

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

PHYSICAL SCIENCES: CHEMISTRY (P2)

2023

MARKS: 150

TIME: 3 hours

This question paper consists of 16 pages and 4 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of NINE questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH guestion on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, etc. where required.
- 11. You are advised to use the attached DATA SHEETS.
- 12. Write neatly and legibly.

(2)

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g. 1.11 E.

SC/NSC

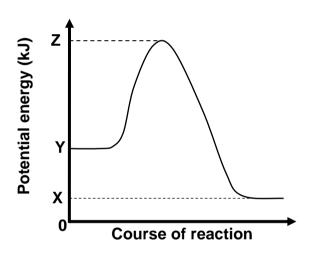
- 1.1 For which ONE of the following molecular formulae are CHAIN isomers possible?
 - A C₄H₁₀
 - B C_3H_8
 - C C₂H₆O

$$D C_3H_8O$$
 (2)

1.2 Which ONE of the following compounds has the LOWEST vapour pressure under the same conditions?

A	H H H H 	В	H H O H—C—C—C H H H
С	H H H 	D	H O—H H—C—C H O

- 1.3 The type of organic compound formed when a haloalkane is heated in the presence of a concentrated strong base is an ...
 - A alkane.
 - B alkene.
 - C alkyne.
 - D alcohol. (2)


1.4 EXCESS HCl(aq) of concentration 0,1 mol·dm⁻³ reacts with 2 g of Mg under different conditions.

Which ONE of the following combinations of conditions will produce the largest volume of $H_2(g)$ in the FIRST MINUTE of the reaction?

	STATE OF DIVISION OF Mg	TEMPERATURE OF HCℓ(aq) (°C)
Α	Powder	20
В	Granules	20
С	Powder	50
D	Granules	50

(2)

1.5 The potential energy diagram for a chemical reaction is shown below.

Which ONE of the following combinations is CORRECT for the FORWARD reaction?

	ΔН	ACTIVATION ENERGY	POTENTIAL ENERGY OF THE ACTIVATED COMPLEX
Α	Y–X	Z+Y	Z
В	Y–X	Z–Y	Z+Y
С	X–Y	Z–Y	Z
D	X–Y	Z	Z–Y

(2)

Physical Sciences/P2 DBE/2023

Consider the following reaction that reaches equilibrium in a beaker: 1.6

$$2CrO_4^{2-}(aq) + 2H^+(aq) \rightleftharpoons Cr_2O_7^{2-}(aq) + H_2O(\ell)$$

A few drops of concentrated NaOH(ag) are now added to the beaker.

Which ONE of the following combinations correctly identifies the DISTURBANCE ON THE SYSTEM and the SYSTEM'S RESPONSE to the disturbance?

	DISTURBANCE ON THE SYSTEM	SYSTEM'S RESPONSE
Α	[H ⁺] decreases	Forward reaction favoured
В	[H⁺] decreases	Reverse reaction favoured
С	[CrO ₄ ²⁻] decreases	Reverse reaction favoured
D	[CrO ₄ ²⁻] increases	Forward reaction favoured

(2)

- 1.7 According to the Lowry-Brønsted theory, a conjugate base is formed when a/an ...
 - Α proton is added to the acid.
 - В electron is added to the acid.
 - proton is removed from the acid. C
 - D electron is removed from the acid.

(2)

1.8 Consider the statements below regarding an alkaline substance.

An alkaline substance:

- (i) Reacts with an acid to form a neutral solution
- (ii) Turns red litmus blue
- Forms a salt when it reacts with an acid

Which of the statements above are ALWAYS TRUE?

- Α (i), (ii) and (iii)
- В (i) and (ii) only
- C (i) and (iii) only
- (ii) and (iii) only D

(2)

Copyright reserved

1.9 Consider the cell notation for a galvanic cell.

Pt |
$$H_2(g)$$
 | $OH^-(aq)$ | $H_2O(\ell)$ || $Ag^+(aq)$ | $Ag(s)$

Which ONE of the following equations represents the half-reaction taking place at the positive electrode?

A
$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$

B
$$Ag(s) \rightarrow Ag^{+}(aq) + e^{-}$$

C
$$2H_2O(\ell) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$

D
$$H_2(g) + 2OH^-(aq) \rightarrow 2H_2O(l) + 2e^-$$
 (2)

1.10 A concentrated solution of sodium chloride, NaCl(aq), undergoes electrolysis.

Which ONE of the combinations correctly shows the products formed at each electrode?

	CATHODE	ANODE
Α	Na	$C\ell_2$
В	H ₂	OH ⁻
С	Cl ₂	H₂ and OH¯
D	H₂ and OH ⁻	Cl ₂

(2) **[20]**

(2)

QUESTION 2 (Start on a new page.)

Study the table below and answer the questions that follow.

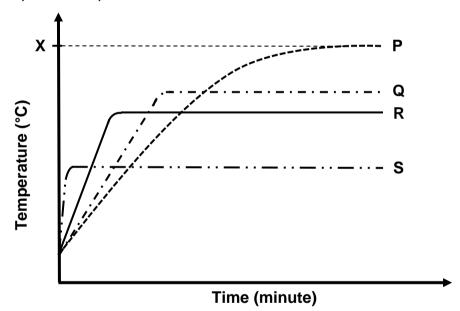
Α	H—C—H—H—H—H—H—H—H—H—H—H—H—H—H—H—H—H—H—H	В	H H H H H H H H H H H H H H H H H H H
С	C ₄ H ₈ O	D	CH ₃ (CH ₂) ₄ CHCH ₂
Ε	$C_XH_YO_Z$		

- 2.1 Define the term *unsaturated* hydrocarbon.
- 2.2 Write down the:
 - 2.2.1 Letter that represents an UNSATURATED hydrocarbon (1)
 - 2.2.2 IUPAC name of compound **A** (3)
 - 2.2.3 IUPAC name of the POSITIONAL isomer of compound **B** (2)
 - 2.2.4 IUPAC name of compound **D** (2)
 - 2.2.5 Balanced equation, using MOLECULAR FORMULAE, for the complete combustion of compound **A** (3)
- 2.3 The formula C₄H₈O represents two compounds that are functional isomers of each other.
 - 2.3.1 Define the term *functional isomer*. (2)
 - 2.3.2 Write down the STRUCTURAL FORMULAE of each of these two FUNCTIONAL isomers. (4)
- 2.4 A 2 g sample of compound **E** contains 1,09 g carbon and 0,18 g hydrogen. The molecular mass of compound **E** is 88 g·mol⁻¹.
 - Determine the molecular formula of compound **E** by means of a calculation. (6) [25]

Physical Sciences/P2 DBE/2023

QUESTION 3 (Start on a new page.)

Learners investigate the boiling points of the four organic compounds given below.


ORGANIC COMPOUND	MOLECULAR MASS (g·mol ⁻¹)
Butanone	72
Butan-1-ol	74
Propanoic acid	74
2-methylpropan-1-ol	74

3.1 Define the term boiling point. (2)

3.2 Which compound, butan-1-ol or 2-methylpropan-1-ol, will have the higher boiling point? Fully explain the answer.

(4)

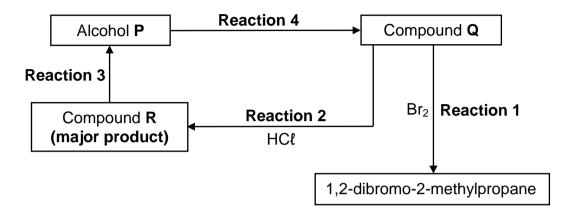
The curves P, Q, R and S below were obtained from the results of the investigation. **X** represents a specific temperature.

Which physical property is represented by temperature X? 3.3 (1)

Which curve (P, Q, R or S) represents: 3.4

> 3.4.1 **Butanone** (1)

> 3.4.2 Propanoic acid (1)


> 3.4.3 2-methylpropan-1-ol (1)

3.5 Give a reason for the answer to QUESTION 3.4.2. (1) [11]

Physical Sciences/P2 SC/NSC

QUESTION 4 (Start on a new page.)

4.1 The flow diagram below shows different organic reactions. P, Q and R are organic compounds.

Reaction 1 is an addition reaction.

Write down:

- 4.1.1 The TYPE of addition reaction (1)
- 4.1.2 ONE observable change which occurs in the container during the reaction (1)
- 4.1.3 The STRUCTURAL FORMULA of compound Q (2)

Consider reaction 2.

4.1.4 Write down the IUPAC name of compound R. (2)

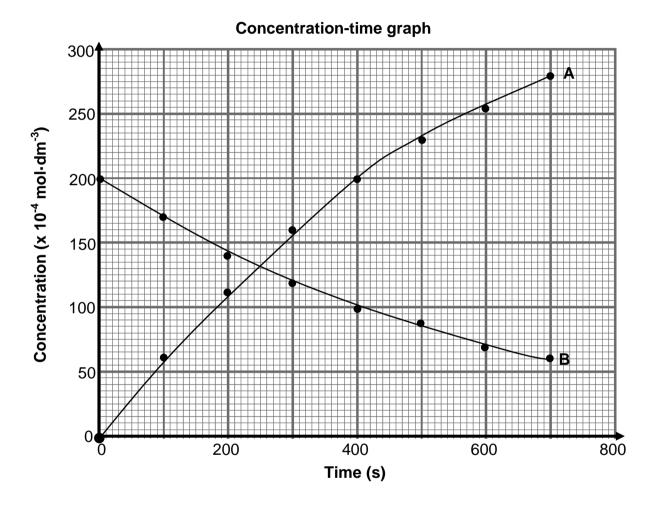
For **reaction 3**, write down:

- 4.1.5 A balanced equation using STRUCTURAL FORMULAE for the organic compounds (6)
- 4.1.6 The IUPAC name of alcohol P (2)

Reaction 4 is an elimination reaction.

- 4.1.7 Write down the TYPE of elimination reaction. (1)
- 4.2 Butan-1-ol reacts with propanoic acid in the presence of a catalyst.

Write down the:


- 4.2.1 TYPE of reaction that takes place (1)
- 4.2.2 IUPAC name of the organic product formed (2)[18]

QUESTION 5 (Start on a new page.)

Consider the following decomposition reaction that takes place in a sealed 2 dm³ container:

$$2N_2O_5(g) \ \to \ 4NO_2(g) \ + \ O_2(g)$$

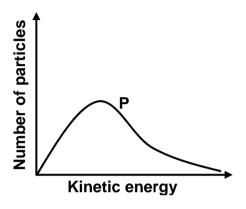
The graph below shows how the concentrations of $N_2O_5(g)$ and $NO_2(g)$ change with time.

Refer to the graph above and give a reason why curve **A** represents the change in the concentration of $NO_2(g)$.

5.2 Consider the statement below:

The rate of decomposition of $N_2O_5(g)$ is half the rate of formation of $NO_2(g)$.

Is this statement TRUE or FALSE? Give a reason for the answer. (2)


(1)

5.3 Calculate the:

5.3.1 Mass of $NO_2(g)$ present in the container at 400 s (4)

5.3.2 Average rate of production of $O_2(g)$ in mol·dm⁻³·s⁻¹ in 700 s (4)

The Maxwell-Boltzmann distribution curve for the $N_2O_5(g)$ initially present in the container is shown below.

The initial concentration of the $N_2O_5(g)$ is now INCREASED.

5.4.1 Redraw the distribution curve above in the ANSWER BOOK and label this curve as **P**.

On the same set of axes, sketch the curve that will be obtained for the higher concentration of $N_2O_5(g)$. Label this curve as **Q**. (2)

[16]

5.4.2 Will the rate of decomposition of $N_2O_5(g)$ at the higher concentration be HIGHER THAN, LOWER THAN or EQUAL TO the original rate of decomposition? Explain the answer using the collision theory. (3)

QUESTION 6 (Start on a new page.)

One mole of pure hydrogen iodide gas, HI(g), is sealed in a 1 dm³ container at 721 K. Equilibrium is reached according to the following balanced equation:

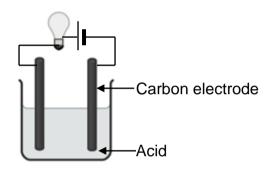
$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

It is found that 0,11 moles of I₂(g) are present at equilibrium.

- 6.1 State Le Chatelier's principle. (2)6.2 Determine the number of moles of EACH of the following at equilibrium:
 - 6.2.1 $H_2(g)$ (1)
 - 6.2.2 HI(g) (1)
- 6.3 The equilibrium constant, K_c, at 721 K is 0,02.

The temperature of the container is now increased to 850 K. The equilibrium constant, K_c , at 850 K is 0,09.

- 6.3.1 Is the forward reaction EXOTHERMIC or ENDOTHERMIC? (1)
- 6.3.2 Fully explain the answer to QUESTION 6.3.1. (3)
- 6.3.3 Calculate the mass of HI(g) present at the new equilibrium at 850 K. (8)


Physical Sciences/P2 DBE/2023

QUESTION 7 (Start on a new page.)

7.1 The conductivity of three acid solutions, A, B and C, as shown below is investigated at the same temperature.

Α	0,1 mol⋅dm ⁻³ H ₂ SO ₄ (aq)
В	0,1 mol·dm ⁻³ HNO₃(aq)
С	0,1 mol·dm ⁻³ CH ₃ COOH(aq)

The brightness of the bulb in the apparatus shown below is used as a measure of the conductivity of the solutions.

The acid solutions are electrolytes.

7.1.1 Define the term electrolyte. (2)

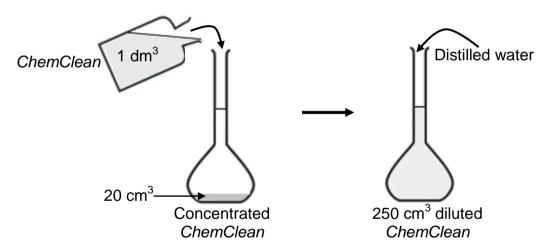
The brightness of the bulb for each of the solutions is compared.

- 7.1.2 In which solution, **A** or **B**, will the bulb be brighter? Give a reason for the answer by referring to the types of acids. (2)
- 7.1.3 In which solution, **B** or **C**, will the bulb be brighter? Give a reason for the answer by referring to the types of acids. (2)

7.2 A hydrochloric acid solution, HCl(aq), is standardised by titrating it against 25 cm³ of a 0,04 mol·dm⁻³ sodium carbonate solution Na₂CO₃(aq). At the endpoint, it is found that 19,5 cm³ of HCl(aq) has reacted.

The balanced equation for the reaction is:

$$Na_2CO_3(aq) + 2HC\ell(aq) \rightarrow 2NaC\ell(aq) + CO_2(g) + H_2O(\ell)$$


- 7.2.1 Calculate the concentration of the HCl(aq).
- 7.2.2 Suppose a few drops of water were present in the burette before it was filled with the hydrochloric acid solution.

How will the volume of the HCl solution needed to reach the endpoint be affected?

Choose from GREATER THAN, SMALLER THAN or REMAINS THE SAME. Give a reason for the answer.

A concentrated household product, *ChemClean*, contains ammonia as the main cleaning agent. To determine the amount of ammonia present in 1 dm³ of *ChemClean*, the following procedure is followed:

20 cm³ of *ChemClean* is added to a 250 cm³ flask. The flask is then filled to the 250 cm³ mark with distilled water.

The diluted solution is titrated against the hydrochloric acid solution of the concentration as calculated in QUESTION 7.2.1.

During the titration, 22 cm³ of the diluted *ChemClean* solution is neutralised by 18,7 cm³ of the HCl solution. The balanced equation for the reaction is:

$$NH_3(aq) + HC\ell(aq) \rightarrow NH_4^+(aq) + C\ell^-(aq)$$

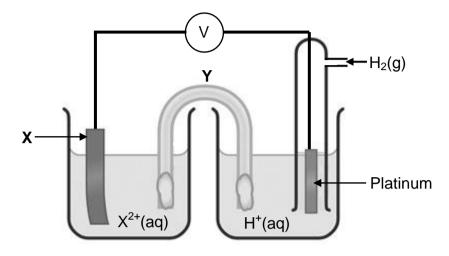
7.2.3 Calculate the mass of ammonia in 1 dm³ of *ChemClean*.

7.2.4 Will the pH of the solution at the end of the titration be GREATER THAN 7, EQUAL TO 7 or LESS THAN 7?

Write down the relevant equation as motivation for the answer. (3)

[21]

(7)


(3)

(2)

QUESTION 8 (Start on a new page.)

Learners want to identify an unknown metal **X** using a standard half-cell, X | X²⁺.

They set up an electrochemical cell under standard conditions using two half-cells, as shown in the diagram below.

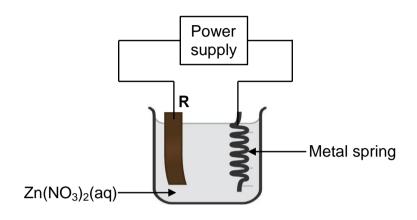
The initial emf of this cell is 1,20 V.

- 8.1 State the standard conditions under which this cell functions. (3)
- 8.2 State ONE function of component **Y**. (1)

After the cell has operated for some time, it is found that the mass of electrode **X** has increased.

- 8.3 Identify **X** by means of a suitable calculation. (5)
- 8.4 Write down the oxidation half-reaction that takes place in this cell. (2)

Half-cell $X \mid X^{2+}$ is now replaced by an $Au \mid Au^{3+}$ half-cell.


The initial emf of the cell is now 1,50 V. As the cell operates, the Au electrode increases in mass.

8.5 Arrange the oxidising agents, X^{2+} , Au^{3+} and H^+ , in order of increasing strength.

Fully explain the answer. (3) [14]

QUESTION 9 (Start on a new page.)

The simplified electrolytic cell below is used to electroplate a metal spring. Zinc nitrate, $Zn(NO_3)_2(aq)$, is used as an electrolyte and **R** is an electrode.

- 9.1 Define the term *electrolytic cell.* (2)
- 9.2 Which electrode (**R** or **METAL SPRING**) is the ANODE? Give a reason for the answer. (2)
- 9.3 Write down the:
 - 9.3.1 Equation for the half-reaction occurring at the metal spring (2)
 - 9.3.2 NAME or FORMULA of a suitable metal that can be used as electrode **R** (1)
- 9.4 Explain the answer to QUESTION 9.3.2. (2)

TOTAL: 150

[9]

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

DBE/2023

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE			
Standard pressure Standaarddruk	p ^θ	1,013 x 10⁵ Pa			
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹			
Standard temperature Standaardtemperatuur	Τ ^θ	273 K			
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C			
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹			

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	$pH = -log[H_3O^+]$
$K_{\rm w} = [H_3 O^{\dagger}][OH^{-}] = 1 \times 10^{-14} \text{ at/by } 298$	зк
$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} / E^{\theta}_{sel} = E^{\theta}_{katode} -$	E^{θ}_{anode}
	$_{ m e}-{\sf E}_{ m oksidasie}^{ m heta}$
	$=E^{ heta}_{ ext{oksideemiddel}}-E^{ heta}_{ ext{reduseemiddel}}$
$I = \frac{Q}{\Delta t}$	$n = \frac{Q}{q_e}$ where $n =$ number of electrons

SC/NSC

TABLE 3: THE PERIODIC TABLE OF ELEMENTS

TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (I)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
		-	(,							Δ	tomic r	umber				()	(,	(•)	(**)	(•)	
	1							KEY/SL	EUTEL	•	Atoom										2
2,1	Н										1	901									He
` `	1																				4
	3		4	1				Flectr	onegat	ivitv	29	Sv	mbol			5	6	7	8	9	10
1,0	Li	1,5	Ве						onegati		ಕ್ಕ್ Cn		mbool			0,2 B	2,5 C	င္တံ N	3,5	6. E	Ne
_		_						Licka	nicgati	WitCit	63,5	5 5"	110001						1	-	
	7		9													11	12	14	16	19	20
	11	~	12						A			1 :				13	14	15	16	17	18
6,0	Na	1,2	Mg							oximate						1 ∀ €			S ,5	္တိ ငန	Ar
	23		24						Bena	aderde r	elatiewe	e atoom	massa			27	28	31	32	35,5	40
	19		20		21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
0,8	K	1,0	Ca	1,3	Sc	1,5	Ti	ہ ۸	^e Cr	ನ್ Mu	[∞] Fe	² Co	² Ni	್ಲ್ Cu	<u>د</u> Zn	^o Ga	∞. Ge	% As	% Se	[∞] , Br	Kr
	39	•	40		45		48	51	52	55	56	59	59	63,5	I -	70	73	75	79	80	84
	37		38		39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
8,0	Rb	1,0	Sr	1,2	Υ	4,	Zr	Nb	∞ Mo	_	₹ Ru	% Rh	² Pd	್ಲಿ Ag	⊱ Cd	۲ In		_		2,5	Xe
0	86	7	88	7	89	7	91	92	96		101	103	106	108	112	115	119	122	128	127	131
	55				57		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
_		6			_	9								_		_					
0,7	Cs	6,0	Ba		La	1,6	Hf	Та	W	Re	Os	l Ir	Pt	Au		~ Tℓ	1 -		% Po	St At	Rn
	133		137		139		179	181	184	186	190	192	195	197	201	204	207	209			
	87		88		89																
0,7	Fr	6,0	Ra		Ac			58	59	60	61	62	63	64	65	66	67	68	69	70	71
			226					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb		Ho	Er	Tm	Yb	Lu
											PIII					Dy					
								140	141	144		150	152	157	159	163	165	167	169	173	175
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232		238											
																<u> </u>					

3 SC/NSC TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

BEL 4A: STANDAA			
Half-reactions	/Hal	freaksies	Ε ^θ (V)
$F_2(g) + 2e^-$	=	2F ⁻	+ 2,87
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
$H_2O_2 + 2H^+ + 2e^-$	=	2H₂O	+1,77
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51
$Cl_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20
$Br_2(\ell) + 2e^-$	\Rightarrow	2Br ⁻	+ 1,07
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	=	$NO(g) + 2H_2O$	+ 0,96
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
$Ag^+ + e^-$	=	Ag	+ 0,80
$NO_3^- + 2H^+ + e^-$	=	$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
$O_2(g) + 2H^+ + 2e^-$	=	H_2O_2	+ 0,68
$I_2 + 2e^-$	=	2I ⁻	+ 0,54
Cu ⁺ + e [−]	=	Cu	+ 0,52
$SO_2 + 4H^+ + 4e^-$	\Rightarrow	$S + 2H_2O$	+ 0,45
$2H_2O + O_2 + 4e^-$	\Rightarrow	40H ⁻	+ 0,40
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14
2H ⁺ + 2e ⁻	=	H₂(g)	0,00
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
Ni ²⁺ + 2e ⁻	\Rightarrow	Ni	- 0,27
Co ²⁺ + 2e ⁻	=	Со	- 0,28
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻ Cr ³⁺ + 3e ⁻	=	Fe	- 0,44
Zn ²⁺ + 2e ⁻	=	Cr Zn	- 0,74
2h + 2e 2H ₂ O + 2e ⁻	=	Zn	- 0,76
2H ₂ O + 2e Cr ²⁺ + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83
Mn ²⁺ + 2e ⁻	=	Cr Mn	– 0,91 – 1,18
$Al^{3+} + 3e^{-}$	=	Al	– 1,16 – 1,66
$Mg^{2+} + 2e^{-}$	=	Mg	- 1,00 - 2,36
Na ⁺ + e ⁻	#	Na	- 2,30 - 2,71
Ca ²⁺ + 2e ⁻	=	Ca	- 2,71 - 2,87
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Cs ⁺ + e ⁻	=	Cs	- 2,92
K ⁺ + e ⁻	=	K	- 2,93
Li ⁺ + e ⁻	=	Li	- 3,05
	-		-,

Increasing strength of reducing agents / Toenemende sterkte van reduseermiddels

Increasing strength of oxidising agents /Toenemende sterkte van oksideermiddels

Increasing strength of oxidising agents /Toenemende sterkte van oksideermiddels

Half-reactions/Halfreaksies	BEL 4B: STANDAARD-REDUKSIEPOTENSIA				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Half-reactions/	Hal	freaksies	Ε ^θ (V)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Li ⁺ + e ⁻	=	Li	- 3,05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K⁺ + e⁻	=	K	- 2,93	
$Sr^{2+} + 2e^{-} = Sr$ $Ca^{2+} + 2e^{-} = Ca$ $Na^{+} + e^{-} = Na$ $At^{3+} + 3e^{-} = At$ $Mg^{2+} + 2e^{-} = Mg$ $At^{3+} + 3e^{-} = At$ $Mn^{2+} + 2e^{-} = Mn$ $-1,18$ $Cr^{2+} + 2e^{-} = Cr$ $-0,91$ $2H_2O + 2e^{-} = H_2(g) + 2OH^{-}$ $-0,83$ $Zn^{2+} + 2e^{-} = Cr$ $-0,76$ $Cr^{3+} + 3e^{-} = Cr$ $-0,76$ $Cr^{3+} + 2e^{-} = Cr$ $-0,74$ $Fe^{2+} + 2e^{-} = Cr$ $-0,44$ $Cr^{2+} + e^{-} = Cr^{2+}$ $-0,41$ $Cd^{2+} + 2e^{-} = Cd$ $-0,40$ $Co^{2+} + 2e^{-} = Sn$ $-0,14$ $Pb^{2+} + 2e^{-} = Sn$ $-0,14$ $Pb^{2+} + 2e^{-} = Pb$ $-0,13$ $Fe^{3+} + 3e^{-} = Fe$ $2H^{+} + 2e^{-} = H_2(g)$ $S + 2H^{+} + 2e^{-} = Sn^{2+}$ $-0,06$ $2H^{+} + 2e^{-} = Cu^{+}$ $SO^{4-}_{4} + 4H^{+} + 2e^{-} = Cu^{+}$ $SO^{4-}_{4} + 4H^{+} + 4e^{-} = S + 2H_2O$ $Cu^{4+} + e^{-} = Cu$ $12 + 2e^{-} = 2I^{-}$ $0,2(g) + 2H^{+} + 2e^{-} = H_2(g)$ $-0,2(g) + 2H^{+} + 2e^{-} = H_2(g)$ $-0,2(g) + 2H^{+} + 2e^{-} = Cu$ $-0,2(g) + 2H^{+} + 2e^{-} = H_2(g)$ $-0,00$ $-0,$		=	Cs	- 2,92	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Ва	- 2,90	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Sr	- 2,89	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca ²⁺ + 2e ⁻	=	Ca	- 2,87	
$At^{3+} + 3e^{-} = At$ $Mn^{2+} + 2e^{-} = Mn$ $Cr^{2+} + 2e^{-} = Cr$ $2H_2O + 2e^{-} = H_2(g) + 2OH^{-}$ $2H_2O + 2e^{-} = Tn$ $2H_2O + 2e^{-} = Tn$ $2H_2O + 2e^{-} = Tn$ -0.76 $Cr^{3+} + 3e^{-} = Cr$ -0.74 $Fe^{2+} + 2e^{-} = Fe$ -0.44 $Cr^{3+} + e^{-} = Cr^{2+}$ -0.41 $Cd^{2+} + 2e^{-} = Cd$ -0.28 $Ni^{2+} + 2e^{-} = Ni$ -0.27 $Sn^{2+} + 2e^{-} = Ni$ -0.27 $Sn^{2+} + 2e^{-} = Sn$ -0.14 $Pb^{2+} + 2e^{-} = Pb$ -0.13 $Fe^{3+} + 3e^{-} = Fe$ $2H^{+} + 2e^{-} = H_2(g)$ $S + 2H^{+} + 2e^{-} = Sn^{2+}$ -0.06 $2H^{+} + 2e^{-} = Sn^{2+}$ -0.06 $2H^{+} + 2e^{-} = Sn^{2+}$ -0.06 $S^{2-} + 4H^{+} + 2e^{-} = SO_2(g) + 2H_2O$ $Cu^{2+} + e^{-} = Cu$ $2H_2O + O_2 + 4e^{-} = 4OH^{-}$ $SO_2 + 4H^{+} + 4e^{-} = S + 2H_2O$ -0.45 $Cu^{4+} + e^{-} = Cu$ -0.40 $SO_2 + 4H^{+} + 4e^{-} = S + 2H_2O$ -0.06 -0.07 -0.09 $S + 2H^{+} + 2e^{-} = Ru$ -0.06 $SO_2 + 4H^{+} + 4e^{-} = S + 2H_2O$ -0.06 -0.00 $-$		=	Na	- 2,71	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	=	Mg	- 2,36	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Αℓ	- 1,66	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Mn		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Cr		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\Rightarrow	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\Rightarrow			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\Rightarrow			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\Rightarrow			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$Sn^{4+} + 2e^{-} = Sn^{2+} + 0,15$ $Cu^{2+} + e^{-} = Cu^{+} + 0,16$ $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O + 0,17$ $Cu^{2+} + 2e^{-} = Cu + 0,34$ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-} + 0,40$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O + 0,45$ $Cu^{+} + e^{-} = Cu + 0,52$ $I_{2} + 2e^{-} = 2I^{-} + 0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2} + 0,68$ $Fe^{3+} + e^{-} = Fe^{2+} + 0,77$ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O + 0,80$ $Ag^{+} + e^{-} = Ag + 0,80$ $Hg^{2+} + 2e^{-} = Hg(l) + 0,85$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O + 0,96$ $Br_{2}(l) + 2e^{-} = 2Br^{-} + 1,07$ $Pt^{2+} + 2e^{-} = Pt + 1,20$ $MnO_{2} + 4H^{+} + 2e^{-} = Mn^{2+} + 2H_{2}O + 1,23$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O + 1,23$ $Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O + 1,33$ $Cl_{2}(g) + 2e^{-} = 2Cl^{-} + 1,36$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O + 1,51$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O + 1,77$ $Co^{3+} + e^{-} = Co^{2+} + 1,81$		•			
$Cu^{2+} + e^{-} = Cu^{+}$ $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O$ $Cu^{2+} + 2e^{-} = Cu$ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-}$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O$ $Cu^{+} + e^{-} = Cu$ $1_{2} + 2e^{-} = 2I^{-}$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2}$ $1_{2} + 2e^{-} = Fe^{2+}$ $O_{2}(g) + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O$ $Ag^{+} + e^{-} = Ag$ $Hg^{2+} + 2e^{-} = Hg(\ell)$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O$ $Br_{2}(\ell) + 2e^{-} = 2Br^{-}$ $Pt^{2+} + 2e^{-} = Pt$ $MnO_{2} + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + 4H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O$ $Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = Mn^{2+} + 4H_{2}O$ $O_{3}^{2} + 2e^{-} = 2H_{2}O$ $O_{4} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O$ $O_{5}^{2} + 2H^{+} + 2e^{-} = 2H_{2}O$ $O_{7}^{2} + 14H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O$ $O_{1}^{2} + 2H^{+} + 2e^{-} = 2H_{2}O$ $O_{1}^{2} + 2H^{+} + 2e^{-} = 2H_{2}O$ $O_{2}^{2} + 14H^{+} + 6e^{-} = 2Cr^{2}$ $O_{3}^{2} + 2e^{-} = 2H_{2}O$ $O_{1}^{2} + 14H^{2} + 6e^{-} = 2Cr^{2}$ $O_{2}^{2} + 14H^{2} + 6e^{-} = 2Cr^{2}$ $O_{1}^{2} + 14H^{2} + 6e^{-} = 2Cr^{2}$ $O_{2}^{2} + 14H^{2} + 6e^{-} = 2Cr^{2}$ $O_{1}^{2} + 14H^{2} + 6e^{-} = 2Cr^{2}$ $O_{2}^{2} + 14H^{2} + 6e^{-} = 2Cr^{2}$ $O_{3}^{2} + 14H^{2} + 6e^{-} = 2Cr^{2}$ $O_{4}^{2} + 14H^{2} + $					
$SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O$ $Cu^{2+} + 2e^{-} = Cu$ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-}$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O$ $Cu^{+} + e^{-} = Cu$ $1_{2} + 2e^{-} = 2I^{-}$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2}$ $Fe^{3+} + e^{-} = Fe^{2+}$ $Ag^{+} + e^{-} = Ag$ $Hg^{2+} + 2e^{-} = Hg(\ell)$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O$ $Br_{2}(\ell) + 2e^{-} = 2Br^{-}$ $Pt^{2+} + 2e^{-} = Pt$ $MnO_{2} + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + 4H^{+} + 6e^{-} = 2Fe^{2+}$ $O_{2}(g) + 4H^{+} + 4e^{-} = 4H_{2}O$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + 4H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O$ $C\ell_{2}(g) + 2e^{-} = 2C\ell^{-}$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = Mn^{2+} + 4H_{2}O$ $H_{3}O_{4} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O$ $H_{3}O_{4} + 8H^{+} + 5e^{-} = 4H_{2}O$ $H_{3}O_{4} + 8H^{+} + 5e^{-} = 4H_{2}O$ $H_{4}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O$ $H_{5}O_{2} + H_{5}O_{2} + H_{5}O_{3}O_{2}O_{2}O_{3}O_{3}O_{4}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{rclcrcl} 2H_2O + O_2 + 4e^- & = & 4OH^- \\ SO_2 + 4H^+ + 4e^- & = & S + 2H_2O \\ & Cu^+ + e^- & = & Cu \\ & I_2 + 2e^- & = & 2I^- \\ O_2(g) + 2H^+ + 2e^- & = & H_2O_2 \\ & Fe^{3+} + e^- & = & Fe^{2+} \\ & + 0,77 \\ NO_3^- + 2H^+ + e^- & = & NO_2(g) + H_2O \\ & Ag^+ + e^- & = & Ag \\ & Hg^{2+} + 2e^- & = & Hg(\ell) \\ & NO_3^- + 4H^+ + 3e^- & = & NO(g) + 2H_2O \\ & Br_2(\ell) + 2e^- & = & 2Br^- \\ & Pt^{2+} + 2e^- & = & Pt \\ & MnO_2 + 4H^+ + 2e^- & = & Mn^{2+} + 2H_2O \\ O_2(g) + 4H^+ + 4e^- & = & 2H_2O \\ & Cr_2O_7^- + 14H^+ + 6e^- & = & 2Cr^{3+} + 7H_2O \\ & Cl_2(g) + 2e^- & = & 2C\ell^- \\ & & & + 1,33 \\ & Cl_2(g) + 2e^- & = & 2H_2O \\ & & & + 1,36 \\ & MnO_4^- + 8H^+ + 5e^- & = & Mn^{2+} + 4H_2O \\ & & & + 1,51 \\ & & & & + 1,77 \\ & & & & & & + 1,81 \\ \end{array}$	· ·				
$SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O$ $Cu^{+} + e^{-} = Cu$ $I_{2} + 2e^{-} = 2I^{-}$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2}$ $Fe^{3+} + e^{-} = Fe^{2+}$ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O$ $Ag^{+} + e^{-} = Ag$ $Hg^{2+} + 2e^{-} = Hg(\ell)$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O$ $Br_{2}(\ell) + 2e^{-} = 2Br^{-}$ $Pt^{2+} + 2e^{-} = Pt$ $MnO_{2} + 4H^{+} + 2e^{-} = Mn^{2+} + 2H_{2}O$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O$ $Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O$ $Cl_{2}(g) + 2e^{-} = 2C\ell^{-}$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = Mn^{2+} + 4H_{2}O$ $Cl_{2}(g) + 2e^{-} = 2C\ell^{-}$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O$ $H_{3}O_{2} + H_{3}O_{2} + H_{3}O_{2}$ $H_{4}O_{2} + H_{4}O_{2} + H_{4}O_{2} + H_{5}O_{2}$ $H_{5}O_{2} + H_{5}O_{2} + H_{5}O_{2}$ $H_{7}O_{2} + H_{7}O_{2} + H_{7}O_{2}$ $H_{7}O_{3}O_{2}O_{2}O_{2}O_{3}O_{2}O_{2}O_{2}O_{3}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{rclcrcl} I_2 + 2e^- & \rightleftharpoons & 2I^- \\ O_2(g) + 2H^+ + 2e^- & \rightleftharpoons & H_2O_2 \\ Fe^{3+} + e^- & \rightleftharpoons & Fe^{2+} \\ NO_3^- + 2H^+ + e^- & \rightleftharpoons & NO_2(g) + H_2O \\ Ag^+ + e^- & \rightleftharpoons & Ag \\ Hg^{2+} + 2e^- & \rightleftharpoons & Hg(\ell) \\ & & & & + 0,80 \\ Hg^{2+} + 2e^- & \rightleftharpoons & Hg(\ell) \\ & & & + 0,85 \\ NO_3^- + 4H^+ + 3e^- & \rightleftharpoons & NO(g) + 2H_2O \\ Br_2(\ell) + 2e^- & \rightleftharpoons & 2Br^- \\ Pt^{2+} + 2 e^- & \rightleftharpoons & Pt \\ MnO_2 + 4H^+ + 2e^- & \rightleftharpoons & Mn^{2+} + 2H_2O \\ O_2(g) + 4H^+ + 4e^- & \rightleftharpoons & 2H_2O \\ Cr_2O_7^{2-} + 14H^+ + 6e^- & \rightleftharpoons & 2Cr^{3+} + 7H_2O \\ Cl_2(g) + 2e^- & \rightleftharpoons & 2C\ell^- \\ MnO_4^- + 8H^+ + 5e^- & \rightleftharpoons & Mn^{2+} + 4H_2O \\ H_2O_2 + 2H^+ + 2 e^- & \rightleftharpoons & 2H_2O \\ Co^{3+} + e^- & \rightleftharpoons & Co^{2+} \\ \end{array}$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$Fe^{3+} + e^{-} \Rightarrow Fe^{2+} + 0,77$ $NO_{3}^{-} + 2H^{+} + e^{-} \Rightarrow NO_{2}(g) + H_{2}O + 0,80$ $Ag^{+} + e^{-} \Rightarrow Ag + 0,80$ $Hg^{2+} + 2e^{-} \Rightarrow Hg(\ell) + 0,85$ $NO_{3}^{-} + 4H^{+} + 3e^{-} \Rightarrow NO(g) + 2H_{2}O + 0,96$ $Br_{2}(\ell) + 2e^{-} \Rightarrow 2Br^{-} + 1,07$ $Pt^{2+} + 2e^{-} \Rightarrow Pt + 1,20$ $MnO_{2} + 4H^{+} + 2e^{-} \Rightarrow Mn^{2+} + 2H_{2}O + 1,23$ $O_{2}(g) + 4H^{+} + 4e^{-} \Rightarrow 2H_{2}O + 1,23$ $Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} \Rightarrow 2Cr^{3+} + 7H_{2}O + 1,33$ $C\ell_{2}(g) + 2e^{-} \Rightarrow 2C\ell^{-} + 1,36$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \Rightarrow Mn^{2+} + 4H_{2}O + 1,51$ $H_{2}O_{2} + 2H^{+} + 2e^{-} \Rightarrow 2H_{2}O + 1,77$ $Co^{3+} + e^{-} \Rightarrow Co^{2+} + 1,81$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$NO_3^- + 2H^+ + e^-$	=			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Ag^+ + e^-$	=	Ag	+ 0,80	
$\begin{array}{rclcrcl} Br_2(\ell) + 2e^- & = & 2Br^- \\ Pt^{2^+} + 2e^- & = & Pt \\ MnO_2 + 4H^+ + 2e^- & = & Mn^{2^+} + 2H_2O \\ O_2(g) + 4H^+ + 4e^- & = & 2H_2O \\ Cr_2O_7^{2^-} + 14H^+ + 6e^- & = & 2Cr^{3^+} + 7H_2O \\ C\ell_2(g) + 2e^- & = & 2C\ell^- \\ MnO_4^- + 8H^+ + 5e^- & = & Mn^{2^+} + 4H_2O \\ H_2O_2 + 2H^+ + 2e^- & = & 2H_2O \\ Co^{3^+} + e^- & = & Co^{2^+} \\ \end{array} \begin{array}{rcl} + 1,07 \\ + 1,23 \\ + 1,23 \\ + 1,33 \\ + 1,36 \\ + 1,51 \\ + 1,77 \\ - 1,51 \\ + 1,77 \\ - 1,81 \end{array}$	Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$NO_3^- + 4H^+ + 3e^-$	=	$NO(g) + 2H_2O$	+ 0,96	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20	
$Cr_2O_7^{2-} + 14H^+ + 6e^- = 2Cr^{3+} + 7H_2O$ + 1,33 $C\ell_2(g) + 2e^- = 2C\ell^-$ + 1,36 $MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$ + 1,51 $H_2O_2 + 2H^+ + 2e^- = 2H_2O$ + 1,77 $Co^{3+} + e^- = Co^{2+}$ + 1,81	$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23	
$C\ell_2(g) + 2e^- = 2C\ell^- + 1,36$ $MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O + 1,51$ $H_2O_2 + 2H^+ + 2e^- = 2H_2O + 1,77$ $Co^{3+} + e^- = Co^{2+} + 1,81$	$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23	
$MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O$ + 1,51 $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O$ + 1,77 $Co^{3+} + e^{-} = Co^{2+}$ + 1,81	$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	$2Cr^{3+} + 7H_2O$	+ 1,33	
$H_2O_2 + 2H^+ + 2e^- \Rightarrow 2H_2O$ +1,77 $Co^{3+} + e^- \Rightarrow Co^{2+}$ +1,81	$C\ell_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36	
$Co^{3+} + e^{-} = Co^{2+} + 1.81$	$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51	
		=	=		
$F_2(g) + 2e^- \Rightarrow 2F^- + 2.87$	Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81	
	$F_2(g) + 2e^-$	=	2F ⁻	+ 2,87	

Increasing strength of reducing agents / Toenemende sterkte van reduseermiddels