

TIME : 3 Hours

This question paper consists of 14 pages, a special answer sheet and 4 data sheets.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

- Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
- This question paper consists of TEN questions. Answer ALL the questions in the ANSWER BOOK.
- Start EACH question on a NEW page in the ANSWER BOOK.
- Number the answers correctly according to the numbering system used in this question paper.
- Leave ONE line between two subquestions, for example between QUESTION 2.1 and QUESTION 2.2.
- You may use a non-programmable calculator.
- You may use appropriate mathematical instruments.
- You are advised to use the attached DATA SHEETS.
- Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your final numerical answers to a minimum of TWO decimal places.
- 11. Give brief motivations, discussions et cetera where required.
- 12. Write neatly and legibly.

NSC

з

Downloaded from Stanmorephysics.com QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.10) in the ANSWER BOOK, for example 1.11 D.

- 1.1 Which ONE of the following organic reactions below involves the bonding of monomers by a dehydration process?
 - A Halogenation.
 - B Dehydropolymerisation.
 - C Addition polymerisation.
 - D Condensation polymerisation.
- 1.2 A compound with the molecular formula C₅H₁₀O could be ...
 - (I) an ester.
 - (II) a ketone.
 - (III) an aldehyde.
 - A (I) only.
 - B (I) and (II) only
 - C (II) and (III) only
 - D (I), (II) and (III)
- 1.3 A catalyst will change the . . .
 - A time required to reach equilibrium.
 - B amount of products present at equilibrium.
 - C amount of reactants present at equilibrium.
 - D length time for a reaction remains at equilibrium.
- 1.4 The difference between the potential energy of the products and the potential energy of the reactants in a chemical reaction is equal to the ...
 - A rate of the reaction.
 - B enthalpy of the reaction.
 - C enthalpy change of the reaction.
 - D total potential energy of the particles.

(2)

(2)

(2)

- 1.5 Which ONE of the following represents the products formed during the hydrolysis of sodium ethanoate, NaCH₃COO?
 - A Na*(aq) and OH (aq)
 - B Na*(aq) and CH3COO*(aq)
 - C H₃O⁺(aq) and CH₃COO⁻(aq)
 - D CH₃COOH(aq) and OH (aq)
- 1.6 The reaction, H₂(g) + I₂(g) ⇒ 2HI(g), ΔH < 0, reaches equilibrium at a temperature of 445 °C in a sealed container.

Which ONE of the following change/s will INCREASE the CONCENTRATION of HI(g)?

- I adding a catalyst
- II decreasing the temperature
- III increasing the pressure by reducing the volume of the reaction container
- A only II
- B only III
- C I and II only
- D II and III only

(2)

Downloaded from Stanmorephysics.com

1.7 Learners set up an electrochemical cell, shown in the simplified diagram below, using magnesium and lead electrodes.

5

Which of the following changes will INCREASE the reading on the voltmeter?

- (i) Decreasing the initial concentration of the electrolyte in half-cell A.
- Decreasing the initial concentration of the electrolyte in half-cell B.
- (iii) Increasing the initial concentration of the electrolyte in half-cell A.
- (iv) Increasing the initial concentration of the electrolyte in half-cell B.
- A (i) Only
- B (ii) only
- C (ii) and (iii) only
- D (i) and (iv) only

The balanced equation for the net(overall) cell reaction that occurs during the 1.8 electrolysis of a concentrated sodium chloride solution is :

6

$$2 H_2O(t) + 2 Ct \rightarrow Cl_2(g) + H_2(g) + 2OH'(aq)$$

Which ONE of the following statements concerning the above electrolysis is TRUE?

- Α The reaction is exothermic.
- в The reaction is spontaneous.
- С chlorine gas is formed at the anode.
- D hydrogen gas is formed at the anode.
- Which ONE of the following reactions DOES NOT occur during the Contact 1.9 Process?
 - $S + O_2 \rightarrow SO_2$ A
 - в $2 \text{ SO}_2 + \text{ O}_2 \rightarrow 2 \text{ SO}_3$
 - С $SO_3 + H_2O \rightarrow H_2SO_4$
 - D $SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$
- Phosphorous rich fertiliser . . . 1.10
 - A improves the quality of fruit and flowers.
 - В is used to stimulate root growth in plants.
 - С is produced industrially by the Ostwald process.
 - D is essential for growing plants with strong stems and healthy green leaves. (2)

Copyright reserved

Please turn over

(2)

[20]

NSC QUESTION 2 (Start on a new page.)

The letters A to G in the table below represent seven organic compounds.

A	propanoic acid	в	CH ₃ CH ₂ CH ₂ COCH ₂ CH ₃
c	н — н — о — н — н н — о — о — н — н н — о — н — н — н н — н — н — н — н	D	О ║ СН₃ — С — О — СН₂ — СН₃
E	CH ₃ CCCH(CH ₃)CH ₃	F	ethene
G	CH ₃ (CH ₂) ₃ CH ₃	1	

7

2.1 Using the information in the table, write down the:

	2.1.1	IUPAC name of compound B.	(2)
	2.1.2	Name of the FUNCTIONAL GROUP of the homologous series to which compound A belongs.	(1)
	2.1.3	Structural formula of compound E.	(2)
	2.1.4	The type of polymerisation where F is the monomer.	(1)
	2.1.5	IUPAC name and structural formula of the polymer formed from compound F.	(3)
	2.1.6	Letter that represents a compound that is a chain isomer of 2,2 – dimethylpropane.	(1)
2.2	Compo a carbo	und C , in the table is the product of the reaction between an alcohol and oxylic acid in the presence of concentrated sulphuric acid.	
	Write de	own the:	
	2.2.1	Homologous series to which compound C belongs.	(1)
	2.2.2	IUPAC name of compound C.	(2)
	2.2.3	Structural formula of the carboxylic acid required to prepare compound C.	(2)
	2.2.4	Function of concentrated sulphuric acid in the above reaction.	(1)

Copyright reserved

Please turn over

8 NSC

2.3 Compound C, in the table, has isomers.

2.3.1	Define the term functional isomer.	(2)
2.3.2	Write down the IUPAC name of the straight chain functional isomer of compound C.	(2)

(2) [20]

QUESTION 3 (Start on a new page.)

Consider the organic compounds represented by the letters M and N below:

An investigation is performed to determine which compound; M or N has a higher vapour pressure.

- 3.1 Define vapour pressure. (2)
- 3.2 For this investigation write down:
 - 3.2.1 The independent variable. (1)
 - 3.2.2 A controlled variable.

(1)

[9]

Downloaded from Stanmorephysics.com

3.3 This investigation is carried out at an atmospheric pressure of 100 kPa.

The temperature at which the vapour pressure of compound N equals 100 kPa is 27,80 °C.

Q

- 3.3.1 At a temperature, T, the vapour pressure of compound M equals 100 kPa. Is T, GREATER THAN, EQUAL TO or LESS THAN 27,80 °C? (1)3.3.2 Refer to structure, intermolecular forces and energy to explain the answer to QUESTION 3.3.1. (3) (1)
- 3.4 Which compound M or N has the HIGHER vapour pressure?
- QUESTION 4 (Start on a new page.)

REACTION I and REACTION II below are organic reactions in which 2-bromobutane is reacted with solutions of KOH.

Q and R are the major organic products formed in REACTION I and REACTION II respectively.

Q and R represent different organic compounds.

4.1 State TWO reaction conditions for:

	4.1.1 REACTION I.	(2)
	4.1.2 REACTION II.	(2)
4.2	What type of reaction (SUBSTITUTION, ADDITION or ELIMINATION), takes place in REACTION I?	(1)
4.3	Use structural formulae to write down a balanced equation for the reaction that takes place in REACTION II .	(4)
4.4	Is R saturated or unsaturated? Give a reason for the answer.	(3)
4.5	In a third reaction, R is converted to Q . Name the type of addition reaction that takes place during this conversion.	(2) [14]

10 NSC

QUESTION 5 (Start on a new page)

Powdered calcium carbonate reacts with hydrochloric acid according to the following balanced equation.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

The mass of the CaCO3 after every 10 s from the start of the reaction is indicated in the table below:

Time in seconds	0	10	20	30	40	50	60	70	80
Mass of CaCO ₃ in grams	X	74	63	54	46	42	40	40	40

The initial mass of the CaCO₃ is X g.

5.1	According to the data in the table above, which substance, calcium carbonate or hydrochloric acid is in excess? Give a reason for the answer.	(2)
5.2	The average rate of the reaction in the first 30 s is 1,07 g s ⁻¹ .	
	5.2.1 Define reaction rate, in words.	(2)
	5.2.2 Calculate the initial mass, X, of calcium carbonate.	(5)
5.3	What volume of CO2 is produced between 60 and 80 seconds?	(1)
5.4	Use the collision theory to explain why the average rate of reaction between powdered calcium carbonate and the given hydrochloric acid solution decreases with time.	(3)
5.5	How will the rate of the above reaction be affected if the initial mass of carbonate was doubled? (Only write down, INCREASES, DECREASES or REMAINS THE SAME)	(1)

[14]

September 2019 Preparatory Examination

Downloaded from Stanmorephysics.com QUESTION 6 (Start on a new page)

Study the reversible reaction represented by the balanced equation at a fixed temperature below:

11

$$CH_4(g) + H_2O(g) = CO(g) + 3H_2(g)$$
 $\Delta H = +226 \text{ kJ}$

Initially, 2,2 moles of CH₄(g) and 1,8 moles of H₂O(g) were mixed in a sealed 2 dm³ container.

The graph below shows the relationship between the number of moles of CO(g) and time in minutes.

6.1 State Le Chatelier's Principle.

- 6.2 What information about the reaction can be deduced from the graph after t minutes?
- 6.3 Calculate the value of the equilibrium constant, Kc, at the fixed temperature used in the reaction.
- 6.4 Draw a graph (not to scale), on the special answer sheet provided showing the changes in the number of moles of CH₄(g) as the reaction proceeds. Indicate the initial number of moles of CH₄(g) and the number of moles of CH₄(g) at equilibrium, on the graph.
- 6.5 The initial number of moles of CH₄(g) is now doubled in the same 2 dm³ container. How will this change affect the following? (Choose from INCREASES, DECREASES or REMAINS THE SAME)?

	6.5.1	The amount of H ₂ (g) at equilibrium.	(1)
	6.5.2	Value of the equilibrium constant(Kc).	(1)
6.6	Explai	the answer to QUESTION 6.5.1 by referring to Le Chatelier's Principle.	(3)

(3) [**20**]

(2)

(2)

(7)

(4)

Copyright reserved

Please turn over

September 2019 Preparatory Examination

QUESTION 7 (Start on a new page.)

- A dilute solution of sulphuric acid has a concentration 0,012 mol.dm⁻³ 7.1 Define an acid according to Arrhenius theory. 7.1.1 7.1.2
 - Is the above solution of sulphuric acid a strong or weak acid? Explain the answer.
- A learner adds 24 cm³ of a solution of sulphuric acid of concentration 0,25 mol.dm⁻³ 7.2 to an unknown volume, X cm³, of a solution of sodium hydroxide of concentration 0,15 mol.dm⁻³. The balanced equation for the reaction is:

H2SO4 + 2NaOH --- Na2SO4 + 2H2O

The pH of the resulting solution is 0,65.

- 7.2.1 Calculate the concentration of the sulphuric acid solution after it has reacted with the sodium hydroxide solution.
- Calculate the initial volume(X) of the sodium hydroxide solution. Assume 7.2.2 that the volume of the solution after the reaction is (X + 24) cm³.

(7) [16]

(4)

QUESTION 8 (Start on a new page.)

A standard galvanic cell is set up using a zinc and an unknown metal, X. The graph below shows the change in mass of the metal, X whilst the cell is in operation.

> Mass (g) t Time in minutes

8.1 Define an electrolyte. (2)8.2 Write down the half reaction that takes place at the anode of this cell. (2) The initial emf of this cell under standard conditions is 0,63 V. 8.3 Write down TWO standard conditions required for the initial emf to be 8.3.1 0.63 V (2) Identify the metal X, by calculating the standard reduction potential of X. 8.3.2 (5) 8.4 Write down the cell notation for this cell. (3) 8.5 Write down the value of the emf at time t, shown on the graph. (1) [15]

Please turn over

(2)

(3)

Downloaded from Stanmorephysics.com

QUESTION 9 (Start on a new page.)

An electrolytic cell is set up using two carbon rods, P and Q and a concentrated copper(II) chloride solution as an electrolyte.

13

When the cell is functioning ONE of the carbon electrodes is coated with a reddish brown layer.

9.1	Write	down the energy conversion that takes place in this cell.	(1)
9.2	Which	electrode, P or Q is coated with the reddish brown layer?	(1)
9.3		lown a half reaction that takes place at the electrode that is coated with Idish brown layer.	(2)
9.4	The ca	rbon rods in the above cell are NOW replaced with copper rods.	
	9.4.1	Describe the observation that will be made at electrode Q.	(2)
	9.4.2	Refer to relative strengths of reducing agents to explain the observation made at electrode Q.	(3)
	The ce	It can be used to electroplate a tin medal with a thin layer of copper.	
	9.4.3	Which electrode, P or Q must be replaced with the tin medal?	(1) [10]

Copyright reserved

14 NSC

QUESTION 10 (Start on a new page.)

10.1 The unbalanced equations below represent various steps in the Ostwald process.

STEP I	$\mathbf{A}(\mathbf{g}) + \mathbf{O}_2(\mathbf{g}) \rightarrow \mathbf{B}(\mathbf{g}) + \mathbf{H}_2\mathbf{O}(\boldsymbol{\ell})$	
STEP II	$B(g) + O_2(g) \rightarrow NO_2(g)$	
STEP III	$NO_2(g) + H_2O(l) \rightarrow C(aq) + NO(g)$	
10.1.1 V	Write down the name of the industrial process that produces gas A.	(1)
10.1.2	Write down the name or formula of gas B.	(1)
10.1.3 N	Name the catalyst that is used in STEP I.	(1)
1000		

The product, C, from STEP III mixes with reactant A from STEP I to produce a fertiliser.

- 10.1.4 Write a balanced equation to illustrate this reaction. (3)
- 10.2 Consider the fertiliser in the bag illustrated below:

The only phosphorous containing compound used in the production of this fertiliser is (NH₄)₃PO₄

11,95 kg of (NH4)3PO4 was used in preparing the fertiliser illustrated above.

Calculate the value represented by the letter Z, in the above illustration.

- (6) [12]
- TOTAL MARKS: 150

Time (minutes)

NSC

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^e	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ^{3.} mol ⁻¹
Standard temperature Standaardtemperatuur	T°	273 K
Charge on electron Lading op elektron	e	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	Na	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

Physical Sciences/P2

Downloaded from Stanmorephysics.com

2

	-			1				_	_			-	-					Т		_			
	3 ¹⁰	₽ °	S S C	18	A 6	36	z	8	2	×	131	86	፳			11	35	103	۲				
	₽Ĵ		о П ф		35,5		8,5 B	8	53	5'2	127		s'e			20	2	102	Ŷ				
	۶ŝ		∞ O \$	16	32 0	_	å	19		P,	128	84	ፈ			69		101	PW				
	\$\$		3'2 X 4	1	с. 2 2,5			75			122	83		209		81		100	E				
	‡ §			4	Si 2'1	-		73	20		119	82		201		67	5 5	66	ŝ				
ENTS	₽Î		5'2 7 00 ~	13		31	_	70			115	81		204		99	25	86	5				
: THE PERIODIC TABLE OF ELEMENTS	12		5'0		9'L	30		65	48	_	112	_	Hg 8'1	201		65	2 2	79	¥				
E OF	ŧ					29		63,5		L'I BY	108	19	P	197		64	55	96	Ę				
TABLI	₽					00/		lass issa	28	6'L 2 8'L	59	46		106	78	đ.	195		ខ	2 Ş	56	Am	
oDIC	6	nber tal	Symbol Simbool		mate relative atomic mass rde relatiewe atoommassa	27		59		2'Z Rh 2'Z	103	11	-	192		62		94	Pu				
PERI	8	Atomic number Atoomgetal	SC 29		lative a tiewe a	26	Fe	56	4	2	101	76	ő	190		61	Ē	93	dN				
H	2	Ato	6'1]	mate rela	25	8'L 8'L	55	43	5'5 1'6		75	Re B	186		60		60	5	238			
TABLE 3	9	ЛEL	negativil egatiwit		Approximate relative atomic mass Benaderde relatiewe atoommassa	24		52	42	-	96	74	3	184		20	z 3	5	Pa				
TA	ŝ	KEVISLEUTEL	Electronegativity Elektronegatiwitelt						41		92	73	Ta	181		28	3	9	f	232			
	•	ž	- w			22	F		40		91	72	Ħ	179			-	-					
	ę					21		45	39		89	57	д 9,г	139		Å]						
	39		⁺ ª ª ª	12	Mg 24	20	5,1 5,1	40	38	S, 1,2	88	56	Ba	137	8	Ra 226							
	-		5'1	1	1'5		0'1			0,1		2	6'0			5'0							
	- E	- I -	- 5 - 1 -		S3 Na	19			37			55		133	õı								
		1'2	0'1		6'0		8'0			8'0			Ľ'0			Ľ'0							

3 NSC

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/	Ε ^θ (V)		
F2(g) + 2e-	-	2F-	+ 2,87
Co3+ + e		Co2.	+ 1,81
H2O2 + 2H* +2e		2H ₂ O	+1,77
MnO + 8H* + 5e	-	Mn2+ + 4H2O	+ 1,51
Cl2(g) + 2e	-	201	+ 1,36
Cr207 + 14H + 6e		1 1 9 8 9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 1,33
O2(g) + 4H* + 4e			+ 1,23
MnO2 + 4H* + 28		The second se	+ 1,23
Pt2+ + 2e		Pl	+ 1,20
Br2(1) + 2e		2Br	+ 1,07
NO3 + 4H* + 3e		NO(g) + 2H ₂ O	+ 0,96
Hg2+ + 2e	-	Hg(l)	+ 0,85
Ag* + e*		A	+ 0.80
NO 3 + 2H+ + e	-	NO2(g) + H2O	+ 0.80
Fe ^{3.} + e		2 C 8 C 7 C 8 C 8 C 8 C 8 C 8 C 8 C 8 C 8	+ 0,77
O2(g) + 2H* + 2e		and an	+ 0,68
l2 + 20		CONTRACTOR .	+ 0.54
Cu' + e	-	Cu	+ 0,52
SO2 + 4H* + 40		S + 2H2O	+ 0,45
2H2O + O2 + 4e	**	40H-	+ 0,40
Cu2+ + 2e	-	Cu	+ 0,34
SO4 + 4H* + 28	**	SO2(g) + 2H2O	+ 0,17
Cu2+ + e			+ 0,16
Sn4+ + 2e-		Sn2+	+ 0,15
S + 2H" + 2e			+ 0,14
2H* + 2e-		and the second se	0,00
Fe ³⁺ + 3e		Fo	- 0,06
Construction of the second		Pb	- 0,13
Sn2* + 2e	**		- 0,14
Nr ²⁺ + 2e	*	Ni	- 0,27
Co2+ + 2e-	*	C0	- 0,28
Cd ² + 2e	**	Cd Cr ²⁺	- 0,40
Cr ³⁺ + e ⁻ Fe ²⁺ + 2e ⁻	*	Fe	- 0,41
Cr3+ + 3e	**	Cr	- 0,44
Zn2+ 20	-	Zn	- 0,74
2H2O + 20	0	H2(g) + 20H	- 0,83
Cr2+ + 20	-	Cr	- 0,91
Mn2* + 28	-	Mn	- 1,18
Ala- + 30	-	AL	- 1.66
Mg2+ + 2e-	-	Mg	- 2,36
Na* + e	-	Na	- 2,71
Ca2+ + 2e	-	Ca	- 2,87
Sr2+ + 2e	-	Sr	- 2,89
Ba2+ + 2e	-	Ba	- 2,90
Cs" + e	-	Cs	- 2,92
K* + e	-	к	- 2,93
Li* + 0-	**	LI	- 3,05

Increasing reducing ability/Toenemende reduserende vermoë

Copyright reserved

Increasing oxidising ability/Toenemende oksiderende vermoë

Physical Sciences/P2

Increasing reducing ability/Toenemende reduserende vermoë

Downloaded TABOETAB STANDARD REDUCTION POTENTIALS
TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

4

Half-reactions	/Ha	Ifreaksies	E ^θ (V)
Li* + e-	-	Li	- 3,05
K* + e	-	к	- 2,93
Cs' + e	**	Cs	- 2,92
Ba2* + 20	-	Ba	- 2,90
Sr2+ + 20	-	Sr	- 2,89
Ca2+ + 2e	-	Ca	- 2,87
Na* + e	-	Na	- 2,71
Mg2* + 2e	-	Mg	- 2,36
Al ^o * + 3e-	-	At	- 1,66
Mn2* + 28"	**	Mn	- 1,18
Cr2+ + 2e	-	Cr	- 0,91
2HzO + 2e	-	H2(g) + 20H	- 0,83
Zn2* + 2e	-	Zn	- 0,76
Cr3+ + 3e	-	Cr.	- 0,74
Fe2+ + 2e-	-	Fe	- 0,44
Cr3+ + e	-	Cr2+	- 0,41
Cd2+ + 2e		Cd	- 0,40
Co2+ + 2e-	-	Co	- 0,28
Ni2+ + 2e	-	Ni	- 0,27
Sn2+ + 2e	**	Sn	- 0,14
Pb2+ + 2e	-	Pb	- 0,13
Fe ³⁺ + 3e	-	Fe	- 0,06
2H" + 2e	-	H ₂ (g)	0,00
S + 2H" + 20	-	H ₂ S(g)	+ 0,14
Sn** + 2e	-	Sn2.	+ 0,15
Cu2+ + e		Cu	+ 0,16
SO4 + 4H + 2e	-	SO2(g) + 2H2O	+ 0,17
Cu2+ + 2e		Cu	+ 0.34
2H2O + O2 + 4e	2		+ 0,40
SO2 + 4H* + 40		9.5-5 Berley 19.	+ 0,45
Cu* + e		•	+ 0,52
	**		
l2 + 2e		21-	+ 0,54
O ₂ (g) + 2H* + 2e			+ 0.68
Fe ³⁺ + e			+ 0,77
NO3 + 2H* + e		Sector and a sector of the sec	+ 0,80
Ag* + e-	-	Ag	+ 0,80
Hg2+ + 2e	-	Hg(ť)	+ 0,85
NO 3 + 4H* + 3e	-	NO(g) + 2H2O	+ 0,96
Br2(1) + 2e			+ 1,07
Pt2+ + 2 e			+ 1,20
MnO2 + 4H' + 28			+ 1,23
O2(g) + 4H* + 48			
			+ 1,23
Cr2O 7 + 14H* + 68			+ 1,33
Cl2(g) + 2e	-	201	+ 1,36
MnO + 8H* + 5e	-	Mn2* + 4H2O	+ 1,51
			+1,77
H2O2 + 2H* +2 e	-		
H ₂ O ₂ + 2H [•] +2 e Co ³⁺ + e			+ 1,81

Increasing oxidising ability/Toenemende oksiderende vermoë

Copyright reserved

education

Department: Education PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS : 150

This marking guideline consists of 8 pages.

Downloaded from Stanmorephysics.com

1.1	D ✓✓	(2)
1.2	C√√	(2)
1.3	A√✓	(2)
1.4	C√√	(2)
1.5	D√√	(2)
1.6	D√√	(2)
1.7	D√√	(2)
1.8	C√√	(2)
1.9	C√√	(2)
1.10	B√√	(2)

QUESTION 2

2.1.1	hexan-3-one √√	(2)
2.1.2	carboxyl (group) ✓	(1)

2.1.3

2.1.4 addition polymerisation ✓

polyethene√

2.1.5

(3)

(1)

[20]

3

NSC-Memorandum

	G√	(1)
2.2.1	esters/alkyl alkanoate√	(1)
2.2.2	ethyl√ propanoate√	(2)
2.2.3		
	$H = \begin{pmatrix} H \\ - \\ C \\ H \end{pmatrix} = \begin{pmatrix} H \\ - \\ C \\ - \\ H \end{pmatrix} = \begin{pmatrix} 0 \\ - \\ C \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	
	 Whole structure correct: 2/2 Only functional group correct 1/2 More than one functional group 0/2 	(2)
2.2.4	acts as a catalyst/speeds up the reaction. \checkmark or	
	acts as a dehydrating agent. ✓	(1)
2.3.1	Compounds that have the same molecular formula but different functional groups $\checkmark \checkmark$	(2)
2.3.2	pentanoic acid√	(2)
		(2) [20]
QUE	STION 3	
QUE 3.1		
	STION 3 the pressure exerted by a vapour at equilibrium with its liquid in a closed	[20]
3.1 3.2.1	STION 3 the pressure exerted by a vapour at equilibrium with its liquid in a closed system. ✓✓ (2 or 0)	(2)
3.1 3.2.1 3.2.2	STION 3 the pressure exerted by a vapour at equilibrium with its liquid in a closed system. ✓✓ (2 or 0) length of carbon chain/surface area/branching✓	[20] (2) (1)
3.13.2.13.2.23.3.1	STION 3 the pressure exerted by a vapour at equilibrium with its liquid in a closed system. $\checkmark \checkmark (2 \text{ or } 0)$ length of carbon chain/surface area/branching \checkmark number of carbon atoms/molecular mass \checkmark	(2) (1) (1)

4

Downloaded from Stanmorephysics.com

QUESTION 4

4.1.1 warm/mild heat ✓ dilute KOH ✓ /warm ✓ dilute strong base ✓	(2)
4.1.2 <u>hot KOH</u> ✓ <u>concentrated</u> ✓ Base(KOH)	(2)
4.2 substitution√	(1)
4.3 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
 ✓ left hand side ✓✓ for organic product ✓ balancing 	(4)
4.4 unsaturated ✓ contains a double bond/multiple bond ✓ between atoms of carbon ✓	(3)

4.5 hydration√√

QUESTION 5

- calcium carbonate√ there is some unreacted CaCO₃ at the end of the reaction 5.1 (time 60s) ✓
- 5.2.1 ANY ONE
 - <u>The change in concentration</u> ✓ of <u>reactants/products per unit time</u>. ✓ •
 - Rate of change in concentration of reactants or products.
 - Change in amount/number of moles/volume/mass of reactants/products • per (unit) time.
 - Amount/number of moles/volume/mass of products formed OR reactants used • per (unit) time. (2)

5.2.2 rate =
$$-\frac{\text{change in mass of } CaCO_3}{\Delta t} \checkmark$$

 $1,07 = -\frac{54-X}{30-0} \checkmark$
 $= 86,10 \text{ g} \checkmark$
(if answer is negative minus
1 mark)
Marking criteria
• Equation \checkmark (accept if negative sign
is omitted)
• Substitute 54 - X in equation \checkmark
• Substitute 30 - 0 in equation \checkmark
• Substitute 1,07 \checkmark for rate
• Final answer: X = 86,10 g \checkmark
(5

Please Turn Over

(1)

(2)

(2)

[14]

5.4	A decrease in concentration of reactants <u>decreases the number of molecules per volume</u> . ✓ Fewer number of collisions per unit time ✓ A <u>fewer number of effective collisions occur per unit time/lower frequency of effective collisions</u> . ✓	<u>unit</u> (3)
5.5	REMAINS THE SAME✓	(1) [14]
QUES	STION 6	
6.1	When the equilibrium in a closed system is disturbed, the system will re-instate a new equilibrium by favouring the reaction that will oppose the disturbance. $\checkmark\checkmark$ (2 or 0)	(2)
6.2	the reaction has reached a state of (dynamic) equilibrium/the rate of the forward reaction is equal to the rate of the reverse reaction. $\checkmark \checkmark$ (2 or 0)	(2)
6.3	 Marking criteria: Indicating that the number of mols of CO equilibrium is 0,6√ Correct mol ratio√ Calculating the quantity(mol) at equilibrium of all three substances √ Substitute V = 2 dm³ in c = ⁿ/_n to determine concentration at equilibrium of all the 	

Substitute V = 2 dm³ in c = $\frac{1}{V}$ to determine concentration at equilibrium of all the substances.√

- K_c expression \checkmark Substitution of concentrations in K_c expression \checkmark • •
- Final answer: 0,456 √ •

No K_c expression, correct substitution: Max. $\frac{6}{7}$

 $\frac{4}{7}$ Wrong K_c expression : Max.

	CH ₄	H ₂ O	CO	H ₂]
Initial quantity(mol)	2,2	1,8	0	0	
Change(mol)	-0,6	-0,6	+0,6	+ 1,8	Ratio ✓
Quantity at equilibrium(mol)	1,6	1,2	0,6√	1,8	
Equilibrium concentration(mol.dm ⁻³)	0,8	0,6	0,3	0,9	Divide by 2✓

$$K_{c} = \frac{[CO] [H_{2}]^{3}}{[CH_{4}] [H_{2}O]} \checkmark = \frac{(0,3) (0,9)^{3}}{(0,8) (0,6)} \checkmark = 0,456 \checkmark$$
(7)

(1)

(1)

[20]

NSC-Memorandum Downloaded from Stanmorephysics.com

6

- 6.5.1 INCREASES✓
- 6.5.2 REMAINS THE SAME ✓
- 6.6 An increase in the number of moles of CH₄ increases the concentration of CH₄(reactant).
 According to Le Chateliers Principle an increase in the concentration of the reactants ✓ favours the reaction that decreases the concentration of the reactants ✓ In this case the forward reaction is favoured ✓

QUESTION 7

- 7.1.1 An acid is a substance that produces hydrogen ions(H⁺)/hydronium ions(H₃O⁺) \checkmark (2)
- 7.1.2 strong√

it ionises completely in water
$$\checkmark \checkmark$$

7.2.1

$$pH = -\log [H_3O^+] \checkmark$$

$$0,65\checkmark = -\log [H_3O^+]$$

$$\therefore [H_3O^+] = 0,224 \text{ mol.dm}^{-3}$$

$$c((H_2SO_4) = \frac{1}{2}c(H_3O^+)]\checkmark$$

$$= \frac{1}{2}(0,224) \int_{=}^{1} = 0,112 \text{ mol.dm}^{-3}\checkmark$$
(3)
(4)

•

7.2.2 POSITIVE MARKING FROM QUESTION 7.2.1: concentration of H₂SO₄

Formulae:
$$c = \frac{n}{V}/n = cV/\sqrt{V}$$

- Calculate initial number of moles of H_2SO_4
- Calculate number of moles of H₂SO₄ that reacted ✓
- Calculate number of moles of H₂SO₄ in excess√
- Calculate number of moles of NaOH that reacted√
- Ratio of NaOH to H₂SO₄✓
- Final answer cm³ or dm³√ •

=	cV✓ (0,25)(0,024) ✓ 6 x 10 ⁻³ mols	
n(H ₂ SO ₄)excess = =	cV (0,112)(<u>X + 24</u>) 1000 ✓	
n(H ₂ SO ₄)reacted =	$6 \times 10^{-3} - \frac{(0,112)(X+24)}{1000}$	\checkmark
n(NaOH)reacted =	cV 0,15(<u>X</u>) 1000 ✓	
n(NaOH)reacted =	2 (n(H₂SO₄)reacted)√	
$\begin{array}{rcl} 0,15(\underline{X}) & = 2(\\ 1000 & X & = \end{array}$	$(6 \times 10^{-3} - (0,112)(X + 24))$ 1000 17,71 cm ³ ✓ 0,01771 dm ³) (7) [16]

QUESTION 8

- 8.1 a solution/liquid/dissolved substance </ that conducts electricity through the movement of ions.✓
- 8.2 $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$

Notes

 $Zn^{2+} + 2e^{-} \rightleftharpoons Zn \qquad \begin{pmatrix} 0/2 \end{pmatrix}$ $Zn^{2+} + 2e \rightarrow Zn \qquad \begin{pmatrix} 0/2 \end{pmatrix}$ $\binom{2}{2}$ $Zn^{2+} + 2e^{-} \leftarrow Zn$ • $(\frac{1}{2})$ $Zn \rightleftharpoons Zn^{2+} + 2e^{-}$ Ignore if charge on electron is omitted. • Max.: $\frac{1}{2}$ If a charge of an ion is omitted e.g. $Zn \rightarrow Zn^2 + 2e^{-1}$ • (2)

(2)

8.3.2	E^{Θ}_{cell}	= E^{Θ} cathode	- E [⊖] anode ✓	<u>Notes</u>	
	0,63√	= E ^Θ cathode	- (-0,76) 🗸	 Accept any other correduced data sheet. 	ct formula from the
		= - 0,13 V lead(Pb) ✓		 Any other formula usin abbreviations, e.g. E°_{cl} followed by correct sub E°_{sel} = E°_{OM} - E°_{RM} Max 	$e_{II} = E^{\circ}_{OA} - E^{\circ}_{RA}$
8.4	7n(s)/7n ²⁺ (aq)	(aq)/Pb(s) √		/5
0.1	() (•	(uq),1 5(5) ∕ //√ Pb²+(1 mo	l.dm ⁻³)/Pb(s)	
8.5	Accept 0(V) ✓	Zn/Zn ²⁺ //Pl	· ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
QUES	STION 9				
9.1	from electri	cal energy to	chemical ene	rgy√	
9.2	P√				
9.3	Cu ²⁺ + 2	e → Cu			
	Notes				
	• Cu ²⁺ -	- 2e⁻ ← Cu	(0/2)	$Cu^{2+} + 2e^{-} \rightleftharpoons C$	u (<u>1/</u> 2)
		+ 2e⁻ ← Cu Cu²+ + 2e⁻	/ L	$Cu^{2+} + 2e^{-} \rightleftharpoons C$ $Cu^{2+} + 2e \rightarrow C$	u $(\frac{1}{2})$ u $(\frac{2}{2})$
	Cu ⇒ • Ignor	Cu ²⁺ + 2e ⁻ e if charge on e	$(\frac{0}{2})$ electron is omiti	ed.	· -
	Cu ⇒ • Ignor	Cu ²⁺ + 2e ⁻ e if charge on e	$(\frac{0}{2})$ electron is omiti		u $(\frac{1}{2})$ u $(\frac{2}{2})$ Max.: $\frac{1}{2}$
9.4.1	Cu ≓ • Ignor • If a ch Q will breal	Cu ²⁺ + 2e ⁻ e if charge on o narge of an ion	$(\frac{0}{2})$ electron is omitted e.g.	ed.	Max.: 1/2
	Cu ⇒ Ignor If a ch Q will break ACCEPT C <u>Cu/electroc</u>	Cu ²⁺ + 2e ⁻ e if charge on o harge of an ion down/becon will be oxidis le Q is a stror	$\binom{0}{2}$ electron is omitted e.g. is omitted e.g. me eroded/surf sed. $\checkmark\checkmark$	ted. Cu → Cu ² + 2e ⁻ face becomes rough and <u>agent</u> ✓ <u>than the Ct⁻ ions</u> ´ resulting in the electrod	Max.: $\frac{1}{2}$ eroded $\checkmark \checkmark$
	Cu ≓ Ignora If a ch Q will breat ACCEPT C <u>Cu/electroc</u> <u>Cu/Q will breat</u>	Cu ²⁺ + 2e ⁻ e if charge on o harge of an ion d down/becon will be oxidis <u>le Q is a stror</u> <u>e oxidised</u> /los <u>is a weaker r</u>	$\binom{9}{2}$ electron is omitted e.g. is omitted e.g. me eroded/surf sed. $\checkmark\checkmark$ nger reducing ses electrons \checkmark	ted. $Cu \rightarrow Cu^2 + 2e^{-\frac{1}{2}}$ Tace becomes rough and <u>agent</u> \checkmark <u>than the Ct⁻ ions</u>	Max.: $\frac{1}{2}$ eroded $\checkmark \checkmark$ \checkmark . e becoming erode
	Cu \rightleftharpoons Ignor If a ch Q will break ACCEPT C <u>Cu/electroc</u> <u>Cu/Q will break</u> The <u>Cℓ⁻ ion</u> <u>be oxidised</u>	Cu ²⁺ + 2e ⁻ e if charge on o harge of an ion d down/becon will be oxidis <u>le Q is a stror</u> <u>e oxidised</u> /los <u>is a weaker r</u>	$\binom{9}{2}$ electron is omitted e.g. is omitted e.g. me eroded/surf sed. $\checkmark\checkmark$ nger reducing ses electrons \checkmark	ted. Cu → Cu ² + 2e ⁻ face becomes rough and agent \checkmark than the Ct ⁻ ions resulting in the electrod OR	Max.: $\frac{1}{2}$ eroded $\checkmark \checkmark$ \checkmark . e becoming erode
9.4.2 9.4.3	Cu \rightleftharpoons Ignor If a ch Q will break ACCEPT C <u>Cu/electroc</u> <u>Cu/Q will break</u> The <u>Cℓ⁻ ion</u> <u>be oxidised</u>	Cu ²⁺ + 2e ⁻ e if charge on o harge of an ion d down/becon will be oxidis <u>le Q is a stror</u> <u>e oxidised</u> /los <u>is a weaker r</u>	$\binom{9}{2}$ electron is omitted e.g. is omitted e.g. me eroded/surf sed. $\checkmark\checkmark$ nger reducing ses electrons \checkmark	ted. Cu → Cu ² + 2e ⁻ face becomes rough and agent \checkmark than the Ct ⁻ ions resulting in the electrod OR	Max.: $\frac{1}{2}$ eroded $\checkmark \checkmark$ \checkmark . e becoming erode
9.4.2 9.4.3 QUES 10.1.7	Cu \rightleftharpoons Ignor If a ch Q will break ACCEPT C <u>Cu/electroc</u> <u>Cu/Q will br</u> The <u>Ct⁻ ion</u> <u>be oxidised</u> P√ STION 10 1 Hab	Cu ²⁺ + 2e ⁻ e if charge on on harge of an ion k down/becom will be oxidis le Q is a stror e oxidised/los is a weaker r l. ✓	$(\frac{9}{2})$ electron is omitted e.g. is omitted e.g. me eroded/surf sed. $\checkmark\checkmark$ nger reducing ses electrons \checkmark reducing agen	ted. Cu → Cu ² + 2e ⁻ face becomes rough and agent \checkmark than the Ct ⁻ ions resulting in the electrod OR	Max.: $\frac{1}{2}$ eroded $\checkmark \checkmark$ \checkmark . e becoming erode
9.4.2 9.4.3 QUES 10.1.7	Cu \rightleftharpoons Ignoration If a ch Q will break ACCEPT C <u>Cu/electroc</u> <u>Cu/Q will break</u> ACCEPT C <u>Cu/electroc</u> <u>Cu/Q will break</u> The <u>Ct⁻ ion</u> <u>be oxidised</u> P \checkmark STION 10 Habe 2 nitric	Cu ²⁺ + 2e ⁻ e if charge on on harge of an ion k down/becom will be oxidis le Q is a stron e oxidised/los is a weaker r l. ✓	$(\frac{9}{2})$ electron is omitted e.g. is omitted e.g. me eroded/surf sed. $\checkmark\checkmark$ nger reducing ses electrons \checkmark reducing agen	ted. Cu → Cu ² + 2e ⁻ face becomes rough and agent \checkmark than the Ct ⁻ ions resulting in the electrod OR	Max.: $\frac{1}{2}$ eroded $\checkmark \checkmark$ \checkmark . e becoming erode
9.4.2 9.4.3 QUES 10.1.7	Cu \rightleftharpoons Ignore If a ch Q will break ACCEPT C Cu/electrood Cu/Q will be The <u>Cl⁻ ion</u> be oxidised P \checkmark STION 10 Habo D nitric B plati	Cu ²⁺ + 2e ⁻ e if charge on on harge of an ion of down/becom will be oxidis le Q is a stron e oxidised/los is a weaker r l. \checkmark er process \checkmark c oxide \checkmark NO- num \checkmark	$(\frac{9}{2})$ electron is omitted e.g. is omitted e.g. me eroded/surf sed. $\checkmark\checkmark$ nger reducing ses electrons \checkmark reducing agen	ted. Cu → Cu ² + 2e ⁻ face becomes rough and agent ✓ than the Ct ⁻ ions resulting in the electrod OR t ✓ than Cu(Q) ✓ and will	Max.: $\frac{1}{2}$ eroded $\checkmark \checkmark$ e becoming eroded therefore <u>not</u> cts \checkmark Balancing \checkmark vs.

8

Preparatory Examination September 2019

Physical Sciences / P2