

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2020

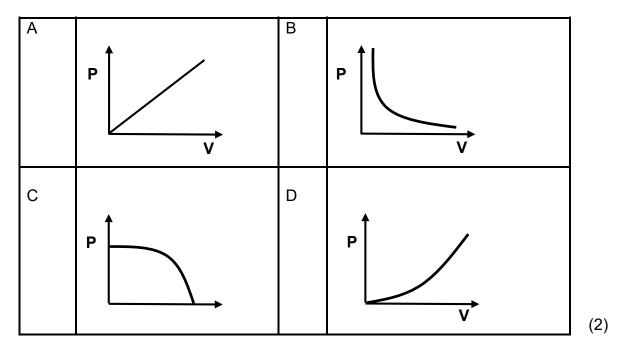
PHYSICAL SCIENCES P2 (CHEMISTRY) EXEMPLAR

MARKS: 150

TIME: 3 hours

This question paper consists of 18 pages, including 4 data sheets.

INSTRUCTIONS AND INFORMATION


- 1. Write your full NAME and SURNAME in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of TEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, et cetera where required
- 11. You are advised to use the attached DATA SHEETS.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A–D), next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, for example 1.11 D.

1.1	.1 The distance between the nuclei of two adjacent atoms when atoms bor called			
	Α	bond length.		
	В	bond energy.		
	С	interatomic bond.		
	D	intermolecular forces.	(2)	
1.2	Whi	ch ONE of the following substances has ION-DIPOLE forces?		
	Α	H_2O (ℓ)		
	В	CO ₂ (g)		
	С	NaCl (aq)		
	D	NaCl (s)	(2)	
1.3	The is	geometrical shape of the PCℓ₅ molecule according to VSEPR theory		
	Α	linear.		
	В	trigonal planar.		
	С	tetrahedral.		
	D	trigonal bipyramidal.	(2)	
1.4		mole of water (H ₂ O) and ONE mole of carbon dioxide (CO ₂) will have same…		
	Α	mass.		
	В	molar mass.		
	С	number of molecules.		
	D	density.	(2)	

- 1.5 A certain mass of oxygen is sealed in a syringe. The gas exerts a pressure **p**. If both the volume and the temperature are doubled, the new pressure of the gas will be ...
 - А р
 - B $\frac{1}{2}$ **p**
 - C 2 p
 - $\mathsf{D} \quad \mathsf{4} \, \mathsf{p} \tag{2}$
- 1.6 The relationship between pressure and volume of a fixed amount of gas at constant temperature is BEST described by ...

1.7 Equal masses of each of the following gases He, O₂, CH₄ and N₂ are placed in separate containers at the same temperature and pressure.

Which ONE of the gases will have the LARGEST volume?

- A He
- B O₂
- C CH₄
- $D N_2 (2)$

1.8 Consider the reaction:

$$NH_3(aq) + X \rightarrow NH_4^+(aq) + OH^-(aq)$$

X represents ...

- A H₂O acting as an acid.
- B H₂O acting as a base.
- C H₃O⁺ acting as an acid.
- D H_3O^+ acting as a base. (2)
- 1.9 Consider the pairs of reactants given below.

Which ONE of the following pairs of reactants will produce a salt, water and carbon dioxide?

A
$$Zn + H_2SO_4$$

D Na₂CO₃ + HC
$$\ell$$
 (2)

1.10 Consider the following redox reaction:

$$Cr_2O_7^{2-}(aq) + Fe^{2+(aq)} + H^+(aq) \rightarrow Cr^{3+(aq)} + Fe^{3+(aq)} + H_2O(\ell)$$

The product of the reduction half reaction in the equation is ...

C H₂O

QUESTION 2 (Start on a NEW page.)

Consider the following chemical equations:

I:
$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$

II: $NH_3 + H^+ \rightarrow NH_4^+$

- 2.1 Define the term *covalent bond*. (2)
- 2.2 Write down the Lewis structure for the CH₄ molecule. (2)
- 2.3 Consider the bonds C H and O H

Which bond ...

- 2.3.1 has a longer bond length? Give a reason for your answer. (2)
- 2.3.2 is stronger? (1)
- 2.4 How many lone pairs of electrons are in the central atom of the H₂O molecule? (1)
- 2.5 Write down the formula of a substance in reaction II that has a dative covalent bond. (1)
- 2.6 The NH₃ molecule is POLAR but the CH₄ molecule is NON-POLAR.

Explain this observation. (4) [13]

QUESTION 3 (Start on a NEW page.)

3.1 The boiling points in the table below were obtained during an investigation carried out to compare the boiling points of group 7 hydrides. The hydrides, HCl and HBr, are labelled in the table as compounds **A** and **B** respectively.

C	ompound	Molecular mass (g.mol ⁻¹)	Boiling point (° C)
Α	HCl	36,6	- 85
В	HBr	81	- 66

3.1.1 Define the term *boiling point*.

(2)

3.1.2 In what phase are compounds (**A** and **B**) at 0 °C and 101 kPa of external pressure?

3.1.3 Name the type of intermolecular force that exists between molecules of both compounds **A** and **B** due to the polar nature of these molecules.

(1)

(1)

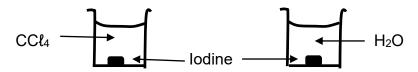
3.1.4 Which ONE of the compounds (**A** or **B**), has STRONGER London forces (dispersion forces)?

Give a reason for your answer.

(3)

3.1.5 Which compound (**A** or **B**), will have the higher vapour pressure?

Give a reason for the answer by referring to the data in the table.


(2)

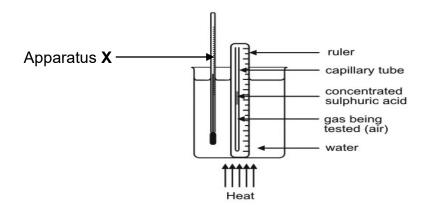
Compound $\bf C$ (HF), not shown in the table, has a smaller molecular size than both compounds $\bf A$ and $\bf B$ but has a relatively higher boiling point of 19,5 $^{\circ}$ C.

3.1.6 Explain why the boiling point of compound **C** is HIGHER than that of compounds **A** and **B** by referring to the TYPE and STRENGTH of intermolecular forces involved.

(3)

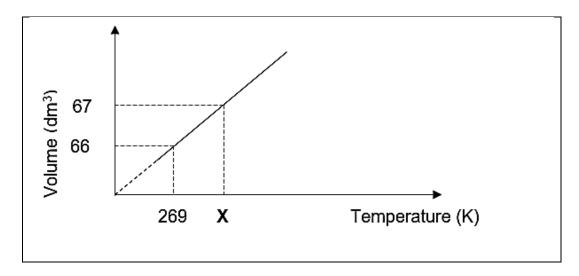
3.2 Solid iodine (I_2) is added to equal volumes of carbon tetrachloride (CCl_4) and water in separate test tubes as shown in the diagram below.

3.2.1 In which liquid ($CC\ell_4$ or H_2O), will the iodine dissolve? (1)


3.2.2 Explain the answer to QUESTION 3.2.1 above by referring to the intermolecular forces involved.

(3)

[16]


QUESTION 4 (Start on a NEW page.)

Grade 11 learners want to verify the relationship between temperature and volume of a gas. They used the following experimental set-up.

- 4.1 Write down the name of the gas law that is investigated. (1)
- 4.2 For this investigation write down the:

- 4.3 Write down the name of apparatus **X**. (1)
- 4.4 The learners plot the results of their investigation on the graph below:

4.4.1 Determine, by calculation, the value of **X**.

4.4.2 Calculate the pressure of the gas at 269 K. (5)

PHYSICAL SCIENCES P2

(EC/NOVEMBER 2020)

Give TWO reasons for your answer. (3)

[19]

9

5.2

QUESTION 5 (Start on a NEW page.)

Learners study ENDOTHERMIC and EXOTHERMIC reactions by conducting experiments I and II in which the reactions shown in the table below take place.

EXPERIMENT	BALANCED EQUATION			
I	$2 H_2O_2(\ell) \rightarrow 2 H_2O(\ell) + O_2(q)$			
II	$2 H_2O(\ell) \rightarrow 2 H_2(g) + O_2(g)$			

The learners measured the initial and final temperatures of the reaction mixtures. They also obtained activation energies for the reactions from a data table.

The learners represented their findings in a table as shown below.

EXPERIMENT	Initial (°C)	Final (°C)	Activation energy (kJ/mol)
I	24	36	75
II	24	18	237

- 5.1 Define the term *activation energy*. (2)
- In which experiment (I or II) is the reaction EXOTHERMIC? (2)Explain your answer.
- 5.3 Is the heat of the reaction, ΔH, POSITIVE or NEGATIVE for an **EXOTHERMIC** reaction? (1)
- 5.4 Write down the general name of a substance that can be added to the reaction mixture in experiment II to reduce the activation energy. (1)
- 5.5 Both reactions produce the same number of moles of oxygen gas.

How does the mass of H₂O₂ used in experiment I compare to the mass of H₂O used in experiment II?

Write down only SMALLER THAN, LARGER THAN or THE SAME. (2)

5.6 Draw a potential energy versus time graph for the reaction in experiment II.

The following must be shown on the graph.

Heat of the reaction (ΔH)

(3)[11]

QUESTION 6 (Start on a NEW page.)

6.1 Methyl propanoate is an organic compound with the following percentage composition:

The molar mass of the compound is 88 g·mol⁻¹.

- 6.1.1 Define the term *empirical formula*. (2)
- 6.1.2 Determine, by calculation, the empirical formula. (6)
- Determine the molecular formula. 6.1.3 (2)
- 6.2 Learners prepare a solution of sodium hydroxide (NaOH) in water by placing 8 g of sodium hydroxide (NaOH) in a volumetric flask and adding water to produce 250 cm³ of solution after stirring.
 - Define *concentration* in words. (2)
 - 6.2.2 Calculate the concentration of the sodium hydroxide (NaOH) solution. (4)
- 6.3 Sodium azide (NaN₃) is used in car airbags. For the airbag to inflate the following reaction must take place:

$$2 \text{ NaN}_3(s) \rightarrow 2 \text{ Na}(s) + 3 \text{ N}_2(g)$$

Calculate the volume of nitrogen gas (N₂) that would be produced at STP if 55 g of sodium azide reacts completely.

(5)[21]

QUESTION 7 (Start on a NEW page.)

The fertiliser ammonium sulphate ((NH₄)₂SO₄) is produced from the reaction of sulphuric acid (H₂SO₄) and ammonia (NH₃) according to the balanced equation:

$$H_2SO_4 + 2 NH_3 \rightarrow (NH_4)_2SO_4$$

2 kg of sulphuric acid and 58,82 moles of ammonia are available to produce the fertiliser.

- 7.1 (2)Define the term *limiting reagent*.
- 7.2 Calculate the maximum mass of ammonium sulphate that can be produced by the reaction. (7)[9]

QUESTION 8 (Start on a NEW page.)

8.1 Consider the chemical reaction below:

$$HPO_4^{2-}(aq) + H_2O(\ell) \rightarrow PO_4^{3-}(aq) + H_3O^+(aq)$$

- 8.1.1 Define a *base* according to a Lowry-Bronsted theory. (2)
- 8.1.2 Write down ONE conjugate acid-base pair in the equation. (1)
- 8.1.3 Is the reaction mixture ACIDIC or ALKALINE at the completion of the reaction? Give a reason for your answer. (2)
- 8.1.4 Write down the formula of a substance in the reaction, other than H₂O, that can act as an ampholyte in some reactions. (2)
- 8.2 Copper (II) oxide (CuO) reacts with nitric acid.

Write down a balanced equation for the reaction. (3)

8.3 40 g of IMPURE calcium carbonate reacts with a 200 cm³ of a dilute sulphuric acid with a concentration of 1,5 mol·dm⁻³. All the calcium carbonate and sulphuric acid react completely leaving the impurities unreacted at the completion of the reaction.

$$CaCO_3(s) + H_2SO_4(aq) \rightarrow CaSO_4(s) + CO_2(q) + H_2O(\ell)$$

8.3.1 Calculate the percentage purity of the calcium carbonate. (6)

To obtain the sulphuric acid solution of concentration 1,5 mol.dm⁻³ that reacted with the IMPURE calcium carbonate, 10 cm³ of a concentrated sulphuric acid solution of concentration 9 mol·dm⁻³ was added to water.

8.3.2 Calculate the volume of water required to dilute the concentrated sulphuric acid solution to a concentration of 1,5 mol·dm⁻³.

(4) [20]

Copyright reserved

QUESTION 9 (Start on a NEW page.)

9.1 Consider the redox reaction given below.

$$Fe^{3+} + Zn \rightarrow Zn^{2+} + Fe^{2+}$$

9.1.1 Define *oxidation reaction* in terms of electron transfer. (2)

Write down the:

- 9.1.2 Formula of the reducing agent (2)
- 9.1.3 Reduction half reaction (2)
- 9.2 Consider the redox reaction below:

$$Ag(s) + NO_3(aq) \rightarrow NO_2(g) + Ag^+(aq)$$

- 9.2.1 Determine the oxidation number of nitrogen (N) in NO_3 . (2)
- 9.2.2 Balance the above chemical equation using the ion-electron method. (4) [12]

QUESTION 10 (Start on a NEW page.)

- 10.1 The mining industry contributes towards the South African economy. Gold is one of the minerals that is being mined in South Africa.
 - 10.1.1 Write down the name of the location of the major mining activity in South Africa. (1)

The following chemical reaction occurs during the final steps in the recovery process of gold.

$$Zn + 2 NaAu(CN)_2 \rightarrow 2 Au + Zn(CN)_2 + 2 NaCN$$

10.1.2 Is gold OXIDISED or REDUCED during the reaction?

Explain the answer by referring to the oxidation number. (3)

10.1.3 The NaCN is one of the products formed in the reaction.

Give a reason why chemists MUST ensure that NaCN does not find its way to nearby water sources. (2)

10.1.4 Write down the name of the process that is followed after this reaction. (1)

10.2 The burning of fossil fuels has a negative impact on the environment.

Write down TWO negative impacts of the large-scale burning of fossil fuels. (2)

[9]

TOTAL: 150

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

DATA FOR PHYSICAL SCIENCES GRADE 11 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 11 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAAM/NAME	SIMBOOL/SYMBOL	WAARDE/VALUE
Standard pressure	А	1.010 105 5
Standaarddruk	$p^{\scriptscriptstyle{ heta}}$	1,013 × 10 ⁵ Pa
Molar gas volume at STP		
Molâre geovelyme to an CTD	V _m	22,4 dm ³ ·mol ⁻¹
Molêre gasvolume teen STD		
Standard temperature	Тθ	273 K
Standaardtemperatuur	•	27010
Charge on electron		40
	е	-1,6 × 10 ⁻¹⁹ C
Lading op elektron		
Avogadro's constant		
	N _A	6,02 × 10 ²³ mol ⁻¹
Avogadro se konstante		

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M} \text{ or/of}$ $n = \frac{N}{N_A} \text{ or/of}$	$c = \frac{n}{V} \text{ or/of } c = \frac{m}{MV}$ $\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	pH= -log[H ₃ O ⁺] K _w = [H ₃ O ⁺][OH ⁻] = 1x10 ⁻¹⁴ at /by 298K
$n = \frac{v}{V_m}$		

$$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} \ / \ E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$$

$$E^{\theta}_{cell} = E^{\theta}_{reduction} - E^{\theta}_{oxidation} \ / \ E^{\theta}_{sel} = E^{\theta}_{reduksie} - E^{\theta}_{oksidasie}$$

$$E^{\theta}_{cell} = E^{\theta}_{oxidising\ agent} - E^{\theta}_{reducing\ agent} / E^{\theta}_{sel} = E^{\theta}_{oksideermiddel} - E^{\theta}_{reduseermiddel}$$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

						.=		
18 (VIII)	7 He	10 Ne 02	18 Ar	36 Kr	54 Xe 131	86 Rn	71 Lu	175 103 Lr
17 (VII)		e π.6	17 0.06 3.3.5.5.5	35 89 80 80	53 N-127	Se Ag	70 Yb	173 102 No
16 (VI)		3.50 8	16 S. 55 S.	34 4.Se 27.9	52 ~Te ~128	8 °0.2	69 Tm	169 101 Md
<u>Ş</u> 15		≻ 0.8 4.2	7.7 2.7 2.7 2.7	33 0,As 0,75	9.Sb		68 Er	167 100 Fm
4 <u>Ş</u>					50 ∞Sn √119		67 Ho	165 99 Es
= 13					7-1-15 1-15		66 Dy	163 98 Cf
12				30 6Zn 765	7.Cd 48	80 Hg 201	65 Tb	159 97 BK
7		/00 00	assa nass		47 9A9 1-108		64 Gd	157 96 Cm
10	L	Symbol Symbol	Benaderde relatiewe atoommassa Approximate relative atomic mass		A 46 N-706		63 Eu	152 95 Am
9 Atoomgetal	tomic number	6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6	↑ <i>latiewe</i> relative	27 &Co		77 r 192	62 Sm	150 94 Pu
8 Atoo	Atomic T	6'L	erde rel	26 7.56	2.Ru 10.70	76 Os 190	61 Pm	93 Np
۲ ـ ـ	l I	l	<i>Benao</i> Appro	25 6.Mn	8 43 C	75 Re 186	09	144 92 U 238
6 7 KFY! S! F!!TF!		<i>Elektronegatiwiteit</i> Electronegativity		24 GCr 52	42 ∞Μο ~96	74 W 184	59 Pr	141 91 Pa
5 KFY		EI EI		6. 7.51	44 8 95	73 Ta 181	58 Ce	140 90 Th 232
4				52 E. 1 15. T. 48	4Zr 4Zr 191	72 6.Hf		
က			T	3, Sc 1, 45	2,1 8 ≻ 8 8	57 La 139	89 Ac	
(E) 7		4 8 6 4 9 6	12 12 14 15 14 15 14 15 14 15 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1,0 Ca 1,40	1,0 88 28 88	56 9 Ba 0 137	88 9 Ra 0,226	
+ €	- I,2		0,9 2,0 2,0 2,0		_		ਨ,0 ም ቻ	

Please turn over

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD REDUKSIEPOTENSIALE

TABEL 4A: STANDAARD REDUKSIEPOTENSIALE						
Half-reactions/Ha	Ε ^θ (V)					
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87			
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81			
H ₂ O ₂ + 2H ⁺ +2e ⁻	=		+1,77			
MnO ₄ + 8H ⁺ + 5e ⁻	=	$Mn^{2+} + 4H_2O$	+ 1,51			
Cℓ ₂ (g) + 2e ⁻	=	2Cℓ ⁻	+ 1,36			
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33			
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23			
MnO ₂ + 4H ⁺ + 2e ⁻	=	$Mn^{2+} + 2H_2O$	+ 1,23			
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20			
$Br_2(\ell) + 2e^-$	=	2Br	+ 1,07			
NO ₃ + 4H ⁺ + 3e ⁻	=	$NO(g) + 2H_2O$	+ 0,96			
Hg ²⁺ + 2e ⁻	=	$Hg(\ell)$	+ 0,85			
Ag⁺ + e⁻	=	Ag	+ 0,80			
NO ₃ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80			
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77			
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H_2O_2	+ 0,68			
l ₂ + 2e ⁻	=	2I ⁻	+ 0,54			
Cu⁺ + e⁻	=	Cu	+ 0,52			
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45			
2H ₂ O + O ₂ + 4e ⁻	=	40H ⁻	+ 0,40			
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34			
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17			
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16			
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15			
S + 2H ⁺ + 2e ⁻	=	H ₂ S(g)	+ 0,14			
2H⁺ + 2e⁻	=	H ₂ (g)	0,00			
Fe ³⁺ + 3e ⁻	=	Fe 	- 0,06			
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13			
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14			
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27			
Co ²⁺ + 2e ⁻	=	Co	- 0,28			
Cd ²⁺ + 2e ⁻ Cr ³⁺ + e ⁻	=	Cd Cr ²⁺	- 0,40 0.41			
Cr ³⁺ + e ⁻ Fe ²⁺ + 2e ⁻	=	Cr ²⁺	- 0,41 0.44			
Cr ³⁺ + 3e ⁻	=	Fe Cr	- 0,44 - 0,74			
Zn ²⁺ + 2e ⁻	=	Zn	- 0,74 - 0,76			
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,76 - 0,83			
Cr ²⁺ + 2e ⁻	=	n ₂ (g) + 2Оп Сr	– 0,63 – 0,91			
Mn ²⁺ + 2e ⁻	=	Mn	- 0,91 - 1,18			
Al ³⁺ + 3e ⁻	=	Αℓ	- 1,66			
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36			
g5 Na⁺ + e⁻	=	Na	- 2,71			
Ca ²⁺ + 2e ⁻	÷	Ca	- 2,87			
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89			
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90			
Cs ⁺ + e ⁻	=	Cs	- 2,92			
K+ + e-	=	K	- 2,93			
Li ⁺ + e ⁻	=	Li	- 3,05			

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD REDUKSIEPOTENSIALE

TABEL 4B: STANDAARD REDUKSIEPOTENSIALE						
Half-reactions/Half	reaks	sies	Ε ^θ (V)			
Li⁺ + e⁻	=	Li	- 3,05			
K⁺ + e⁻	=	K	- 2,93			
Cs+ + e-	=	Cs	- 2,92			
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90			
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89			
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87			
Na ⁺ + e ⁻	=	Na	- 2,71			
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36			
$A\ell^{3+} + 3e^{-}$	=	Αℓ	– 1,66			
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18			
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91			
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83			
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76			
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74			
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44			
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41			
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40			
Co ²⁺ + 2e ⁻	=	Co	- 0,28			
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27			
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14			
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13			
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06			
2H⁺ + 2e⁻	=	H₂(g)	0,00			
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14			
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15			
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16			
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17			
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34			
2H ₂ O + O ₂ + 4e ⁻	=	40H⁻	+ 0,40			
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45			
Cu⁺ + e⁻	=	Cu	+ 0,52			
l ₂ + 2e ⁻	=	2I ⁻	+ 0,54			
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H_2O_2	+ 0,68			
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77			
NO 3 + 2H+ + e-	=	$NO_2(g) + H_2O$	+ 0,80			
Ag⁺ + e⁻	=	Ag	+ 0,80			
Hg ²⁺ + 2e⁻	=	Hg(ℓ)	+ 0,85			
NO 3 + 4H+ + 3e-	=	$NO(g) + 2H_2O$	+ 0,96			
$Br_2(\ell) + 2e^-$	=	2Br	+ 1,07			
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20			
MnO ₂ + 4H ⁺ + 2e ⁻	=	$Mn^{2+} + 2H_2O$	+ 1,23			
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H₂O	+ 1,23			
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33			
Cl ₂ (g) + 2e ⁻	=	2Cl-	+ 1,36			
MnO ₄ + 8H ⁺ + 5e ⁻	=	Mn ²⁺ + 4H ₂ O	+ 1,51			
H ₂ O ₂ + 2H ⁺ +2 e ⁻	=	2H ₂ O	+1,77			
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81			
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87			

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë