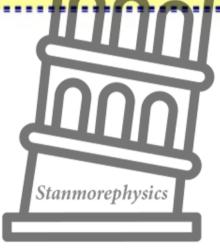


education

Department: Education PROVINCE OF KWAZULU-NATAL


AMAJUBA DISTRICT

PHYSICAL SCIENCES: PHYSICS (P1)
FEBRUARY 2023

MARKS: 50

TIME: 1 hour

This question paper consists of 7 pages and 1 data sheet.

INSTRUCTIONS AND INFORMATION

- Write your NAME and SURNAME in the appropriate spaces on the ANSWER BOOK 1. provided.
- 2. Answer ALL the questions.
- 3. This question paper consists of ONE section.

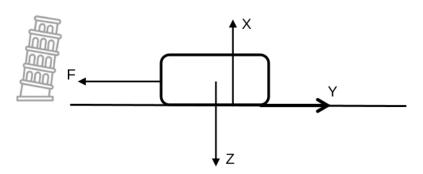
PAPER 1 (PHYSICS)

- You may use a non-programmable calculator. 4.
- 5. You may use appropriate mathematical instruments.
- Number the answers correctly according to the numbering system used in this question 6. paper.
- 7. Data sheets and a periodic table are attached for your use.
- 8. Give brief motivations, discussions, et cetera where required.

PAPER 1: PHYSICS

QUESTION 1: Multiple choice questions

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the correct answer and write the letter (A - D) next to the question number (1.1 - 1.4)


- The frictional force acting on a sliding object is ... 1.1
 - Α dependent of the apparent area of contact.
 - proportional to the normal force. В
 - С dependent of the velocity of object.
 - independent of the type of surface. D

(2)

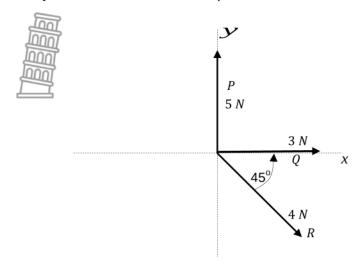
- 1.2 When a spaceship moves at constant velocity, it means that the resultant force acting on the body is zero. This phenomenon is best explained by
 - Α Newton's First Law.
 - В Newton's Second Law.
 - С Newton's Third Law.
 - Newton's Universal Gravitational Law.

(2)

1.3 A learner pulls a block at a CONSTANT SPEED over a rough horizontal surface with a force F. The force diagram below shows all the forces acting on the block.

Which ONE of the following relationships between the magnitudes of the forces ${\bf F}$, ${\bf X}$, ${\bf Y}$ and ${\bf Z}$ is true?

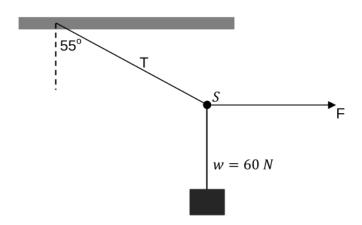
- A F > Y and X = Z
- B F > Y and X < Z
- C F = Y and X = Z
- D F = Y and X < Z


(2)

[6]

QUESTION 2

The diagram below shows three forces P, Q and R of 5 N, 3 N and 4 N respectively acting on an object in the same Cartesian plane.



(2)

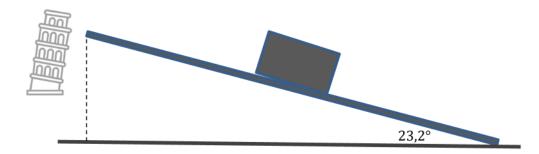
- 2.1 Give a reason why the three forces are classified as vectors.
- 2.2 Determine the magnitude and direction of the resultant force, either by CALCULATION or by ACCURATE CONSTRUCTION AND MEASUREMENT. Use scale 10 mm: 1N

(7)

A box of weight (w) 60 N hangs on a ceiling as shown in the sketch below. A horizontal force F acts horizontally to the right through knot **S**. The knot **S** is in equilibrium.

2.3 Explain what is meant by the knot S is in equilibrium.

(2)

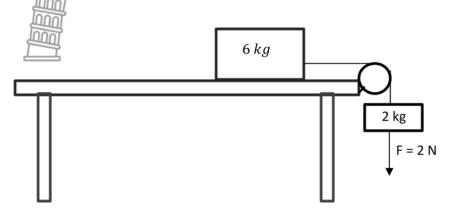

2.4 Draw the triangle of the three forces T, F and w. Clearly label the forces and all the angles. (3)

2.5 Calculate the magnitudes of the force F and the tension T.

(4) [**18**]

QUESTION 3

A crate of mass 95 kg crate lies on a plank inclined at 23,2°. At this angle the crate is just about to move down the incline. Refer to the diagram below.


- 3.1 Define the term *frictional force*. (2)
- 3.2 Sketch a free body diagram showing the force(s) acting on the crate at its current position. (3)
- 3.3 CALCULATE:
 - 3.3.1 The magnitude of the static frictional force (3)
 - 3..3.2 The coefficient of static friction between the plank and the block. (5)
- 3.4 The plank is now tilted at an angle of 20.0°. State whether the static friction force will be LESS THAN; EQUAL TO; OR GREATER THAN Question 3.3.1 above.

(1) **[14]**

QUESTION 4

A 6 kg block on a horizontal rough surface is joined to a 2 kg block by a light, inelastic string running over a frictionless pulley. The frictional force between the 6 kg block and the table is 11,76 N. A downwards force F of 2 N is applied to the 2 kg block as indicated in the diagram below.

- 4.1 State Newton's Second Law of motion in words. (2)
- 4.2 Identify ONE action-reaction force pair acting on the 6 kg block. (2)
- 4.3 CALCULATE:
 - 4.3.1 The magnitude of the acceleration of the 6 kg block. (5)
 - 4.3.2 The magnitude of the tension (T) in the string connecting the two blocks (2)
- 4.4 The rough surface is replaced by a smooth frictionless surface. How will this change affect the answer in QUESTION 4.4.1? Write only INCREASES, DECREASES or REMAINS THE SAME. (1)

[12]

DATA FOR PHYSICAL SCIENCES

TABLE 1: PHYSICAL CONSTANTS

100		
NAME	SYMBOL	VALUE
Acceleration due to gravity	g	9,8 m·s ⁻²
Universal gravitational constant	G	$6,67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Electron mass	m _e	9,11 x 10 ⁻³¹ kg
Mass of Earth	M_{E}	$5,98 \times 10^{24} \text{ kg}$
Radius of Earth	R_{E}	6,38 × 10 ⁶ m

TABLE 2: FORMULAE

MOTION

$v_f = v_i + a \Delta t$	$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \operatorname{or/of} \Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$V_f^2 = V_i^2 + 2a\Delta x \text{ or/of } V_f^2 = V_i^2 + 2a\Delta y$	$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t \text{ or/of } \Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t$

FORCE

$F_{net} = ma$	w=mg
$f_{s(max)} = \mu_s N$	$f_k = \mu_k N$
Gm ₁ m ₂ - Gm ₁ m ₂	Gm - Gm
$F = \frac{Gm_1m_2}{r^2} OR F = \frac{Gm_1m_2}{d^2}$	$g = \frac{Gm}{r^2}$ OR $g = \frac{Gm}{d^2}$

education

Department: Education PROVINCE OF KWAZULU-NATAL

AMAJUBA DISTRICT

GRADE 1/1

PHYSICAL SCIENCES: PHYSICS (P1)
FEBRUARY 2023

MEMORANDUM

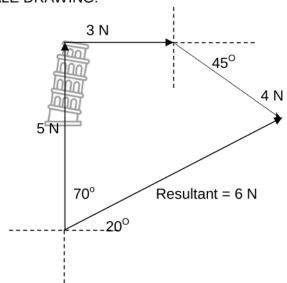
MARKS: 50

TIME: 1 hour

This question paper consists of 7 pages and 1 data sheetol

QUESTION 1

1.1	B ✓✓	(2)
1.2	C V	(2)
1.3	C VIII	(2)
()		
		[6]


QUESTION 2

2.1	They have both magnitude and direction. ✓✓	(2)	

2.2		
	$F_x = Q + R\cos 45^\circ$ $= 3 + 4\cos 45^\circ \checkmark$	
	$= 5,828 N, right$ $E = R - Rsin 45^{\circ}$	
	$F_y = P - R\sin 45^\circ$ = 5 - 4 sin 45° \(= 2,172 N, \text{ up}	
	F_{net} F_{X}	
	$F_{net} = \sqrt{F_x^2 + F_y^2}$ $= \sqrt{5,828^2 + 2,172^2} \checkmark$ $= 6,22N$	
	$\tan \theta = \frac{F_y}{F_x}$ $\tan \theta = \frac{2,172}{5,828} \checkmark \checkmark$ $\theta = 20,44^{\circ}$	
	Resultant force = 6,22 N√ in direction: 20,44° ✓ OR Bearing 69,56°, N69,56°E or 20,44° North of East	

2.2

SCALE DRAWING:

CRITERIA	MARK
Each angle correctly measured	1 × 2
Correct tail to head drawing of PQR	1 × 3
Resultant both magnitude and direction correct starting from origin to head of	1 × 2
vector R	
TOTAL	7 MARKS

2.3	The resultant of all forces ✓ acting at point S is zero ✓	(2)	
2.4	w 90° 35° F Correct shape of triangle ✓ Forces labelled and point correct directions ✓	(3)	
2.5	• Labelled angles are all correct \checkmark $\sin 35^{\circ} = \frac{w}{T}$ $\sin 35^{\circ} = \frac{60}{T} \checkmark$ $T = 104,61 N \checkmark$ $\tan 35^{\circ} = \frac{w}{F}$ $\tan 35 = \frac{60}{F} \checkmark$ $F = 85,69 N \checkmark$		ACCEPT: Sine rule, cosine rule, component method and any other trigonometric method
		[18]	

QUESTION 3

3.1	The force that <u>opposes the motion of an object</u> ✓ and which <u>acts parallel to the surface</u> . ✓	(2)	
3.2	F _N ✓	(3)	Other labels to be accepted: Normal/ N Friction/ f Weight/ gravity/ F _g

3.3	3.3.1 $f_s = \operatorname{mg} \sin \theta \checkmark$ = 95,0 × 9.8 × sin 23.2° ✓ = 366.76 N \checkmark	(3)	
	3.3.2 N = mg cos $\theta \checkmark$ N = 95.0 × 9.8 × cos 23.2° \checkmark N = 855.72 N $f_s = \mu_s \text{ N} \checkmark$ 366,76 = $\mu_s \times 855,72 \checkmark$ $\mu_s = 0,43 \checkmark$	(5)	
3.4	Less than ✓	(1)	
		[14]	

QUESTION 4

4.1	When a <u>resultant (net)</u> force acts on an object, the object will accelerate in the direction of the force. This <u>acceleration is</u>	(2)	
	directly proportional to the force ✓ and inversely proportional to		
	the mass of the object. ✓		
4.2	Force of the block on the table ✓ and the force of the table on the block. ✓ OR Force of the block on the string ✓ and the force of the string on the block. ✓		

4.3			
	4.3.1		
	6 kg: Ņ		
	f		
	V		
	1000 W		
	$F_{net} = ma \checkmark$		
	T + (-f) = ma		
	$T-11.76=6a\checkmark\dots\dots(1)$		
	2 kg: T ↑		
	↓ _F		
	VE		
	¥ W		
	$F_{net} = ma$		
	w + F + (-T) = ma		
	$(2 \times 9.8) + 2 - T = 2a\checkmark$		
	$21.6 - T = 2a \dots \dots \dots (2)$	(5)	
		(5)	
	$(1) + (2): 9.84 = 8a\checkmark$		
	$a = 1,23 m \cdot s^{-2} \checkmark$		
	4.3.2 T − 11,76 = 6(1,23) ✓	(2)	
	$T = 19,14 \text{ N}\checkmark$	(2)	
4.4	Increases ✓	(1)	
		[12]	

