NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES P2 (CHEMISTRY)

PREPARATORY EXAMINATION

SEPTEMBER 2019

MARKS : 150
TIME : 3 Hours

This question paper consists of 14 pages, a special answer sheet and 4 data sheets.

INSTRUCTIONS AND INFORMATION

1. Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
2. This question paper consists of TEN questions. Answer ALL the questions in the ANSWER BOOK.
3. Start EACH question on a NEW page in the ANSWER BOOK.
4. Number the answers correctly according to the numbering system used in this question paper.
5. Leave ONE line between two subquestions, for example between QUESTION 2.1 and QUESTION 2.2.
6. You may use a non-programmable calculator.
7. You may use appropriate mathematical instruments.
8. You are advised to use the attached DATA SHEETS.
9. Show ALL formulae and substitutions in ALL calculations.
10. Round off your final numerical answers to a minimum of TWO decimal places.
11. Give brief motivations, discussions et cetera where required.
12. Write neatly and legibly.

Downloaded from Stanmorepfysics.com

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.10) in the ANSWER BOOK, for example 1.11 D .
1.1 Which ONE of the following organic reactions below involves the bonding of monomers by a dehydration process?

A Halogenation.
B Dehydropolymerisation.
C Addition polymerisation.
D Condensation polymerisation.
1.2 A compound with the molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ could be
(I) an ester.
(II) a ketone.
(III) an aldehyde.

A (I) only.
B (I) and (II) only
C (II) and (III) only
D (I), (II) and (III)
1.3 A catalyst will change the . . .

A time required to reach equilibrium.
B amount of products present at equilibrium.
C amount of reactants present at equilibrium.
D length time for a reaction remains at equilibrium.
1.4 The difference between the potential energy of the products and the potential energy of the reactants in a chemical reaction is equal to the . . .

A rate of the reaction.
B enthalpy of the reaction.
C enthalpy change of the reaction.
D total potential energy of the particles.
1.5 Which ONE of the following represents the products formed during the hydrolysis of sodium ethanoate, $\mathrm{NaCH}_{3} \mathrm{COO}$?

A $\mathrm{Na}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$
B $\quad \mathrm{Na}^{+}(\mathrm{aq})$ and $\mathrm{CH}_{3} \mathrm{COO}(\mathrm{aq})$
C $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
D $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$
1.6 The reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}), \Delta \mathrm{H}<0$, reaches equilibrium at a temperature of $445^{\circ} \mathrm{C}$ in a sealed container.

Which ONE of the following change/s will INCREASE the CONCENTRATION of $\mathrm{HI}(\mathrm{g})$?
adding a catalyst
II decreasing the temperature
III increasing the pressure by reducing the volume of the reaction container

A only II
B only III
C I and II only
D II and III only

1.7 Learners set up an electrochemical cell, shown in the simplified diagram below, using magnesium and lead electrodes.

Which of the following changes will INCREASE the reading on the voltmeter?
(i) Decreasing the initial concentration of the electrolyte in half-cell A.
(ii) Decreasing the initial concentration of the electrolyte in half-cell B.
(iii) Increasing the initial concentration of the electrolyte in half-cell \mathbf{A}.
(iv) Increasing the initial concentration of the electrolyte in half-cell B.

A (i) Only
B (ii) only
C (ii) and (iii) only
D (i) and (iv) only
1.8 The balanced equation for the net(overall) cell reaction that occurs during the electrolysis of a concentrated sodium chloride solution is :

$$
2 \mathrm{H}_{2} \mathrm{O}(t)+2 \mathrm{Ct}-\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{\prime}(\mathrm{aq})
$$

Which ONE of the following statements concerning the above electrolysis is TRUE?

A The reaction is exothermic.
B The reaction is spontaneous.
C chlorine gas is formed at the anode.
D hydrogen gas is formed at the anode.
1.9 Which ONE of the following reactions DOES NOT occur during the Contact Process?

A $\quad \mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
B $\quad 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
C $\quad \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
D $\quad \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
1.10 Phosphorous rich fertiliser . .

A improves the quality of fruit and flowers.
B is used to stimulate root growth in plants.
C is produced industrially by the Ostwald process.
D is essential for growing plants with strong stems and healthy green leaves.

QUESTiON'2 2 aded from Stanmore on a newsic s.com

The letters A to G in the table below represent seven organic compounds.

A	propanoic acid	B	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
C		D	
E	$\mathrm{CH}_{3} \mathrm{CCCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$	F	ethene
G	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$		

2.1 Using the information in the table, write down the:
2.1.1 IUPAC name of compound \mathbf{B}.
2.1.2 Name of the FUNCTIONAL GROUP of the homologous series to which compound \mathbf{A} belongs.
2.1.3 Structural formula of compound \mathbf{E}.
2.1.4 The type of polymerisation where F is the monomer.
2.1.5 IUPAC name and structural formula of the polymer formed from compound F.
2.1.6 Letter that represents a compound that is a chain isomer of 2,2-dimethylpropane.
2.2 Compound \mathbf{C}, in the table is the product of the reaction between an alcohol and a carboxylic acid in the presence of concentrated sulphuric acid.

Write down the:
2.2.1 Homologous series to which compound \mathbf{C} belongs.
2.2.2 IUPAC name of compound \mathbf{C}.
2.2.3 Structural formula of the carboxylic acid required to prepare compound \mathbf{C}.
2.2.4 Function of concentrated sulphuric acid in the above reaction.

2.3 Compound C , in the table, has isomers.

2.3.1 Define the term functional isomer.

2.3.2 Write down the IUPAC name of the straight chain functional isomer of compound C.

QUESTION 3 (Start on a new page.)

Consider the organic compounds represented by the letters \mathbf{M} and \mathbf{N} below:

An investigation is performed to determine which compound; \mathbf{M} or \mathbf{N} has a higher vapour pressure.

3.1 Define vapour pressure.

3.2 For this investigation write down:
3.2.1 The independent variable.
3.2.2 A controlled variable.

Downloaded from Stanmorepfysics.com
3.3 This investigation is carried out at an atmospheric pressure of 100 kPa .

The temperature at which the vapour pressure of compound N equals 100 kPa is $27,80^{\circ} \mathrm{C}$.
3.3.1 At a temperature, \mathbf{T}, the vapour pressure of compound \mathbf{M} equals 100 kPa . Is T, GREATER THAN, EQUAL TO or LESS THAN $27,80^{\circ} \mathrm{C}$?
3.3.2 Refer to structure, intermolecular forces and energy to explain the answer to QUESTION 3.3.1.
3.4 Which compound \mathbf{M} or N has the HIGHER vapour pressure?

QUESTION 4 (Start on a new page.)

REACTION I and REACTION II below are organic reactions in which 2-bromobutane is reacted with solutions of KOH .

\mathbf{Q} and \mathbf{R} are the maior organic products formed in REACTION I and REACTION II
respectively.
\mathbf{Q} and \mathbf{R} represent different organic compounds.
4.1 State TWO reaction conditions for:
4.1.1 REACTION I.
4.1.2 REACTION II.
4.2 What type of reaction (SUBSTITUTION, ADDITION or ELIMINATION), takes
place in REACTION I? place in REACTION I?
4.3 Use structural formulae to write down a balanced equation for the reaction that takes place in REACTION II.
4.4 Is \mathbf{R} saturated or unsaturated? Give a reason for the answer.
4.5 In a third reaction, \mathbf{R} is converted to \mathbf{Q}. Name the type of addition reaction that takes place during this conversion.

QUESTION 5 (Start on a new page)

Powdered calcium carbonate reacts with hydrochloric acid according to the following balanced equation.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCt}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

The mass of the CaCO_{3} after every 10 s from the start of the reaction is indicated in the table below:

Time in seconds	0	10	20	30	40	50	60	70	80
Mass of CaCO_{3} in grams	\mathbf{X}	74	63	54	46	42	40	40	40

The initial mass of the CaCO_{3} is X g .
5.1 According to the data in the table above, which substance, calcium carbonate or hydrochloric acid is in excess? Give a reason for the answer.
5.2 The average rate of the reaction in the first 30 s is $1,07 \mathrm{~g} \mathrm{~s}^{-1}$.
5.2.1 Define reaction rate, in words.
5.2.2 Calculate the initial mass, \mathbf{X}, of calcium carbonate.
5.3 What volume of CO_{2} is produced between 60 and 80 seconds?
5.4 Use the collision theory to explain why the average rate of reaction between powdered calcium carbonate and the given hydrochloric acid solution decreases with time.
5.5 How will the rate of the above reaction be affected if the initial mass of carbonate was doubled? (Only write down, INCREASES, DECREASES or REMAINS THE SAME)

Downloade d from Stanmoreptysics.com

QUESTION 6 (Start on a new page)

Study the reversible reaction represented by the balanced equation at a fixed temperature below:

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})=\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+226 \mathrm{~kJ}
$$

Initially, 2,2 moles of $\mathrm{CH}_{4}(\mathrm{~g})$ and 1,8 moles of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ were mixed in a sealed $2 \mathrm{dm}^{3}$ container.

The graph below shows the relationship between the number of moles of $\mathrm{CO}(\mathrm{g})$ and time in minutes.

6.1 State Le Chatelier's Principle.
6.2 What information about the reaction can be deduced from the graph after t minutes?
6.3 Calculate the value of the equilibrium constant, Kc , at the fixed temperature used in the reaction.
6.4 Draw a graph (not to scale), on the special answer sheet provided showing the changes in the number of moles of $\mathrm{CH}_{4}(\mathrm{~g})$ as the reaction proceeds. Indicate the initial number of moles of $\mathrm{CH}_{4}(\mathrm{~g})$ and the number of moles of $\mathrm{CH}_{4}(\mathrm{~g})$ at equilibrium, on the graph.
6.5 The initial number of moles of $\mathrm{CH}_{4}(\mathrm{~g})$ is now doubled in the same $2 \mathrm{dm}^{3}$
container.
How will this change affect the following? (Choose from INCREASES,
DECREASES or REMAINS THE SAME)?
6.5.1 The amount of $\mathrm{H}_{2}(\mathrm{~g})$ at equilibrium.
6.5.2 Value of the equilibrium constant(Kc).
6.6 Explain the answer to QUESTION 6.5 . 1 by referring to Le Chatelier's Principle.

QUESTION 7 (Start on a new page.)

7.1 A dilute solution of sulphuric acid has a concentration $0,012 \mathrm{~mol}_{\mathrm{mm}}{ }^{-3}$
7.1.1 Define an acid according to Arrhenius theory.
7.1.2 Is the above solution of sulphuric acid a strong or weak acid? Explain the answer.
7.2 A learner adds $24 \mathrm{~cm}^{3}$ of a solution of sulphuric acid of concentration $0.25 \mathrm{~mol}_{\mathrm{mm}} \mathrm{dm}^{-3}$ to an unknown volume, $\mathrm{X} \mathrm{cm}{ }^{3}$, of a solution of sodium hydroxide of concentration $0.15 \mathrm{~mol}_{\mathrm{mm}}{ }^{3}$. The balanced equation for the reaction is:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

The pH of the resulting solution is $\mathbf{0 , 6 5}$.
7.2.1 Calculate the concentration of the sulphuric acid solution after it has reacted with the sodium hydroxide solution.
7.2.2 Calculate the initial volume (X) of the sodium hydroxide solution. Assume that the volume of the solution after the reaction is $(X+24) \mathrm{cm}^{3}$.

QUESTION 8 (Start on a new page.)

A standard galvanic cell is set up using a zinc and an unknown metal, \mathbf{X}. The graph below shows the change in mass of the metal, X whilst the cell is in operation.

8.1 Define an electrolyte.
8.2 Write down the half reaction that takes place at the anode of this cell.
8.3 The initial emf of this cell under standard conditions is $0,63 \mathrm{~V}$.

> 8.3.1 Write down TWO standard conditions required for the initial emf to be $0,63 \mathrm{~V}$
8.3.2 Identify the metal X , by calculating the standard reduction potential of \mathbf{X}.
8.4 Write down the cell notation for this cell.
8.5 Write down the value of the emf at time \mathbf{t}, shown on the graph.

Downloaded from Stanmoreptysics.com

QUESTION 9 (Start on a new page.)

An electrolytic cell is set up using two carbon rods, P and Q and a concentrated copper(II) chloride solution as an electrolyte.

When the cell is functioning ONE of the carbon electrodes is coated with a reddish brown layer.
9.1 Write down the energy conversion that takes place in this cell.
9.2 Which electrode, \mathbf{P} or \mathbf{Q} is coated with the reddish brown layer?
9.3 Write down a half reaction that takes place at the electrode that is coated with the reddish brown layer.
9.4 The carbon rods in the above cell are NOW replaced with copper rods.
9.4.1 Describe the observation that will be made at electrode \mathbf{Q}.
9.4.2 Refer to relative strengths of reducing agents to explain the observation made at electrode \mathbf{Q}.

The cell can be used to electroplate a tin medal with a thin layer of copper.
9.4.3 Which electrode, \mathbf{P} or \mathbf{Q} must be replaced with the tin medal?

QUESTION 10 (Start on a new page.)

10.1 The unbalanced equations below represent various steps in the Ostwald process.

STEP I $\quad \mathbf{A}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{B}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
STEP II $\quad \mathrm{B}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$
STEP III $\quad \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})$
10.1.1 Write down the name of the industrial process that produces gas \mathbf{A}.
10.1.2 Write down the name or formula of gas B.
10.1.3 Name the catalyst that is used in STEP I.

The product, C, from STEP III mixes with reactant A from STEP I to produce a fertiliser.
10.1.4 Write a balanced equation to illustrate this reaction.
10.2 Consider the fertiliser in the bag illustrated below:

The only phosphorous containing compound used in the production of this fertiliser is $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
$11,95 \mathrm{~kg}$ of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ was used in preparing the fertiliser illustrated above.
Calculate the value represented by the letter \mathbf{Z}, in the above illustration.

Downloaded from Stanmorepfysics.com
SPECIAL ANSWER SHEET FOR QUESTION 6.4
NAME:
GRADE: \qquad

DETACH THIS ANSWER SHEET AND SUBMIT WITH YOUR ANSWER BOOKLET

DATA FOR PHYSICAL SCIENCES GRADE 12

 PAPER 2 (CHEMISTRY)
GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOLSIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p^{\ominus}	$1,013 \times 10^{5} \mathrm{~Pa}$
Molar gas volume at STP Molêre gasvolume by STD	V_{m}	$22,4 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$
Standard temperature Standaardtemperatuur	T^{\ominus}	273 K
Charge on electron Lading op elektron	e	$-1,6 \times 10^{\cdot 19} \mathrm{C}$
Avogadro's constant Avogadro-konstante	Na	$6,02 \times 10^{23} \mathrm{~mol}^{-1}$

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n=\frac{m}{M}$	$\mathrm{n}=\frac{\mathrm{N}}{\mathrm{N}_{\text {A }}}$
$c=\frac{n}{V} \quad \text { or } / o f \quad c=\frac{m}{M V}$	$\mathrm{n}=\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{m}}}$
$\frac{c_{0} v_{\mathrm{a}}}{c_{\mathrm{b}} v_{\mathrm{b}}}=\frac{n_{\mathrm{a}}}{n_{\mathrm{b}}}$	$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \mathrm{at}$ by 298 K	
$\mathrm{E}_{\text {cell }}^{\theta}=\mathrm{E}_{\text {cathoso }}^{\theta}-\mathrm{E}_{\text {anose }}^{\theta} / \mathrm{E}_{\text {sel }}^{\theta}=\mathrm{E}_{\text {katose }}^{\theta}-\mathrm{E}_{\text {anode }}^{\theta}$	
or/of$E_{\text {cces }}^{\theta}=E_{\text {reaction }}^{\theta}-E_{\text {oxidation }}^{\theta} / E_{\text {sol }}^{\theta}=E_{\text {rouksio }}^{\theta}-E_{\text {casisano }}^{\theta}$	
or/of $E_{\text {cet }}^{\theta}=E_{\text {cuasingagent }}^{\theta}-E_{\text {reoucing agent }}^{\theta}$	

Half-reactions/Halfreaksies		E^{θ} (V)
$\mathrm{F}_{2}(\mathrm{~g})+2{ }^{-}$	- 2 F	+2.87
$\mathrm{Cos}^{3+}+\mathrm{e}$	- Co^{2}	+1.81
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}$	- $2 \mathrm{H}_{2} \mathrm{O}$	+1,77
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5{ }^{-}$	- $\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	+1.51
$\mathrm{Cl}_{(1 \mathrm{l}}(\mathrm{l}+2 \mathrm{e}$	- 2 Ct	+ 1,36
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}$	- $2 \mathrm{Cr}^{3}+7 \mathrm{H}_{2} \mathrm{O}$	+ 1,33
$\mathrm{O}(\mathrm{g})+4 \mathrm{H}^{-}+4 \mathrm{e}$	- $2 \mathrm{H}_{2} \mathrm{O}$	+ 1,23
$\mathrm{MnO}_{2}+4 \mathrm{H}^{-}+2 \mathrm{e}$	- $\mathrm{Mn}^{2+}+2 \mathrm{H}_{5} \mathrm{O}$	+1,23
$\mathrm{Pr}^{2+}+2 \mathrm{e}$	- PI	+1,20
$\mathrm{Br}(\mathrm{t})+2 \mathrm{e}$	- 2 Br	+ 1,07
$\mathrm{NO}_{3}^{+}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	- $\mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$	+0,96
$\mathrm{Hg}^{2+}+2{ }^{-}$	- Hg (t)	+0.85
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	- Ag	+0.80
$\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}$	- $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$	+0.80
$\mathrm{Fe}^{3 \cdot}+\mathrm{e}$	- Fe^{2}	+0.77
$\mathrm{O}(\mathrm{g})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	- $\mathrm{H}_{2} \mathrm{O}_{2}$	+0.68
$b_{2}+20$	- 21	+0.54
$\mathrm{Cu}^{+}+\mathrm{e}$	- Cu	+0.52
$\mathrm{SO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	-. $\mathrm{S}+2 \mathrm{H}_{2} \mathrm{O}$	+0,45
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}$	- 40 OH	+0,40
$\mathrm{Cu}^{2+}+2 \mathrm{e}$	- Cu	+0.34
$\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	- $\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$	+0.17
$\mathrm{Cu}^{2+}+\mathrm{e}^{-}$	- $\mathrm{Cu}{ }^{\text {- }}$	+0.16
$\mathrm{Sn}^{4 \cdot}+2 \mathrm{e}$	- Sn^{2}	+0.15
$\mathrm{S}+2 \mathrm{H}^{+}+2 \mathrm{e}$	- $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	+0.14
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	- $\mathrm{H}_{2}(\mathrm{~g})$	0,00
$\mathrm{Fe}^{3-}+3 \mathrm{e}$	- $\mathrm{Fe}^{\text {e }}$	-0,06
$\mathrm{Pb}^{2 \cdot}+2 \mathrm{e}$	- Pb	-0,13
$\mathrm{Sn}^{2 \cdot}+2 \mathrm{e}$	- Sn	-0,14
$\mathrm{Nr}^{2}+2 \mathrm{e}^{-}$	- Ni	-0,27
$\mathrm{Co}^{2+}+2 \mathrm{e}^{-}$	- Co	-0,28
$\mathrm{Cos}^{+9}+2{ }^{-}$	- Cd	-0.40
$\mathrm{Cr}^{+3}+\mathrm{e}^{-}$	- Cr^{2}	-0,41
$\mathrm{Fe}^{2+}+2{ }^{-}$	- Fe	-0,44
$\mathrm{Cr}^{2+}+3{ }^{-}$	- Cr	-0.74
$\mathrm{Zn}^{\mathbf{2}}+{ }^{\text {20 }}$	- Zn	-0,76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}$	- $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}$	-0,83
$\mathrm{Cr}^{2}+2 \mathrm{O}^{-}$	- Cr	-0,91
$\mathrm{Mn}^{2+}+2 \mathrm{e}$	- Mn	- 1.18
$\mathrm{AP}^{\mathrm{P} \cdot}+3 \mathrm{e}^{-}$	- Al	-1.66
$\mathrm{Mg}^{2+}+2 \mathrm{E}^{-}$	- Mg	-2,36
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	= Na	-2,71
$\mathrm{Ca}^{2 \cdot}+2 \mathrm{e}^{-}$	- Ca	-2.87
$\mathrm{Sr}^{2 \cdot}+2 \mathrm{e}$	- Sr	-2.89
$\mathrm{Ba}^{2+}+2 \mathrm{e}$	- Ba	-2,90
Cs' + e	- Cs	- 2.92
K+ + e	- K	-2,93
Li+ +	\cdots	-3.05

Hali-reactions/Halfreaksies	$\mathrm{E}^{\boldsymbol{\theta}}$ (V)
$\mathrm{Li}^{+}+\mathrm{e}^{-} \mathrm{Li}$	-3.05
$\mathrm{K}+\mathrm{e}=\mathrm{K}$	-2,93
Cs* $+\mathrm{o}^{-} \mathrm{Cs}$	-2,92
$\mathrm{Ba}^{2 \cdot}+2 \mathrm{e}-\mathrm{Ba}$	-2.90
$\mathrm{Sr}^{2+}+2 \mathrm{e}-\mathrm{St}$	- 2,89
$\mathrm{Ca}^{2+}+2 \mathrm{e}-\mathrm{Ca}$	-2,87
$\mathrm{Na}^{+}+\mathrm{e}^{-}-\mathrm{Na}$	-2.71
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}-\mathrm{Mg}$	-2,36
$\mathrm{AP}^{\mathrm{P}}+3 \mathrm{e}^{-}-\mathrm{Al}$	- 1,66
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}-\mathrm{Mn}$	-1,18
$\mathrm{Cr}^{2+}+2 \mathrm{e}-\mathrm{Cr}$	-0.91
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}-\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}$	-0,83
$\mathrm{Zn}^{2+}+2 \mathrm{e}-\mathrm{Zn}$	-0,76
$\mathrm{Cr}^{3}+3 \mathrm{e}-\mathrm{Cr}$	-0,74
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}-\mathrm{Fe}$	-0.44
$\mathrm{Cr}+\mathrm{e}-\mathrm{Cr}^{2+}$	-0,41
$\mathrm{Cd}^{2+}+2 \mathrm{e}-\mathrm{Cd}$	-0,40
$\mathrm{Co}^{2+}+2 \mathrm{e}-\mathrm{Co}$	-0,28
$\mathrm{Ni}^{2+}+2 \mathrm{e}-\mathrm{Ni}$	-0,27
$\mathrm{Sn}^{2+}+2 \mathrm{e}-\mathrm{Sn}$	-0.14
$\mathrm{Pb}^{2 \cdot}+2 \mathrm{e}-\mathrm{Pb}$	-0.13
$\mathrm{Fe}^{3+}+3 \mathrm{e}-\mathrm{Fe}$	-0.06
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-}-\mathrm{H}_{2}(\mathrm{~g})$	0,00
$\mathrm{S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}-\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	+0,14
$\mathrm{Sn}^{4+}+2 \mathrm{e}-\mathrm{Sn}^{2 \cdot}$	+0.15
$\mathrm{Cu}^{2+}+\mathrm{e}-\mathrm{Cu}^{+}$	+0.16
$\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}-\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$	+0.17
$\mathrm{Cu}^{2+}+2 \mathrm{e}-\mathrm{Cu}$	+0.34
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}-4 \mathrm{OH}$	+0,40
$\mathrm{SO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}-\mathrm{S}+2 \mathrm{H}_{2} \mathrm{O}$	+0,45
$\mathrm{Cu}^{+}+\mathrm{e}^{-}-\mathrm{Cu}$	+0,52
$12+2 e^{-}-21^{-}$	+0.54
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}=\mathrm{H}_{2} \mathrm{O}_{2}$	+0.68
$\mathrm{Fe}^{3+}+\mathrm{e}-\mathrm{Fe}^{2+}$	+0,77
$\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-}-\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$	+0.80
$\mathrm{Ag}^{+}+\mathrm{e}^{-}-\mathrm{Ag}$	+0.80
$\mathrm{Hg}^{\mathbf{2}+}+2 \mathrm{e}=\mathrm{Hg}(\mathrm{t})$	+0.85
$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-}-\mathrm{NO}(\mathrm{g})+2 \mathrm{H} 2 \mathrm{O}$	+0.96
$\mathrm{Br}(\mathrm{l})+2 \mathrm{e}-2 \mathrm{Br}$	+ 1.07
$\mathrm{Pl}^{2+}+2 \mathrm{e}=\mathrm{Pt}$	+ 1,20
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}-\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$	+1,23
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}-2 \mathrm{H}_{2} \mathrm{O}$	+1,23
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-}-2 \mathrm{C}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	+1,33
$\mathrm{Cl}_{(\mathrm{g})}+2 \mathrm{e}-2 \mathrm{Ct}$	+1.36
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}-\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	+ 1.51
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}-2 \mathrm{H}_{2} \mathrm{O}$	+1,77
$\mathrm{Co}^{3+}+\mathrm{e}=\mathrm{Co}^{2+}$	+ 1,81
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}=2 \mathrm{~F}^{-}$	+2,87

Increasing oxidising ability/Toenemende oksiderende vermoë

[^0]

education

Department:

Education
PROVINCE OF KWAZULU-NATAL

PHYSICAL SCIENCES P2 (CHEMISTRY)

PREPARATORY EXAMINATION

SEPTEMBER 2019

MEMORANDUM

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS

This marking guideline consists of 8 pages.

QUESTION 1

$1.1 \mathrm{D} \checkmark \checkmark$

$1.2 C \checkmark \checkmark$
1.3 A $\checkmark \checkmark$
1.4 C $\checkmark \checkmark$
1.5 D $\checkmark \checkmark$
$1.6 \mathrm{D} \checkmark \checkmark$
1.7 $\mathrm{D} \checkmark \checkmark$
$1.8 C \checkmark \checkmark$
$1.9 \quad C \checkmark \checkmark$
$1.10 \mathrm{~B} \checkmark \checkmark$

QUESTION 2

2.1.1 hexan-3-one $\checkmark \checkmark$
2.1.2 carboxyl (group) \checkmark
2.1.3

2.1.4 addition polymerisation \checkmark
2.1.5

- Whole structure correct $\checkmark \checkmark$
- Name \checkmark
polyethene \checkmark
2.1.6 G \checkmark
2.2.1 esters/alkyl alkanoate \checkmark
2.2.2 ethyl \checkmark propanoate \checkmark
2.2.3

- Whole structure correct: $2 / 2$
- Only functional group correct 1/2
- More than one functional group 0/2
2.2.4 acts as a catalyst/speeds up the reaction. \checkmark or acts as a dehydrating agent.
2.3.1 Compounds that have the same molecular formula but different functional groups $\checkmark \checkmark$
2.3.2 pentanoic acid \checkmark

QUESTION 3

3.1 the pressure exerted by a vapour at equilibrium with its liquid in a closed
system. $\checkmark \checkmark$ (2 or 0) system. $\checkmark \checkmark$ (2 or 0)
3.2.1 length of carbon chain/surface area/branching \checkmark
3.2.2 number of carbon atoms/molecular mass \checkmark
3.3.1 GREATER THAN \checkmark
3.3.2 M has a longer carbon chain/greater surface area than N / M has more sites for intermolecular forces \checkmark
Intermolecular forces between molecules of M are stronger than between molecules of $\mathrm{N} \checkmark$
More energy is required to overcome the intermolecular forces between molecules of $M \checkmark$
$3.4 \mathrm{~N} \checkmark$

Downloaded from Stanmorephysics.com

QUESTION 4

4.1.1 warm/mild heat \checkmark dilute $\mathrm{KOH} \checkmark /$ warm $^{\checkmark}$ dilute strong base \checkmark

4.1.2 hot $\mathrm{KOH} \checkmark$ concentrated \checkmark Base (KOH)
4.2 substitution \checkmark
4.3

- \checkmark left hand side
- $\checkmark \checkmark$ for organic product
- \checkmark balancing
4.4 unsaturated \checkmark
contains a double bond/multiple bond \checkmark between atoms of carbon \checkmark
4.5 hydration $\checkmark \checkmark$

QUESTION 5
5.1 calcium carbonate \checkmark there is some unreacted CaCO_{3} at the end of the reaction (time 60s) \checkmark

5.2.1 ANY ONE

- The change in concentration \checkmark of reactants/products per unit time.
- Rate of change in concentration of reactants or products.
- Change in amount/number of moles/volume/mass of reactants/products per (unit) time.
- Amount/number of moles/volume/mass of products formed OR reactants used per (unit) time.
5.2.2 rate $=-\frac{\text { change in mass of } \mathrm{CaCO}_{3}}{\Delta \mathrm{t}} \checkmark$

$$
\begin{aligned}
1, \stackrel{\checkmark}{1,07} & =-\frac{54-X}{30-0} \checkmark \\
& =86,10 \mathrm{~g}
\end{aligned}
$$

(if answer is negative minus

$$
\begin{equation*}
1 \text { mark) } \tag{5}
\end{equation*}
$$

$5.30\left(\mathrm{~cm}^{3}\right) . \checkmark$
5.4 A decrease in concentration of reactants decreases the number of molecules per unit volume.
Fewer number of collisions per unit time \checkmark
A fewer number of effective collisions occur per unit time/lower frequency of effective collisions.
5.5 REMAINS THE SAME \checkmark

QUESTION 6

6.1 When the equilibrium in a closed system is disturbed, the system will re-instate a new equilibrium by favouring the reaction that will oppose the disturbance. $\checkmark \checkmark$ (2 or 0)
6.2 the reaction has reached a state of (dynamic) equilibrium/the rate of the forward reaction is equal to the rate of the reverse reaction. $\checkmark \checkmark(2$ or 0$)$

6.3 Marking criteria:

- Indicating that the number of mols of CO equilibrium is $0,6 \checkmark$
- Correct mol ratio \checkmark
- Calculating the quantity(mol) at equilibrium of all three substances \checkmark
- Substitute $V=2 \mathrm{dm}^{3}$ in $\mathrm{c}=\frac{\mathrm{n}}{\mathrm{V}}$ to determine concentration at equilibrium of all the substances. \checkmark
- K_{c} expression \checkmark
- Substitution of concentrations in K_{c} expression \checkmark
- Final answer: 0,456 \checkmark

No K_{c} expression, correct substitution: Max. 6/7

Wrong K_{c} expression: Max. 4/7

	CH_{4}	$\mathrm{H}_{2} \mathrm{O}$	CO	H_{2}
Initial quantity(mol)	2,2	1,8	0	0
Change(mol)	$-0,6$	$-0,6$	$+0,6$	$+1,8$
Quantity at equilibrium(mol)	1,6	1,2	$0,6 \checkmark$	1,8
Equilibrium concentration(mol.dm				

$$
\begin{equation*}
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]} \quad \checkmark=\frac{(0,3)(0,9)^{3}}{(0,8)(0,6)} \quad \checkmark=0,456 \checkmark \tag{7}
\end{equation*}
$$

6.4

6.5.1 INCREASES \checkmark
6.5.2 REMAINS THE SAME \checkmark
6.6 An increase in the number of moles of CH_{4} increases the concentration of CH_{4} (reactant).
According to Le Chateliers Principle an increase in the concentration of the reactants favours the reaction that decreases the concentration of the reactants \checkmark In this case the forward reaction is favoured \checkmark

QUESTION 7

7.1.1 An acid is a substance that produces hydrogen ions $\left(\mathrm{H}^{+}\right) /$hydronium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right) \checkmark$ when it dissolves in water.
7.1.2 strong \checkmark
it ionises completely in water $\checkmark \checkmark$
(ACCEPT: dissociates)
7.2.1

- Formula $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- Substitute 0,65 for pH^{2}
- $\mathrm{c}\left(\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=1 / 2 \mathrm{c}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)^{\checkmark}\right.$
- $\mathrm{c}\left(\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=0,112 \mathrm{~mol}^{2} \cdot \mathrm{dm}^{-3} \checkmark\right.$

7.2.2 POSITIVE MARKING FROM QUESTION 7.2.1: concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$

Marking guidelines/Nasienriglyne:

- Formulae: $\mathrm{c}=\frac{\mathrm{n}}{\mathrm{V}} / \mathrm{n}=\mathrm{cV} / \checkmark$
- Calculate initial number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$
- Calculate number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that reacted \checkmark
- Calculate number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in excess \checkmark
- Calculate number of moles of NaOH that reacted \checkmark
- Ratio of NaOH to $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$
- Final answer cm^{3} or $\mathrm{dm}^{3} \checkmark$

$$
\begin{aligned}
& \mathrm{n}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \text { initial }=\mathrm{cV} \checkmark \\
& =(0,25)(0,024) \\
& =6 \times 10^{-3} \mathrm{mols} \\
& \mathrm{n}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \text { excess }=\mathrm{cV} \\
& =(0,112)\left(\frac{X+24}{1000}\right. \\
& n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \text { reacted }=6 \times 10^{-3}-(0,112) \frac{(X+24)}{1000} \\
& \mathrm{n}(\mathrm{NaOH}) \text { reacted }=\mathrm{cV} \\
& \text { 0,15(X) } \\
& 1000 \\
& \mathrm{n}(\mathrm{NaOH}) \text { reacted }=2\left(\mathrm{n}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \text { reacted }\right) \checkmark \\
& \begin{array}{cccc}
0,15(\underline{X}) & =2\left(\quad \left(6 \times 10^{-3}\right.\right. & -(0,112)\left(\frac{X+24}{1000}\right) \\
1000 & X & =17,71 \mathrm{~cm}^{3} \checkmark \quad 0,01771 \mathrm{dm}^{3}
\end{array}
\end{aligned}
$$

QUESTION 8

8.1 a solution/liquid/dissolved substance \checkmark that conducts electricity through the movement of ions.
8.2 $\quad \mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$

Notes

$-\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \leftarrow \mathrm{Zn}$	$(2 / 2)$	$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}$	$(0 / 2)$
$\mathrm{Zn} \rightleftharpoons \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	$(1 / 2)$	$\mathrm{Zn}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Zn}$	$(0 / 2)$

- Ignore if charge on electron is omitted.
- If a charge of an ion is omitted e.g. $\mathrm{Zn} \rightarrow \mathrm{Zn}^{2}+2 \mathrm{e}^{-} \quad$ Max.: $1 / 2$
8.3.1 Temperature of $25{ }^{\circ} \mathrm{C} / 298 \mathrm{~K} \checkmark$ Concentration of the electrolytes equals $1 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$. \checkmark

Downloaded from Stanmorephysics.com

8.3.2	$\mathrm{E}^{\ominus}{ }_{\text {cell }}$	
	0,63	$=\mathrm{E}^{\ominus}$ cathode $-(-0,76) \checkmark$
	$\mathrm{E}^{\text {cathode }}$	$=-0,13 \vee \checkmark$
	X is	lead(Pb) \checkmark

Notes

- Accept any other correct formula from the data sheet.
- Any other formula using unconventional abbreviations, e.g. $\mathrm{E}^{\circ}{ }_{\text {cell }}=\mathrm{E}^{\circ} \mathrm{OA}^{-}-\mathrm{E}^{\circ}{ }_{\mathrm{RA}}$ followed by correct substitutions:
$E_{\text {sel }}^{\circ}=E^{\circ}{ }_{\circ}$ м $-E^{\circ}{ }_{\text {RM }}$ Max/: $4 / 5$
8.4 $\mathrm{Zn}(\mathrm{s}) / \mathrm{Zn}^{2+}(\mathrm{aq}) \checkmark / / \checkmark \mathrm{Pb}^{2+}(\mathrm{aq}) / \mathrm{Pb}(\mathrm{s}) \checkmark$
$\mathrm{Zn}(\mathrm{s}) / \mathrm{Zn}^{2+}\left(1 \mathrm{~mol}^{2} . \mathrm{dm}^{-3}\right) \quad \checkmark / / \checkmark \mathrm{Pb}^{2+}\left(1 \mathrm{~mol}^{2} . \mathrm{dm}^{-3}\right) / \mathrm{Pb}(\mathrm{s})$
Accept $\quad \mathrm{Zn} / \mathrm{Zn}^{2+} / / \mathrm{Pb}^{2+} / \mathrm{Pb}$
$8.50(\mathrm{~V}) \checkmark$

QUESTION 9

9.1 from electrical energy to chemical energy \checkmark
$9.2 \mathrm{P} \checkmark$
$9.3 \mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu}$

Notes

$-\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \leftarrow \mathrm{Cu}$	$(0 / 2)$	$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}$	$(1 / 2)$
$\mathrm{Cu} \rightleftharpoons \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	$(0 / 2)$	$\mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu}$	$(2 / 2)$

- Ignore if charge on electron is omitted.
- If a charge of an ion is omitted e.g. $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2}+2 \mathrm{e}^{-} \quad$ Max.: $1 / 2$
9.4.1 Q will break down/become eroded/surface becomes rough and eroded $\checkmark \checkmark$ ACCEPT Q will be oxidised.
9.4.2 Cu electrode Q is a stronger reducing agent \checkmark than the Cl ions \checkmark.

Cu/Q will be oxidised/loses electrons \checkmark resulting in the electrode becoming eroded OR
The Cl ion is a weaker reducing agent \checkmark than $\mathrm{Cu}(\mathrm{Q}) \checkmark$ and will therefore not be oxidised.
9.4.3 Pr

QUESTION 10

10.1.1

Haber process \checkmark
10.1.2 nitric oxide \checkmark NO \checkmark
10.1.3 platinum \checkmark
10.1.4 $\mathrm{HNO}_{3}+\mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right) \mathrm{NO}_{3}$

Notes:

- Reactants \checkmark Products \checkmark Balancing \checkmark
- Ignore double arrows.
- Marking rule 6.3.10.
10.2

$$
\begin{aligned}
& \text { Mass } P=31 \checkmark / 149 \checkmark \times 11,95 \checkmark=2,486 \mathrm{~kg} \\
& 2 / 8 \times Z / 100 \times 20 \checkmark=2,486 \checkmark \\
& Z=49,72 \% \checkmark
\end{aligned}
$$

[^0]: Increasing reducing ability/Toenemende reduserende vermoë

