

JOHANNESBURG WEST DISTRICT

MARKS: 50 DURATION: 1 HOUR

This question paper consists of 6 pages including the formula sheet.

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of 6 questions.
- 2. Answer ALL the questions in your answer book.
- 3. Use the appropriate and correct numbering system as it is used on this paper.
- 4. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 7. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. An information sheet with formulae is included at the end of this paper.
- 10. It is in your own interest to write legibly and to present your work neatly.

Solve for x. 1.1

$$1.1.1 \quad x(2x-3) = 0 \tag{2}$$

1.1.1
$$x(2x-3) = 0$$
 (2)
1.1.2 $0 = 3x^2 - 5x - 11$ (3)
1.1.3 $x(3x+4) - 2(3x+4) \le 0$ (3)

$$1.1.3 \quad x(3x+4) - 2(3x+4) \le 0 \tag{3}$$

The roots of a quadratic equation, in terms of p, are given as: 1.2

$$x = \frac{4 \pm \sqrt{8 - p^3}}{p}$$

Determine the value(s) of p for the roots to be real.

[11]

(3)

QUESTION 2

The first four (4) terms of a quadratic pattern are: 11; 20; 33; 50; ...

- Determine the general term of this pattern in the form $T_n = an^2 + bn + c$. 2.1 (4)
- 2.2 Prove that the sum of the first n first-differences of this quadratic pattern can be given by $S_n = 2n^2 + 7n$. (2)

[6]

QUESTION 3

A convergent geometric series is given by: $\frac{5(x+1)}{3} + \frac{5(x+1)^2}{9} + \frac{5(x+1)^3}{27} + \dots$

3.1 Calculate the values of
$$x$$
. (3)

3.2 If
$$x = 1$$
, calculate the sum to infinity, S_{∞} . (2)

[5]

(1-x); (x+2) and (2x-5) are the first three (3) terms of an arithmetic sequence.

- 4.1 Determine the value of x. (3)
- 4.2 If the first three (3) terms of this pattern are: 9; -6; -21; ..., calculate the numerical value of the sum of the first 100 terms, S_{100} . (2)
- 4.3 Hence, or otherwise, calculate m if:

$$\sum_{n=0}^{m-1} (24 - 15n) = S_{100} + 73\,320 \tag{4}$$

[9]

QUESTION 5

The graph of $f(x) = \frac{2}{x+p} + q$ is sketched below:

- 5.1 Write down the values of p and q (2)
- 5.2 The straight line g(x) = -x + k is one of the axes of symmetry of the graph of f. Determine the value of k. (2)
- 5.3 If h(x) = -2[g(x)], determine the equation of the inverse of h, h^{-1} , in the form $h^{-1}(x) = mx + c$. (3)
- 5.4 Draw a neat sketch of the graphs of h and h^{-1} on the same set of axes. Clearly show all intercepts with axes, point of intersection and the axis of symmetry. (4)

[11]

[8]

QUESTION 6

The graphs of $f(x) = ax^2$ and $g(x) = b^x$ are sketched on the same set of axes. Points A(-1;2) and B are points of intersection of f and g. The graph of f has the turning point at the origin:

- 6.1 Calculate the values of a and b. (2)
- 6.2 The inverse of f is NOT a function. Write down at least one condition which can be used to restrict the domain of f such that its inverse will be a function. (1)
- 6.3 For which value(s) of x, where $x \in (-\infty; 0]$, will $g(x) \le f(x)$? (2)
- 6.4 If h(x) = g(x+3), write down the coordinates of ...
 - 6.4.1 A', the new coordinates of A on the graph of h. (1)
 - 6.4.2 A'', the new coordinates of A on the graph of h^{-1} , the inverse of h (2)

TOTAL = 50 MARKS

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ab) \qquad A = P(1-nb) \qquad A = P(1-r)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq 1 \qquad S_n = \frac{a}{1-r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n]}{i} \qquad P = \frac{x[-(1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In \Delta ABC : \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$area \ \Delta ABC = \frac{1}{2}ab \sin C$$

$$\sin(\alpha + \beta) = \sin\alpha .\cos\beta + \cos\alpha .\sin\beta \qquad \sin(\alpha - \beta) = \sin\alpha .\cos\beta - \cos\alpha .\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha .\cos\beta - \sin\alpha .\sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha .\cos\beta - \sin\alpha .\sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos$$

JOHANNESBURG WEST DISTRICT

MARKING MEMORANDUM CONTROLLED TEST 1 01 MARCH 2023

GRADE 12

MATHEMATICS

MARKS: 50

This Marking Guidelines consists of 6 pages including this cover page.

IMPORTANT NOTES AND INFORMATION

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Accept any other Mathematically valid attempt which yields a correct answer and credit full marks.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming answers/values in order to solve a problem is NOT acceptable.

OUESTION 1

Q0E3110N1			
Q#	Suggested Solutions	Descriptors	
1.1.1	x(2x-3)=0	$\checkmark x = 0$	
	$x = 0 \text{ or } x = \frac{3}{2}$	$\checkmark x = \frac{3}{2}$	
		(2)	
1.1.2	$0 = 3x^2 - 5x - 11$	✓ correct substitution	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\checkmark x = -1,25$	
		$\checkmark x = 2,92$	
	$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(-11)}}{2(3)}$	(3)	
	x = -1.25 or $x = 2.92$		
1.1.3	$x(3x+4) - 2(3x+4) \le 0$	✓ factors/ method	
	$(x-2)(3x+4) \le 0$	✓ critical values	
	Critical values: $x = 2$; $x = -\frac{4}{3}$	✓ solution	
	$\begin{vmatrix} -\frac{4}{3} \le x \le 2 \end{vmatrix}$		
	3	(3)	
1.2	For real roots:	$\checkmark 8 - p^3 \ge 0$	
	$8 - p^3 \ge 0 \; ; \; p \ne 0$	$\checkmark p \neq 0$	
	$ \begin{vmatrix} -p^3 \ge -8 \\ p^3 \le 8 \end{vmatrix} $	$\checkmark p \le 2$	
	$p^3 \le 8$	(3)	
	$p \leq 2$		
	Subtotal	[11]	

OUESTION 2

QUESTION 2				
Q#	Suggested Solutions		Descriptors	
2.1	11 ; 20 ; 33 ; 50		$\checkmark a = 2$	
	1 st differences: 9; 13; 17		$\checkmark b = 3$	
	2 nd differences: 4; 4		$\checkmark c = 6$	
	$\therefore 2a = 4 \qquad 3a + b = 9$	a+b+c=11	$\checkmark T_n = 2n^2 + 3n + 6$	
	a = 2 $3(2) + b = 9$	2 + 3 + c = 11	(4)	
	b=3	c = 6	(4)	
	$\therefore T_n = 2n^2 + 3n + 6$			
2.2	1 st differences: 9; 13; 17		✓ correct substitution	
	a = 9; $d = 4$		✓ simplification	
	,		(2)	
	$S_n = \frac{n}{2} [2a + (n-1)d]$		TUUU	
	$= \frac{n}{2}[2(9) + (n-1)4]$ $= \frac{n}{2}[14 + 4n]$			
	$\frac{2}{n}$			
	$=\frac{1}{2}[14+4n]$			
	$= \overline{7}n + 2n^2$			
		Subtotal	[6]	

OUESTION 3

Q #	Suggested Solutions	Descriptors
3.1	$r = \frac{x+1}{3}$ $-1 < \frac{x+1}{3} < 1$	$\checkmark -1 < \frac{x+1}{3} < 1$
	$-1 < \frac{x+1}{3} < 1$ $-3 < x + 1 < 3$ $-4 < x < 2, \text{ but } x \neq -1$	$\begin{array}{c} \checkmark -4 < x < 2 \\ \checkmark x \neq -1 \end{array} \tag{3}$
3.2	$S_{\infty} = \frac{a}{1-r}$ $\frac{1-r}{5(1+1)}$	✓ correct substitution
	$= \frac{3}{1 - \frac{1+1}{3}}$	✓ answer (2)
	= 10 Subtotal	[5]

OUESTION 4

QUEST	ION 4		
Q#	Suggested Solutions		Descriptors
	(2x-5) - (x+2) = (x+2) - (1-x)		✓ method
4.1	x - 7 = 2x + 1		✓ simplification
	-8 = x		$\checkmark x = -8 \tag{3}$
	9; -6; -21		✓ correct substitution
4.2	a = 9, d = -15, n = 100		
	$S_n = \frac{n}{2}[2a + (n-1)d]$		✓ answer
			(2)
	$S_{100} = \frac{100}{2} [2(9) + (100 - 1)(-15)]$		
	= -73350		
4.3	m-1		✓ RHS = -30
	$\sum (24 - 15n) = S_{100} + 73320$		$\sqrt{\frac{m}{2}}[2(24) + (m-1)(-15)]$
	n=0		✓ standard form
	= -73350 + 73320		$\checkmark m = 5$ and rejection
			(4)
	$\frac{m}{2}[2(24) + (m-1)(-15)] = -30$		
	2		
	m(48 - 15m + 15) = -60		
	$63m - 15m^2 = -60$		
	$0 = 15m^2 - 63m - 60$		
	$0 = 5m^2 - 21m - 20$		
	0 = 5m + 21m + 20 0 = (5m + 4)(m - 5)		
	$m = 5 \text{ or } m \neq -\frac{4}{5}$		
	$m = 5$ or $m \neq -\frac{1}{5}$		
		Subtotal	[9]

OUESTION 5

Q#	Suggested Solutions	Descriptors
5.1	p=3	✓ p = 3
	q = -1	$\checkmark q = -1$
		(2)
5.2	g(x) = -x + k	✓ correct substitution
	-1 = -(-3) + k at point $(-3; -1)$	$\checkmark -4 = k$
	-4 = k	(2)

Morral carded Terrom Stanmore physics.com Marking Guidelines Grade 12

JW-GDE/ March 2023

[11]

Marking Guidelines

5.3 h(x) = -2(-x-4) $\checkmark h(x) = 2x + 8$ ✓ swapping x and y = 2x + 8 $\checkmark y = \frac{x}{2} - 4$ For inverse: x = 2y + 8(3) x - 8 = 2y $\therefore y = \frac{x}{2} - 4 \implies h^{-1}(x) = \frac{x}{2} - 4$ 5.4 ✓ correct graph shapes ✓ x- and y-intercepts interchanging ✓ correct point of intersection ✓ axis of symmetry passes through the correct point of intersection h^{-1} (4) (-8; -8)

OUESTION 6

QUESTION			
Q#	Suggested Solutions		Descriptors
	$f(x) = ax^2$	$g(x) = b^x$ $2 = b^{-1}$	✓ a = 2
		$2 = b^{-1}$	$\checkmark b = \frac{1}{2}$
	$\therefore a = 2$	$b = \frac{1}{2}$	2
		2	(2)
			` '
6.2	$x \le 0 \text{ or } x \ge 0$		✓ any one of the correct
			conditions
			(1)
6.3	$x \le -1$ OR $x \in (-\infty; -1]$ OR $-\infty < x \le -1$		✓ correct critical value
			✓ correct notation
			(2)
6.4.1	A'(-4;2)		✓ (-4; 2)
			(1)
6.4.2	A''(2;-4)		✓ ✓(2; −4)
			(2)
		Subtotal	[8]

Subtotal

TOTAL = 50 MARKS

1.1 Solve for x.

$$1.1.1 x(2x-3) = 0 (2)$$

$$1.1.2 0 = 3x^2 - 5x - 11 (3)$$

1.1.3
$$x(3x+4) - 2(3x+4) \le 0$$
 (3)

The roots of a quadratic equation, in terms of p, are given as:

$$x = \frac{4 \pm \sqrt{8 - p^3}}{p}$$

Determine the value(s) of p for the roots to be real.

[11]

(3)

QUESTION 2

The first four (4) terms of a quadratic pattern are: 11; 20; 33; 50; ...

- Determine the general term of this pattern in the form $T_n = an^2 + bn + c$. 2.1 (4)
- Prove that the sum of the first n first-differences of this quadratic pattern can 2.2 be given by $S_n = 2n^2 + 7n$. (2)

[6]

Please turn over

QUESTION 3 A convergent geometric series is given by: $\frac{5(x+1)}{3} + \frac{5(x+1)^2}{9} + \frac{5(x+1)^3}{27} + \dots$

Copyright reserved

- 3.1 Calculate the values of x. (3)
- 3.2 If x = 1, calculate the sum to infinity, S_{∞} . (2)

(1-x); (x+2) and (2x-5) are the first three (3) terms of an arithmetic sequence.

- 4.1 Determine the value of x. (3)
- 4.2 If the first three (3) terms of this pattern are: 9; -6; -21; ..., calculate the numerical value of the sum of the first 100 terms, S_{100} . (2)
- 4.3 Hence, or otherwise, calculate m if:

$$\sum_{n=0}^{m-1} (24 - 15n) = S_{100} + 73\,320 \tag{4}$$

QUESTION 5

The graph of $f(x) = \frac{2}{x+p} + q$ is sketched below:

(2) 5.1 Write down the values of p and q5.2 The straight line g(x) = -x + k is one of the axes of symmetry of the graph (2) of f. Determine the value of k. If h(x) = -2[g(x)], determine the equation of the inverse of h, h^{-1} , in the 5.3 form $h^{-1}(x) = mx + c$. (3) Draw a neat sketch of the graphs of h and h^{-1} on the same set of axes. 5.4 Clearly show all intercepts with axes, point of intersection and the axis of (4) symmetry. [11]

[8]

QUESTION 6

The graphs of $f(x) = ax^2$ and $g(x) = b^x$ are sketched on the same set of axes. Points A(-1;2) and B are points of intersection of f and g. The graph of f has the turning point at the origin:

- 6.1 Calculate the values of a and b. (2)
- 6.2 The inverse of f is NOT a function. Write down at least one condition which can be used to restrict the domain of f such that its inverse will be a function. (1)
- 6.3 For which value(s) of x, where $x \in (-\infty; 0]$, will $g(x) \le f(x)$? (2)
- 6.4 If h(x) = g(x+3), write down the coordinates of ...
 - 6.4.1 A', the new coordinates of A on the graph of h. (1)
 - 6.4.2 A'', the new coordinates of A on the graph of h^{-1} , the inverse of h (2)

TOTAL = 50 MARKS

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ab) \qquad A = P(1-nb) \qquad A = P(1-r)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq 1 \qquad S_n = \frac{a}{1-r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n]}{i} \qquad P = \frac{x[-(1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In \Delta ABC : \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$area \ \Delta ABC = \frac{1}{2}ab \sin C$$

$$\sin(\alpha + \beta) = \sin\alpha .\cos\beta + \cos\alpha .\sin\beta \qquad \sin(\alpha - \beta) = \sin\alpha .\cos\beta - \cos\alpha .\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha .\cos\beta - \sin\alpha .\sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha .\cos\beta - \sin\alpha .\sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta$$

$$\cos$$