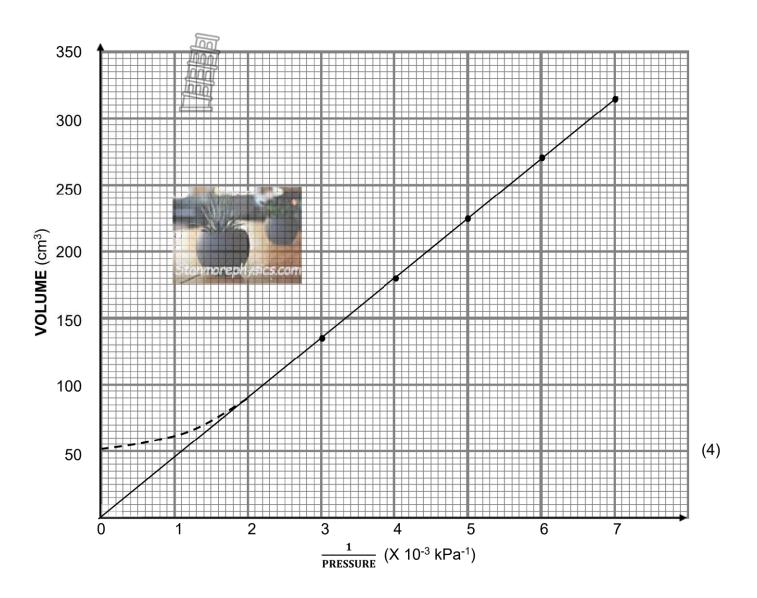
5.2.1 pressure (1)

5.2.2 volume√ (1)

5.3 Mass (of gas) ✓
Temperature (of gas) ✓ (2)

5.4 $p_1V_1 = p_2V_2$ $(250)(180) = (\mathbf{x})(135) \checkmark$ $\mathbf{x} = 333,33 \text{ (kPa) } \checkmark \text{ OR ANY VALUES FROM TABLE}$ (2)

5.5.1 **POSITIVE MARKING FROM QUESTION 5.4**


Pressure(kPa)	Volume(cm³)	$\frac{1}{P}$ (x 10 ⁻³ kPa ⁻¹)
142,9	315	7
166,7	270	6
200	225	5
250	180	4√
333,3	135	3√

(2)

Copyright reserved Please turn over

Graph of Volume vs 1/Pressure

Marking Rubric

	Criteria	Mark
1	Volume on y-axis and	
	Inverse of pressure on x-axis	1
2	All points correctly plotted	
	-1 if more than 2 points plotted incorrectly	2
3	Line of best fit drawn	1
4	Deviation for Question 5.9	2

Copyright reserved Please turn over

September 2023 Common Test

NSC

- 5.6 Volume is directly proportional to 1/pressure OR $v \alpha 1/p$. $\checkmark\checkmark$ (2)
- 5.7 Particles: are identical in all respects. ✓ / are in a state of random motion. ✓ collisions are completely elastic / no force of attraction or repulsion except when they collide / particles themselves do not have volume.

(any two) (2)

- 5.8 High pressure ✓ Low temperature ✓ (2)
- 5.9 On graph/ see Rubric√√ (2) [23]

QUESTION 6

- 6.1 Endothermic. \checkmark $\triangle H > 0 \checkmark / E_p > E_r$ (2)
- 6.2 The unstable transition state from reactants to products. ✓ ✓ (2)
- 6.3.1 -15 kJ \checkmark (Accept 15 kJ) (1)
- 6.3.2 $0 (kJ) \checkmark$ (1)
- 6.3.3 40 kJ \checkmark (Accept 10 kJ) (1)
- 6.4 ΔH = Eproducts Ereactants
- = 0 (-15)= +15 kJ \checkmark = -15 kJ(3)
- 6.5.1 Decreases.√ (1)
- 6.5.2 Remains the same. ✓ (1)
- 6.5.3 Remains the same. ✓ (1)
- 6.5.4 Remains the same.✓ (1)

[14]

QUESTION 7

7.1 A solution whose concentration is known precisely. ✓✓ (2)

7.2 OPTION 1
$$c = \frac{m}{M} \checkmark \qquad c = \frac{m}{N} \checkmark \qquad n = \frac{m}{M}$$

$$0.2 = \frac{m}{(84)(0.25)} \checkmark \qquad 0.2 = \frac{n}{0.25} \checkmark \qquad 0.05 = \frac{m}{84} \checkmark$$

$$m = 4.2g \checkmark \qquad n = 0.05 \text{ mol} \qquad m = 4.2g \checkmark$$

- 7.3 Substance that produces hydronium ions (H_3O^+) when dissolved in water. $\checkmark\checkmark$ (2)
- 7.4 n (NaHCO₃) = C x V = 0,2 x 0,05 \checkmark = 0,01 mol NaHCO₃ : CO₂ 1 : 1 n CO₂ = 0,01 mol \checkmark n = $\frac{V}{V_m}$ 0,01 = $\frac{V}{23}$ V = 0,23 dm⁻³ \checkmark

(4)

(4)

7.5.2
$$CO_3^{2-}$$
 (2)

[16]

TOTAL: 100

