

ysics.com

education

Department of Education FREE STATE PROVINCE

GRADE 12

MATHEMATICS

MARCH TEST 2022

MARKS: 100 Stanmorephysics.com TIME: 2 hours

This question paper consists of 7 pages, 3 diagram sheets and 1 information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 7 questions.
- 2. Clearly show ALL calculations, diagrams, graphs, etc. that you have used to determine your answers.
- 3. Answers only will NOT necessarily be awarded full marks.
- If necessary, round off answers to TWO decimal places, unless stated otherwise. 4.
- 5. Diagrams are NOT necessarily drawn to scale.
- 6. You may use an approved scientific calculator (non-programmable non-graphical), unless stated otherwise.
- The answer sheets for question 5, 6 and 7 are included in the question paper. 7.
- downloaded from stammed and st An information sheet with formulae is included at the end of the question paper. 8.

9. Write neatly and legibly.

Solve for x: 1.1

1.1.1
$$x(x+6) = 0$$
 (2)

1.1.2
$$3x^2 + 8x = -2$$
 (correct tot TWO decimal places) (4)

1.1.3
$$x^2 - 64 \le 0$$
 (3)

1.1.4
$$\sqrt{x+5}+1=x$$
 (5)

1.2 Solve simultaneously for x and y in the following equations:

$$6x + 5xy - 5y = 8$$

$$x + y = 2$$
[20]

STION 2

Consider the quadratic number pattern: -20 ; -9 ; 0 ; 7 ;...

2.1.1 Determine the n th term.

(4)

2.1.2 Determine the position and the value of the term with the highest value.

[7]

$$x + y = 2$$

[20]

QUESTION 2

(3)

[7]

QUESTION 3

Given the following arithmetic sequence: 13;8;3;... 3.1

3.2 Prove that:
$$a+a+d+a+2d+...$$
 (to n terms) = $\frac{n}{2}[2a+(n-1)d]$ (4)

3.3 Consider the geometric series:
$$3 + m + \frac{m^2}{3} + \frac{m^3}{9} + ...$$

3.3.2 It is given that:
$$3 + m + \frac{m^2}{3} + \frac{m^3}{9} + ... = \frac{27}{7}$$

3.4 Determine the value of n if:

$$\sum_{r=1}^{n} 5.2^{1-r} = \frac{630}{64} \tag{6}$$

[21]

DO NOT USE A CALCULATOR FOR THIS QUESTION.

4.1 Given: $\tan \theta = \frac{3}{4}$; where $\theta \in [0, 90]$

With the use of a sketch and without the use of a calculator, calculate:

$$4.1.1 \quad \sin \theta \tag{3}$$

4.1.2
$$\cos^2(90^{\circ} - \theta) - 1$$
 (2)

4.1.3
$$1-\sin 2\theta$$
 (3)

4.2 Simplify completely:

$$\frac{\sin^2(90^\circ + \alpha) + \sin(180^\circ + \alpha)\sin(-\alpha)}{\sin 180^\circ - \tan 135^\circ}$$
 (5)

4.3 Prove the following identity:

$$\sin 2\theta + \cos(2\theta - 90^\circ) = 4\sin\theta\cos\theta \tag{3}$$

4.4 Solve for x if:

$$20^{\sin x} + 20^{\sin x + 1} = 420 \text{ for } -360^{\circ} \le x \le 360^{\circ}$$
 (5)

[21]

5.1 In the diagram below ABCD is a cyclic quadrilateral. RBP is a tangent to the circle with centre O. $B_4=30^{\circ}$ and $B_6=70^{\circ}$.

Determine with reasons the size of each of the following angles:

$$5.1.1 O_1$$
 (2)

$$5.1.2 \quad \widehat{A} \tag{2}$$

5.1.3
$$\hat{C}$$
 (2)

[8]

In the following diagram AD = 45 , BD = 60 , GC = 60 and FG = 20. $ABC = 30^{\circ}$.

Determine the size of

6.1 BF (4)
6.2 DE (3)
6.3 Calculate the area of $\triangle ABC$ (4)

[11]

In the diagram, DGFC is a cyclic quadrilateral and AB is a tangent to the circle at B. Chords DB and BC are drawn. DG produced and CF produced meet in E and DC is produced to A. EA \parallel GF

TOTAL: 100

ANSWER SHEET

LEARNER NAME:	GRADE 12:
---------------	-----------

	STATEMENT	REASON	
5.1			
			(2)
5.2			
			(2)
5.3			
			(2)
5.4			
			(2)
			[8]

ANSWER SHEET

	STATEMENT	REASON	
6.1			
			1
			1
			(4)
			-
6.2			
			(3)
			-
			-
6.3			
			-
			-
			1
			(4)
			-
			-
			[11]

Copyright reserved

QUESTION 7	ANSWER SHEET
LEARNER NAME:	GRADE 12:

	STATEMENT	REASON	
7.1			(1)
7.2			(1)
			(3)
7.3			
			(4)
7.4			
			(4)
			[12]

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$

$$A = P(1 - ni)$$

$$A = P(1-i)^{n}$$

$$A = P(1-ni)$$
 $A = P(1-i)^n$ $A = P(1+i)^n$

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq 2$$

$$S_n = \frac{a(r^n - 1)}{r}$$
 ; $r \ne 1$ $S_\infty = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x \left[\left(1 + i \right)^n - 1 \right]}{i}$$

$$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$v = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc.\cos A$$

area
$$\triangle ABC = \frac{1}{2} ab. sin C$$

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\bar{x} = \frac{\sum x}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Downloaded from Stanmorephysics.com

GRADE 12

MARKS: 100

These marking guidelines consists of 9 pages.

NOTE:

• If a candidate answers a question TWICE, only mark the FIRST attempt.

1.1.1	x(x+6)=0	✓ x = 0	
	x = 0 or x = -6	✓ x = -6	(2)
1.1.2	$3x^2 + 8x = -2$		
	$3x^2 + 8x + 2 = 0$	✓ standard form.	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	^2a	armorephysics.com.	
	$x = \frac{-8 \pm \sqrt{(8)^2 - 4(3)(2)}}{2(3)}$	substitution into the co	
	2(3)	V X = 0, 23	$\checkmark x = -2,90$
	x = 0,23 or x = -2,90		(4)
1.1.3	$x^2 - 64 \le 0$		
	$(x+8)(x-8) \leq 0$	✓ factors	
	Critical Values: –8 and 8		
	8	✓ diagram	
	$-8 \le x \le 8$ OR $[-8;8]$	✓ Answer	(3)
1.1.4	$x \sqrt{x+5} + 1 = x$		
	$\sqrt{x+5} = x-1$	✓ isolate $\sqrt{x+5}$	
	$(\sqrt{x+5})^{2} = (x-1)^{2}$ $x+5 = x^{2} - 2x + 1$	✓ squaring both sides	
	$x^2 - 3x - 4 = 0$	✓ standard form	
	(x-4)(x+1)=0	√factors	
	x = 4 or $x = -1$		
	$\therefore x = 4 \text{ but } x \neq -1$	√ conclusion	(5)
	I .		

1.2	6x + 5xy - 5y = 8 and $x + y = 2$	
	x = 2 - y(3)	✓ x – subject of the formula
	6(2-y)+5(2-y)y-5y=8	✓substitution
	$12-6y+10y-5y^2-5y=8$	
	$5y^2 + y - 4 = 0$	✓ standard form
	(5y-4)(y+1)=0	✓factors
	$y = \frac{4}{5} \text{ or } y = -1$	✓ y – values
	$x = \frac{6}{5}$ or $x = 3$	✓ x – values (6)
		[20]

2.1.1	-20; -9; 0; 7;	
	11 9 7	
	-2 -2	✓value of a
	2a = -2 $3(-1) + b = 11$	✓ value of b
	-1+14+c=-20	✓ value of c
	a = -1 $b = 14$	
	c = -7	Arr (4)
	$\therefore T_n = -n^2 + 14n - 7$	
2.1.2	$n = \frac{-b}{2a}$	$\sqrt{\frac{-14}{2(-1)}}$
	$=\frac{-14}{2(-1)}$	
	n = 7	✓value of n
	$T_7 = -(7)^2 + 14(7) - 7$	
	= 42	\checkmark Value of T_7 (3)
		[7]

3.1.1	13;8;3;		
	a=13 and $d=-5$	✓ d = -5	
	$T_n = a + (n-1)d$		
	$T_{50} = 13 + (50 - 1) - 5$	✓ substitution from the correct	
	$T_{50} = 57$	formula	
	1 ₅₀ = 57	✓Answer	(3)
3.1.2	$S_n = \frac{n}{2} [2a + (n-1)d]$		
	$S_{50} = \frac{50}{2} [2(13) + (50 - 1)(-5)]$	✓ Substitution from the correct	:
	_	formula	
	$S_{50} = -5475$	✓Answer	(2)
3.2	$S_n = a + (a+d) + (a+2d) + + (I-2d) + (I-d) + I(1)$	✓equation 1 and 2	
	$S_n = I + (I - d) + (I - 2d) +(a + 2d) + (a + d) + a(2)$		
	$2S_n = (a+I)+(a+1)+(a+I)+(a+I)+(a+I)+(a+I)$		
	$\therefore 2S_n = n(a+1)$	$\checkmark 2S_n = n(a+1)$	
	$\therefore S_n = \frac{n}{2}(a+1)$	✓dividing by 2	
	$\therefore S_n = \frac{n}{2} [a + a + (n-1)d]$	✓substitution of I	
	$\therefore S_n = \frac{n}{2} [2a + (n-1)d]$		(4)
3.3.1			
0.0.1	$3+m+\frac{m^2}{3}+\frac{m^3}{9}+$		
	$r = \frac{m}{3}$	$\checkmark r = \frac{m}{3}$	
	-1 <r<1< td=""><td></td><td></td></r<1<>		
	$-1 < r < 1$ $-1 < \frac{m}{3} < 1$ $-3 < m < 3$	✓substitution of r	
	-3 < m < 3	✓Answer	(3)

	Marking Guideline	
3.3.2	$S_{\infty} = \frac{a}{1-r}$ $\frac{27}{7} = \frac{3}{1-\frac{m}{3}}$	✓substitution
	$27 - \frac{27m}{3} = 21$ $27 - 9m = 21$ $6 = 9m$ $\therefore m = \frac{6}{9} = \frac{2}{3} = 0,67$	✓simplification
	9 3	✓ Answer (3)
2.4	$\sum_{r=1}^{n} 5 \cdot 2^{1-r} = 5 + \frac{5}{2} + \frac{5}{4} + \dots$ $a(1-r^{n})$	✓ expansion to THREE terms $ ✓ a = 2 \text{ and } r = \frac{1}{2} $
3.4	$S_{n} = \frac{a(1-r^{n})}{1-r}$ $\frac{630}{64} = \frac{5\left[1-\left(\frac{1}{2}\right)^{n}\right]}{1-\frac{1}{2}}$	✓ subst into the correct formula
	$\frac{63}{64} = 1 - \left(\frac{1}{2}\right)^n$ $(1)^n 1$	\checkmark simplification: $\frac{63}{64} = 1 - \left(\frac{1}{2}\right)^n$
	$\therefore \left(\frac{1}{2}\right)^n = \frac{1}{64}$ $\left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^6$	\checkmark same bases: $\left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^6$
	n = 6	✓ answer (6)
		F043
		[21]

4.1.1		
	$\frac{y}{\theta}$	√diagram
	$r^{2} = x^{2} + y^{2}$ $r^{2} = (4)^{2} + (3)^{2}$ $r = 5$	✓ r = 5
	$\sin\theta = \frac{3}{5}$	✓Answer (3)
4.1.2	$\cos^2(90^\circ - \theta) - 1$ $= \sin^2 \theta - 1$	$\checkmark \cos(90^{\circ} - \theta) = \sin \theta$
	$= \left(\frac{3}{5}\right)^2 - 1$	
	$=\frac{-16}{25}$	✓Answer (2)
4.1.3	$1-\sin 2\theta$ $=1-2\sin \theta \cos \theta$	✓double angle
	$=1-2\left(\frac{3}{5}\right)\left(\frac{4}{5}\right)$	✓substitution
	$=\frac{1}{25}$	✓Answer (3)
4.2	$\frac{\sin^2(90^\circ + \alpha) + \sin(180^\circ + \alpha)\sin(-\alpha)}{\sin 180^\circ - \tan 135^\circ}$	
	$= 4\sin\theta\cos\theta = \frac{\cos^2\alpha + (-\sin\alpha)(-\sin\alpha)}{0 - (-\tan45^\circ)}$	$\checkmark \cos^2 \alpha$ $\checkmark -\sin \alpha$
	$=\frac{\cos^2\alpha+\sin\alpha\sin\alpha}{0+1}$	$\checkmark \sin^2 \alpha$ $\checkmark \cos^2 \alpha + \sin^2 \alpha = 1$
	$=\frac{\cos^2\alpha+\sin^2\alpha}{1}$	✓Answer (5)
	= 1	

	Marking Guideline
$\sin 2\theta + \cos(2\theta - 90^\circ)$	

4.3	$\sin 2\theta + \cos(2\theta - 90^\circ)$			
	$=\sin 2\theta + \sin 2\theta$	✓ sin 2 θ		
	$= 2(2\sin\theta\cos\theta)$	$\checkmark 2\sin\theta\cos\theta$		
	$=4\sin\theta\cos\theta$	✓Answer (3)		
4.4	$20^{\sin x} + 20^{\sin x + 1} = 420 \text{ for } -360^{\circ} \le x \le 360^{\circ}$			
	$\therefore 20^{\sin x} (1+20) = 420$	✓split into a product of 2 bases		
	$\therefore 20^{\sin x} = 20$	✓simplification / factorisation		
	∴ sin x = 1	✓dividing by 21		
		✓ equating exponents		
	$x = 90^{\circ} \text{ ref } \angle$	✓both solutions		
	$x = -270^{\circ} \text{ or } x = 90^{\circ}$	(5)		
		[21]		

	D 2 1 2 F 2 T T T T T T T T T T T T T T T T T			
7.4	STATEMENT	REASON	(Dec	
7.1		tangent-chord theorem	√Rea	
7.0	La A ADC and A ADD			(1)
7.2	In \triangle ABC and \triangle ADB		(6	
	$\hat{A}_1 = \hat{A}_1$	common	√S	
	$\hat{\mathbf{B}}_1 = \hat{\mathbf{D}}_1$	proven	√ S	(0)
	∴ ΔABC ΔADB	∠; ∠; ∠	√R	(3)
7.3	$\hat{\mathbf{E}}_2 = \hat{\mathbf{F}}_1$	alternate ∠s; EA ∥ GF	√S	√R
	$\hat{F}_1 = \hat{D}_2$ $\therefore \hat{E}_2 = \hat{D}_2$	ext ∠ of cyc quad DGFC		
	$\therefore E_2 = D_2$		√S	√R
				(4)
7.4	In \triangle AEC and \triangle ADE :			
	$\hat{A}_2 = \hat{A}_2$	Common	√S	
	$\hat{E}_2 = \hat{D}_2$	proven	√S	
	∴△ AEC ΔADE AE AC	∠; ∠; ∠		
	$\therefore \frac{AE}{AD} = \frac{AC}{AE}$	from Δs	√S	
		✓Answer		swer
	·· AE — VAD X AC			(4)
				[12]