

# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

## **AMAJUBA DISTRICT**

**GRADE 11** 

PHYSICAL SCIENCES: PHYSICS (P1)

**MARCH 2023** 

MARKS: 50

TIME: 1 hour

Stanmorephysics

This question paper consists of 7 pages and 1 data sheets.

#### INSTRUCTIONS AND INFORMATION

nnn

- 1. This question paper consists of 3 questions. Answer ALL the questions in the ANSWER BOOK.
- 2. Start EACH question on a NEW page in the ANSWER BOOK.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Leave ONE line between two sub questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 5. You may use a non-programmable calculator.
- 6. You are advised to use the attached **DATA SHEETS**.
- 7. Show ALL formulae and substitutions in ALL calculations.
- 8. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions, et cetera where required.
- 10. Write neatly and legibly.



#### **QUESTION 1**

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.3) in the ANSWER BOOK, for example 1.4 E.

1.1 Which of the following graphs best illustrates the relationship between the gravitational force (F<sub>g</sub>) and the distance (r) between the centres of two particles?



В





D



(2)

1.2 A car is travelling along a road. The driver has his seat belt on. The driver sees an obstruction in the road ahead and suddenly applies the brakes.



An action-reaction pair is the force of the seat belt on the driver and the force of the ...

- A. Driver on the seat.
- B. Wheels on the road.
- C. Driver on the seat belt.
- D. Seat belt on the seat.



1.3 A negative charge of -1  $\mu$ C, which is free to move, is placed at a distance 2r from a positive charge of +4  $\mu$ C.



Which ONE of the following statements regarding the -1  $\mu C$  charge, when it is at distance r, is CORRECT?

The electrostatic force experienced by the -1  $\mu C$  charge will ...

- A. Remain the same.
- B. Be halved.
- C. Be doubled.
- D. Increase four times. (2) [6]

#### **QUESTION 2**

The acceleration due to gravity on planet X is  $6.7 \text{ m}\cdot\text{s}^{-2}$ . The radius of this planet is a third ( $\frac{1}{3}$ ) of the radius of Earth.

- 2.1 Explain the difference between *weight* and *mass*. (4)
- 2.2 Calculate the *mass* of planet X. (4)
- 2.3 Determine the *factor* by which the weight of an object on planet X will differ from the weight of the same object on Earth. (2)



Two satellites orbiting the Earth are situated on opposite sides of the Earth. Satellite A has a mass of 5 800 kg and Satellite B has a mass of 4 500 kg. Satellite A is at a height of 30 000 km above the surface of the Earth.

Earth





#### **QUESTION 3**

Two identical negatively charged spheres, **A** and **B**, both with a mass 0,15 g, hang from the same point by thin, inextensible strings (mass of the strings can be ignored). The electrostatic force between the spheres causes them to move **20 mm** apart. The angle between one of the silk threads and the vertical is **6,99°**.



- 3.1 Define **Coulomb's law** in words. (2)
- 3.2 Draw a **free body diagram** of all the forces acting on sphere **A.** (3)
- 3.3 Use your answer to **QUESTION 3.2** to calculate the magnitude of the force to the left on **A**. (4)
- 3.4 State **Newton's third law** of motion in words. (2)
- 3.5 Calculate the charge on both  $Q_A$  and  $Q_B$ . (4)



THREE small spheres,  $\mathbf{X}$ ,  $\mathbf{Y}$  and  $\mathbf{Z}$ , carrying charges of +6 x 10<sup>-6</sup> C and +8 x 10<sup>-6</sup> C respectively, are placed 0,20 m apart in air. A third sphere,  $\mathbf{Z}$ , of **unknown negative** charge, is placed at a distance of 0,30 m below sphere  $\mathbf{Y}$ , in such a way that the line joining the charged spheres  $\mathbf{X}$  and  $\mathbf{Y}$  is perpendicular to the line joining the charged spheres  $\mathbf{Y}$  and  $\mathbf{Z}$ , as shown in the diagram below.



- 3.6 Draw a **vector diagram** showing the directions of the electrostatic forces and the net force experienced by charged sphere **Y** due to the presence of charged spheres **X** and **Z** respectively. (3)
- 3.7 The magnitude of the **net electrostatic force** experienced by charged sphere **Y** is 15,20 N and the magnitude of electrostatic force experience by charged sphere **X** is 10,8 N. Calculate the charge on sphere **Z**. (4) [22]

**TOTAL MARKS: 50** 



#### PHYSICS:

**TABLE 1: PHYSICAL CONSTANTS** 

| SYMBOL         | VALUE                                                       |
|----------------|-------------------------------------------------------------|
| g              | 9,8 m·s <sup>-2</sup>                                       |
| G              | 6,67 x 10 <sup>-11</sup> N·m <sup>2</sup> ·kg <sup>-2</sup> |
| R <sub>E</sub> | 6,4 x 10 <sup>6</sup> m                                     |
| M <sub>E</sub> | 5,98 x 10 <sup>24</sup> kg                                  |
|                | g<br>G<br>R <sub>E</sub>                                    |

#### **FORCE**

| $F_{net} = ma$                                             | p=mv                                         |  |
|------------------------------------------------------------|----------------------------------------------|--|
| $f_s^{\text{max}} = \mu_s N$                               | $f_k = \mu_k N$                              |  |
| $F_{net}\Delta t = \Delta p$<br>$\Delta p = mv_f - mv_i$   | w=mg                                         |  |
| $F = G \frac{m_1 m_2}{d^2}$ or $F = G \frac{m_1 m_2}{r^2}$ | $g = G\frac{M}{d^2}$ or $g = G\frac{M}{r^2}$ |  |

### **ELECTROSTATICS/ELEKTROSTATIKA**

| $F = \frac{kQ_1Q_2}{r^2}$ | $(k = 9.0 \times 10^9 \mathrm{N \cdot m^2 \cdot C^{-2}})$                   | $E = \frac{F}{q}$ |
|---------------------------|-----------------------------------------------------------------------------|-------------------|
| $E = \frac{kQ}{r^2}$      | $(k = 9.0 \times 10^9 \mathrm{N} \cdot \mathrm{m}^2 \cdot \mathrm{C}^{-2})$ | $n = \frac{Q}{e}$ |





# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

AMAJUBA DISTRICT
MARCH 2023

**GRADE 11** 

PHYSICAL SCIENCES: PHYSICS (P1)

**MEMORANDUM** 

MARKS: 50

This memorandum consists of 5 pages



#### **QUESTION 1**

1.1 
$$B\checkmark\checkmark$$
 (2)

#### **QUESTION 2**

2.1 Weight is the gravitational force exerted on an object by the earth.  $\checkmark\checkmark$ 

Mass is the amount of matter in a body. 
$$\checkmark\checkmark$$
 (4)

$$g = \frac{GM}{r^2} \checkmark$$

$$6,7 = \frac{6,67 \times 10^{-11} \text{M}}{(\frac{1}{3} \times 6,38 \times 10^6)^2} \checkmark$$

$$M = 4,54 \times 10^{23} \text{ kg} \checkmark$$

2.3 
$$\frac{9.8}{6.7} = 1.46 \checkmark \text{ times smaller on planet X than on Earth} \checkmark$$
 (2)

(4)

- 2.4 Every body in the universe attracts every other body with a force that is directly proportional to the product of their masses ✓ and inversely proportional to the square of the distance between their centres. ✓ (2)
- 2.5 Weightlessness is the sensation experienced when all contact forces are removed. ✓√ (2)

2.6
$$F = G \frac{M_E m}{r^2} \checkmark$$

$$= 6.67 \times 10^{-11} \times \frac{(5.98 \times 10^{24})(5800) \checkmark}{[6,38 \times 10^6 + 30 \times 10^6]^2 \checkmark}$$

$$= 1747.95 \text{ N}\checkmark$$
(4)

2.7 Greater than ✓ the mass is greater ✓ and for the same force ✓ the distance must also be greater ✓ (because the product of the masses is directly proportional to the square of the distance between the centres.)

#### **OPTION 2**

#### **POSITIVE MARKING FROM 2.6**

Greater than ✓

$$F = G \frac{m_1 m_2}{R^2}$$

$$1747,95 = 6,67 \cdot 10^{-11} \times \frac{(5,98 \times 10^{24})(4500)}{R^2}$$

$$F = \frac{Gm_1 m_2}{r^2} \checkmark$$

$$R = 3,20 \times 10^7 \text{ m}$$

Distance above the surface of the Earth 
$$D = 3,20 \times 10^7 - 6,38 \times 10^6 \checkmark$$
  $D = 2,57 \times 10^7 \,\text{m} \checkmark \quad \text{(or 25664630,12 m)}$  (4) [22]



#### **QUESTION 3**

3.1 The magnitude of the electrostatic force exerted by two point charges (Q1 and Q2) on each other is <u>directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance (r) between them.</u>

(2)

3.2



3.3

$$F_g = m \times g$$
  
= 0,15 ÷ 1 000 x 9,8  $\checkmark$   
= 1,47 x 10<sup>-3</sup> N

tan 
$$\theta = \frac{F}{F_g}$$
  
 $F = F_g \times \tan 6.99^\circ \checkmark$   
= 1.47 x 10<sup>-3</sup> x tan 6.99°  $\checkmark$   
= 1.8 x 10<sup>-4</sup> N  $\checkmark$ 

#### Marking guidelines

- ✓ Fg substitution.
- ✓ Formula
- ✓ Substitution tanθ
- ✓ Final answer.

(4)

(3)

3.4 When object **A** exerts a force on object **B**, object **B** SIMULTANEOUSLY exerts an oppositely directed force of equal magnitude on object **A**. ✓ ✓

3.5



#### Marking guidelines

- √ Formula/Formula
- √ Substitution F



√ Final answer



(4)

3.6



(3)

3.7

OPTION 1  

$$F_{net}^2 = F_{XY}^2 + F_{ZY}^2$$
  
 $15,20^2 = 10,8^2 + F_{ZY}^2$   
 $F_{ZY} = 10,696 \text{ N}$   
 $F_{ZY} = k \frac{Q_Z Q_Y}{r^2}$   
 $10,696 \checkmark = 9 \times 10^9 \times \frac{8 \times 10^{-6} \times Q_Z}{(0.30)^2}$ 

$$10,696\checkmark = 9 \times 10^{9} \times \frac{8 \times 10^{-6} \times Q_{Z}}{(0,30)^{2}} \checkmark$$

$$Q_Z = 1.34 \times 10^{-5} \text{ C}\checkmark$$

### **OPTION 2**

$$\cos\theta = \frac{10,8}{15,2}$$

$$\theta = 44,72^{\circ}$$

$$\sin 44.72 = \frac{F_{ZY}}{15.2} \checkmark \text{ OR/OF } \tan 44.72 = \frac{F_{ZY}}{F_{XY}}$$

$$F_{ZY} = 10,696 \text{ N}$$

$$F_{ZY} = k \frac{Q_Z Q_Y}{r^2}$$

$$10,696\checkmark = 9 \times 10^9 \times \frac{8 \times 10^{-6} \times Q_Z}{(0,30)^2} \checkmark$$

$$Q_Z = 1.34 \times 10^{-5} \text{ C} \checkmark$$





(4)

[22] **TOTAL MARKS 50**