

MARKS: 50

TIME: 1 hour

This question paper consists of 5 pages and 2 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your name on the **ANSWER BOOK**.
- 2. Answer **ALL** the questions in the ANSWER BOOK.
- 3. This question paper consists of FOUR questions.
- 4. You may use a non-programmable calculator.
- 5. Number the answers correctly according to the numbering system used in this question paper.
- 6. You are advised to use the attached DATA SHEETS.
- 7. Give brief motivations, discussions et cetera where required.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (1.1 - 1.10) in the ANSWER BOOK, for example 1.5 D.

- 1.1 Which ONE of the following is a molecule with a multiple bond?
 - A N₂
 - B NH₃
 - C OF₂
 - D HOCł

(2)

1.2 The molecular formula of ethyne is C_2H_2 .

The shape of the ethyne molecule as predicted by the VSEPR theory is:

- A Trigonal planar.
- B Octahedral.
- C Llinear.
- D Bent.

(2)

1.3 The table below indicates the boiling points of four liquids.

SUBSTANCE	BOILING POINT (°C)
Water	100
Methylated spirits	78,5
Ethanol	78,37
Acetone	56

Which ONE of the above liquids has the lowest surface tension?

- A Water.
- B Methylated spirits.
- C Ethanol.
- D Acetone.

1.4 The predominant forces between the molecules in an ice crystal are called . . .

- A London forces.
- B Hydrogen bonding.
- C Induced dipole forces.
- D Polar covalent bonding.

(2) [**8**]

(2)

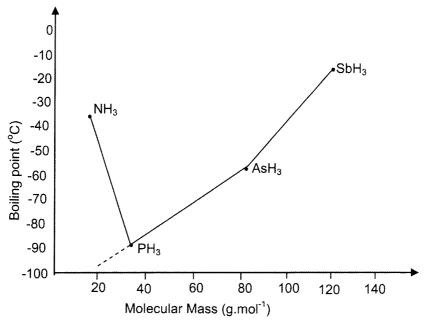
QUESTION 2 (Start on a new page.)

The water molecule has the formula: H_2O .

2.1 Water forms a dative covalent bond with the hydrogen ion.

	2.1.1	What is a dative covalent bond?	(2)						
	2.1.2	State ONE requirement for the formation of a dative covalent bond.	(1)						
	2.1.3	Draw the Lewis structure to show the bonding that takes place when the above dative covalent bond is formed.	(2)						
	2.1.4	Name the ion that is formed from the above dative covalent bond.	(1)						
2.2	The water molecular is angular in shape. Explain this shape in terms of the VSEPR theory.								
2.3	3 The density of ice is less than the density of the liquid.								
	2.3.1	Explain the significance of the above for life on EARTH.	(3)						
	2.3.2	Calculate the number of water molecules present in 1 dm ³ of water if the mass of 1 cm ³ of water is 1 g.	(3) [15]						
QUE	STION 3	3 (Start on a new page.)							
		gth of the H – Br bond is 60 pm. of energy is required to break the H – Br bond.							
3.1	Define	the term <i>bond length.</i>	(2)						
3.2	Draw a sketch graph (not to scale) in your answer book to show how potential energy changes as the distance between the nuclei changes when a hydrogen								

Indicate the following values on the graph:


(H) atom approaches a bromine (Br) atom.

- (i) Bond length.
- (ii) Bond energy.
- 3.3 How will the bond length of an H Cl bond compare to that of the H Br bond? Write down LONGER THAN, EQUAL TO or SHORTER THAN.
 - 3.4 Give a reason for the answer to question 3.3.(1)[9]

(1)

QUESTION 4 (Start on a new page.)

The graph below shows the results obtained during an investigation to determine the boiling points of substances formed when hydrogen is bonded to atoms from group V of the periodic table.

4.1 Define boiling point	4.1	Define	boiling	point
--------------------------	-----	--------	---------	-------

(2)
(2)

(3)

(2)

(3)

(4)

4.2 Write down an investigative question for this investigation.

4.3 Consider PH₃, AsH₃ and SbH₃.

4.3.1	Name the type of van der Waals forces that exist between molecules of
	PH ₃ . Explain the answer by referring to the shape and polarity of the
	molecule.

4.3.2 Which of the three substances has the highest vapour pressure? Give a reason for the answer.

4.3.3. Fully explain why SbH₃ has a higher boiling point than AsH_3 .

- 4.4 It is expected that from the trend shown in the above graph, the boiling point of NH₃ should fall along the dotted line.
 Explain, with reference to the TYPE OF INTERMOLECULAR FORCES AND ENERGY, why the boiling point of NH₃ does not fall along the dotted line.
- 4.5 The SAME INVESTIGATION is now conducted when the atmospheric pressure is LOWERED. What effect will this have on:

4.5.2	The boiling point of NH ₃ ?	(1)
4.5.1	The vapour pressure of NH ₃ ?	(1)

(Choose from INCREASES, DECREASES or REMAINS THE SAME in each case):

[18]

TOTAL MARKS: 50

DATA FOR PHYSICAL SCIENCES GRADE 11 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 11 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Avogadro's constant Avogadro-konstante	NA	6,02 x 10 ²³ mol ⁻¹
Molar gas constant Molêre gaskonstante	R	8,31 J·K ⁻¹ ·mol ⁻¹
Standard pressure Standaarddruk	pe	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ°	273 K

TABLE 2: FORMULAE/TABEL 2: FORMULES

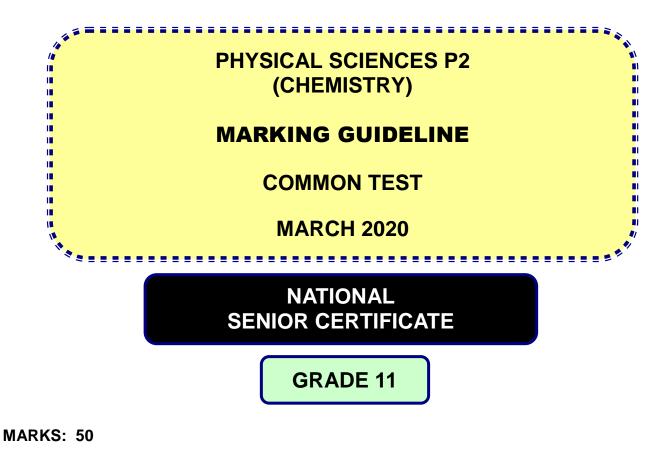
$\frac{\mathbf{p}_1 \mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{p}_2 \mathbf{V}_2}{\mathbf{T}_2}$	pV=nRT
$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$n = \frac{V}{V_m}$	$c = \frac{n}{V}$ OR/OF $c = \frac{m}{MV}$

			r						<u>т</u>						·····			······				r																																							
	18		7	He	4	10	Ne	20	18	Å	40	36	Ϋ́	84	54	Xe	131	86	Rn			1	Ξ.		175	103	L 	ī																																	
	17	(III)				6	⊔_ 0'≉	19	17	3,0 5,0	35,5	35	8,S B		53	 9'2	127	85	ېن ^ه				2;	a Y	173	102	QN																																		
	16	(آک ک				∞	0 3'2		16	N 5'2		34	2,4 2,4		52		128	84	-)		U J	²	Ε	169	101	M																																		
	15	S				7	Z 0'E		15		31	33		75	51	-		83		209		00	8	Ľ	167	100	E L																																		
	14	(<u>)</u>	_		_		_		-		-						, ,					9	<u>ں</u> ۲,5	12	14	8,1 2	********	32	8,1 8,1		50		119	82	-	207		6 7	5 :	e E	165	66	С Ц	2																	
ΓE	13	(III)												S	D 5'0	-	13	1'2 1'2	27	31	1,6 7,6		49		115	81		204		99	3 (Ś	163	98	Çf	;																									
MENTS	12				I	L						30	9't 2 9't	65	48		112	80				er	3	0	159	97	BK																																		
ERIODIC TABLE OF ELEMENTS RIODIEKE TABEL VAN ELEMENTE	11											29	D 0'1	63,5	47	6,1 9,4	108	79	Au	197		۲ <u>۷</u>	5 (D D	157	96	Cm	,																																	
TABLE TABLE	10		Atomic number Atoomgetal		Symbol	Simbool			mass	nassa	28	Ž 8'1	59	46	5,2 2,2	106	78	đ	195	-	63	3 [152	95	Am																																			
RIODIC	6			umber jetal		umber jetal		umber jetal		umber jetal		umber jetal		umber getal		umber getal		umber getal		umber getal		umber jetal		umber getal		umber getal	uniber getal		getal		getal		umber ge <i>tal</i>		umber getal	iumber getal	iumber getal	getal		· · · · · · · · · · · · · · · · · · ·			e atomi	atoomr	27	8,† 8,†	59	45	S,2	103	77	-	192		63	3	En	150	94	Pu	
THE PE IE PERI	8			29	29 29 Cu		• 83	4	relative	latiewe	26	8,1 B	56	44	2,2 Ru	101	76	Os	190		61	5 6	Ē		93	aN																																			
TABLE 3: THE P TABEL 3: DIE PEH	7	•	Ato Ato		۲.			vity	viiteit			Approximate relative atomic mass	Benaderde relatiewe atoommassa	25	U B S'≀	55	43	6'↓		75	Re	186	-	ξÛ		DZ	144	92		238																															
TA TABI	9		EUTEL			Electronegativity		Electronegativity Elektronegatiwiteit			Appro	Benad	24	9'I	52	42	8, Mo	96	74	3	184		59	<u>ה</u> א	7	141	91	Pa																																	
	5		KEY/SLEUTEL	KEY/SLI	KEYISL	KEYISL			Electr	Elektro						9'L	51	41	qN	92	73	Та	181		58	3 6	e Ce	140	06	Ч	232																														
	4												22	۲ ۹ʻ۲	48		^{↓,4} Z	91	72	₩ 9'₽	179																																								
	e											21	Sc	45	39	≻	89	57	La	139	89	Ac																																							
					ſ		đ		~	D			<u>ויי3</u> קו			<u>۱'۲</u>			~	~		~	ഗ																																						
	2	€						ი	-	, Mg	24		—	4			88	56	Ba	137	88		226																																						
			[<u>۱'۲</u>			עז גיר	~		0'1			<u>م، ہ</u>			0'6 ഗ	3	~	<u>6'0</u>																																							
	- i	€		T,2,1	-			~			23			39			86	55	CS	133	87																																								
			L	10			0'L			6'0			8'0			8'0			<u> 2'0</u>			<u> 2'0</u>		J																																					

Copyright reserved

March 2020 Common Test

-


7 NSC – Grade 11

Physical Science/P2

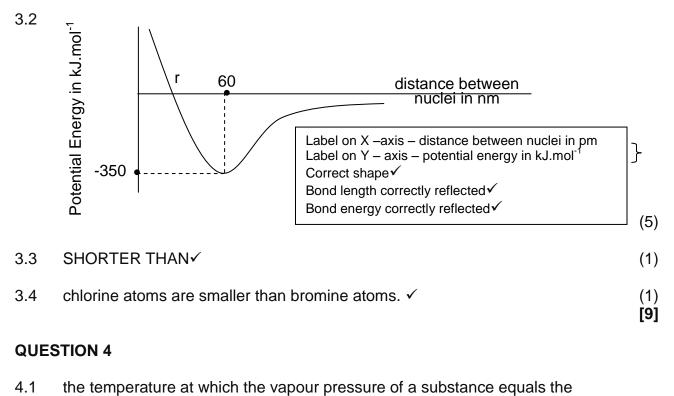
education

Department: Education PROVINCE OF KWAZULU-NATAL

TIME: 1 hour

N.B: This marking guideline consists of 3 pages.

QUESTION 1


1.1	A✓✓	(2)
1.2	C✓✓	(2)
1.3	D✓✓	(2)
1.4	B√√	(2) [8]

QUESTION 2

2.1	2.1.1	the bond formed when an empty valence shell shares a lone pair of electrons from another atom. \checkmark	(2)
	2.1.2	one atom must have a lone pair of electrons while the other atom must have an empty valence shell.	(1)
	2.1.3	 H H:O[*], H + +<td>(2)</td>	(2)
	2.1.4	hydronium ion/oxonium ion ✓	(1)
2.2	lone p than t	entral atom has 2 lone pairs and 2 bonded pairs \checkmark pairs repel each other and the bonded pairs more strongly the bond pairs repel each other \checkmark pasing the bond angle \checkmark	(3)
2.3	2.3.1	Ice will float on water. ✓ Bottom layer will not freeze. ✓ Thus sustaining the aquatic life. ✓	(3)
	2.3.2	$1000 \text{ g} = 1 \text{ dm}^3$	
		$n = \frac{m}{RM}$	
		$=\frac{1000g}{18}$	
		= 55,55 mol.	
		No. of molecules = 55,55 x $N_A \checkmark$	
		$= 3,34 \times 10^{25} \checkmark$	(3) [15]

QUESTION 3

3.1 the average distance between the nuclei of two bonded atoms. $\checkmark \checkmark$ (2 or 0) (2)

	TOTAL MARKS	5: 50
4.5.2	Increases√	(1) [18]
4.5.1	Remains the same√	(1)
4.4	Hydrogen bonding between molecules of NH_3 . \checkmark Dipole-dipole forces between molecules of PH_3 , ASH_3 and SbH_3 . \checkmark Intermolecular forces therefore unusually stronger between NH_3 molecules. \checkmark More energy required to overcome the intermolecular forces in NH_3 . \checkmark	(4)
4.3.3	As the relative molecular mass increases, the size of the atom increases forming stronger dipoles. \checkmark Strength of the intermolecular forces increases. \checkmark More energy required to overcome the intermolecular forces \checkmark	(3)
4.3.2	$PH_3 \checkmark$ has the lowest boiling point \checkmark	(2)
4.3.1	Dipole-dipole forces. ✓ Molecular shape is trigonal pyramidal✓ (one lone pair). Molecule is polar.✓	(3)
4.2	What is the relationship between molecular mass and boiling point? $\checkmark \checkmark$ (of the hydrides of the group V elements)	(2)
	atmospheric pressure. $\checkmark \checkmark$ (2 or 0)	(2)