DEPARTMENT OF **EDUCATION**

WATERBERG

GRADE 12 PEPHYSICS. COMP NATIONAL SENIOR CERTIFICATE

MATHEMATICS TERM TEST 1

07 MARCH 2022

MARKS

: 2 HOURS TIME

Stanmorephysics.com

This question paper consists of 9 pages, including information sheet and 2 diagram sheets.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 7 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. You may use ONLY approved scientific non-programmable and non-graphical calculator.
- 6. If necessary, round answers off to TWO decimal places, unless stated otherwise.
- 7. An information sheet, with formulae, is included at the end of the question paper and TWO diagram sheets.
- 8. Number the answers correctly according to the numbering system used in this question paper.
- 9. Start each QUESTION on a new page
- 10. Write legibly and present your work neatly.

1.1. Consider: 9; 19; 33; 51; ...

1.1.2. Determine the nth term of the sequence. (4)

1.1.3. Prove that all the terms of the quadratic sequence are odd. (3)

1.2. Given:

$$\sum_{k=1}^{\infty} 4(0,2)^{k-1}$$

1.2.1. Write down the first THREE terms of the series. (1)

1.2.3. Hence calculate the smallest number of the terms of the series whose sum

will differ by less than 0,0001 from the sum to infinity of the series. (5)

1.3. Evaluate the sum of:
$$3 + 11 + 3 + 15 + 3 + 19 + \dots + 107$$
. (5)

[23]

2.1. Simplify:
$$\frac{\cos(-\theta).\tan(180^{\circ}-\theta).\cos(90^{\circ}-\theta)}{\sin(180^{\circ}-\theta).\sin(540^{\circ}+\theta)}$$
 (7)

2.2. Given that cos(A - B) = cos A cos B + sin A sin B,

Prove that:
$$sin(A + B) = sin A cos B + cos A sin B$$
 (3)

2.3. If $5 \cos A + 3 = 0$ and $A \in [0^\circ; 180^\circ]$, determine WITHOUT the use of calculator:

2.3.1.
$$\sin A$$
 (3)

2.3.2.
$$\sin 2A$$
 (3)

2.4. Prove that
$$\tan x = \frac{1-\cos 2x-\sin x}{\sin 2x-\cos x}$$
 (5)

[21]

3.1. Determine the general solution of :
$$4 \sin x + 2 \cos 2x = 2$$
 (6)

3.2. The graph of $g(x) = -2\cos 2x$ for $x \in [-180^\circ; 180^\circ]$ is drawn below.

3.2.1. Draw the graph of
$$f(x) = 2 \sin x - 1$$
 for $x \in [-180^\circ; 180^\circ]$ on the same set of axes with $g(x)$

3.2.2. For which values of x is g(x) strictly decreasing in the interval

$$x\epsilon[-180^\circ; 0^\circ] \tag{2}$$

3.2.3. For which value(s) of *x* is $f(x + 30^{\circ}) - g(x + 30^{\circ}) = 0$ for

$$x\epsilon[-180^\circ; 180^\circ] \tag{2}$$

[13]

In the diagram below, A, B and C are in the same horizontal plane. P is a point vertically above A. The angle of elevation from B to P is α .

 $A\hat{C}B = \beta$, $A\hat{B}C = \theta$ and BC = 20 units.

4.1. Write AP in terms of AB and \propto . (2)

4.2. Prove that
$$AP = \frac{20 \sin \beta \tan \alpha}{\sin(\theta + \beta)}$$
 (3)

4.3. Given that AB = AC, determine AP in terms of \propto and β in its simplest form. (3)

[8]

5.1. Complete the statement below by filling in the missing word(s) so that the statement is CORRECT:

An angle subtended by an arc at centre of a circle is ... (1)

5.2. In the diagram, O is the centre of the circle and L is a point on the circumference.

RLM is a tangent at L.

Determine with reasons the sizes of:

5.2.1.
$$\hat{O}_2$$
 (2)

5.2.2.
$$\hat{L}_2$$
 (3)

5.2.3.
$$\hat{L}_5$$
 (2)

5.2.4.
$$\hat{Q}_1$$
 (2)

$$5.2.5. \qquad \widehat{N} \tag{1}$$

[11]

In the diagram below, P, Q, R and S are points on the circle. QS and PR intersect at point T.

The line from V is a tangent at P.

$$Q\hat{R}P = 56^{\circ}$$
 and $R\hat{P}V = 70^{\circ}$

6.1. Find the size of
$$R\hat{S}T$$
 (5)

6.2. If
$$\hat{Q}_1 = 37^\circ$$
, then explain why QS is not a diameter of the circle. (4)

[11]

In the diagram, PQRS is a cyclic quadrilateral. PS and QR are produced to meet at T. RE is a tangent to the circle at R, with E on PT and RE \parallel QS.

Prove that:

$$7.1. \quad QR = RS \tag{4}$$

7.2.
$$\Delta RST \parallel \Delta PQT$$
 (4)

$$7.3. \quad \frac{PQ}{PT} = \frac{SE}{ET} \tag{5}$$

[13]

TOTAL: 100

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$T_n = a + (n-1)a$$

$$\sum_{i=1}^{n} 1 = n \qquad \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad T_n = a + (n-1)d \qquad S_n = \frac{n}{2} (2a + (n-1)d)$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$r \neq 1$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
; $r \ne 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1 + i)^{-n}]}{x}$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i} \qquad f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right) \qquad y = mx + c$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$ $(x - a)^2 + (y - b)^2 = r^2$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$

$$area \Delta ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha . \cos \beta - \sin \alpha . \sin \beta$$
 $\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\bar{x} = \frac{\sum fx}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A or B) = P(A) + P(B) - P(A and B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

NAME AND SURNAME:

DIAGRAM SHEET 1

QUESTION 3.2

QUESTION 5

QUESTION 7

MONTHOGACISADE 12 TESS CAMATIO COCNITS VESSENDIN ANALYSIS GRID March. 2022

Question	TOPIC	Sub	1	Knowing	3	Perfo F	rming Re	outine es	Perfo	rming Co Procedure	mplex	Solv	ing prob	lems
number	TOTIC	quest.	Easy	Med	Diff	Easy	Med	Diff	Easy	Med	Diff	Easy	Med	Diff
		1.1.1	2											
		1.1.2			4									
	ES	1.1.3							3					
	SEQUENCE AND SERIRIES	1.2.1	1											
1		1.2.2					3							
	OO	1.2.3		_									5	
	SE	1.3						5						
	_ ▼	2.4				-			_					
3		2.1		7										
2		2.2				3								
		2.3.1					3							
		2.3.2							3					
		2.4								5				
										-				
	TRIGONOMETRY	3.1								_	6			
3	臣	3.2.1			3									
j	Σ	3.2.2										2		
	Ž	3.2.3											2	
	3													
	N IN	4.1		2										
		4.2							3	_				
4		4.3				3								
7														
		5.1	1											
•		5.2.1					2							
	RY	5.2.2								3				
		5.2.3				2								
5		5.2.4				2								
		5.2.5	1											
	E													
	ON	6.1					5							
	GE	6.2				_						4		
6	Ž.	6.3				2								
	DE/													
		7.1							-					
7	EUCLIDEAN GEOMETRY	7.1 7.2						4			4			
		7.2						+	_	5				
		/.3												-
TOTALS					7	12	12	9	9	12	10	6	7	
TOTALS	100		5	9		12	13	9	9	13	10	0		
	100			21			34			32			13	

Downloaded from Stanmorephysics.com

PROVINCIAL GOVERNMENT

REPUBLIC OF SOUTH AFRICA

DEPARTMENT OF

EDUCATION

WATERBERG

rephysics.com **NATIONAL** SENIOR CERTIFICATE

GRADE 12

MATHEMATICS TEST 1

07 MARCH 2022

:nmoreph MARKING GUIDELINES

MARKS

: 100 downloadi

This MEMORANDUM consists of 10 pages.

	QUESTION 1	
1.1.1	73; 99	✓ ✓
		(2)
1.1.2	9; 19; 33; 51;	
	10; 14; 18	
		✓ 2 nd diff constant
	4 4	√a con
	2a = 4 $3a + b = 10$ $a + b + c = 9$	✓ a ✓ b ✓ S ✓ S ✓ S
	$a = 2 \qquad b = 4 \qquad c = 3$	19
	$T_n = 2n^2 + 4n + 3$	(4)
1.1.3	$T_n = 2n^2 + 4n + 3$	
	$=2\left(n^2+2n+\frac{3}{2}\right)$	✓ common factor
	$= 2\left[n^2 + 2n + (1)^2 + (1)^2 + \frac{3}{2}\right]$	✓adding special zero
	$T_{n} = 2n^{2} + 4n + 3$ $T_{n} = 2n^{2} + 4n + 3$ $= 2\left(n^{2} + 2n + \frac{3}{2}\right)$ $= 2\left[n^{2} + 2n + (1)^{2} + (1)^{2} + \frac{3}{2}\right]$ $= 2\left[(n+1)^{2} + \frac{1}{2}\right]$ $= 2(n+1)^{2} + 1$ $\sum_{k=1}^{\infty} 4(0,2)^{k-1}$ $4; \frac{4}{5}; \frac{4}{25}$ $r = \frac{1}{5}$	✓ completed square (3)
1.2.1	$\sum_{k=1}^{\infty} 4(0,2)^{k-1}$	
	4; 4/2; 4/2=	✓ all three
	5 25	(1)
1.2.2	$r = \frac{1}{5}$	✓ value of <i>r</i>
		✓ correct sub into formula
	$S_{\infty} = \frac{a}{1 - r} = \frac{4}{1 - \frac{1}{5}} = 5$	✓ answer
	5	(3)
	I.	<u> </u>

	NSC	
1.2.3	$S_{\infty} - S_n < 0.0001$	
	$5 - \left[\frac{4\left(1 - \left(\frac{1}{5}\right)^n\right)}{1 - \frac{1}{5}} \right] < 0,0001$	✓ inequality
	Г 2 1	✓substitutions
	$5 - 5\left(1 - \left(\frac{1}{5}\right)^n\right) < 0.0001$	
	$5 - 5 + 5.5^{-n} < 0,0001$	✓ simplification
	$5^{1-n} < 0.0001$	
	$1 - n < \log_5 0,0001$	✓ use of logarithm
	1 - n < -5,7	cics.
	-n < -6.7	√answer
	n > 6,7	(5)
	n = 7	
	n > 6.7 $n = 7$ $Stanmore P$	
1.3	3+11+3+15+3+19++107	
	Sub series: 11 + 15 + 19 + ···+ 107	✓ general term for even T
	Sub series: $11 + 15 + 19 + \dots + 107$ $4n + 7 = 107$ $n = 25$	✓equating 107
	n = 25	✓ n
	$S_{25} = \frac{25}{2}[11 + 107] = 1475$	✓ sum of even sub set
	Sub series of 3s: $3 + 3 + \cdots + 3$	✓ answer
	$S_{25} = 3 \times 25 = 75$	
	$S_{50} = 1475 + 75 = 1550$	(5)
		[23]

	NSČ	
	QUESTION 2	
2.1	$\frac{\cos(-\theta) \cdot \tan(180^{\circ} - \theta) \cdot \cos(90^{\circ} - \theta)}{\sin(180^{\circ} - \theta) \cdot \sin(540^{\circ} + \theta)}$ $= \frac{\cos \theta (-\tan \theta) \sin \theta}{\sin \theta (-\sin \theta)}$ $= \frac{\cos \theta}{\sin \theta} \cdot \frac{\sin \theta}{\cos \theta}$ $= 1$	$ √ cos θ $ $ √ - tan θ $ $ √ sin θ $ $ √ - sin θ $ $ √ tan θ = \frac{sin θ}{cos θ} $ $ √ 1 $ (7)
2.2	$\sin(A+B) = \cos[90^{\circ} - (A+B)]$ $= \cos[(90^{\circ} - A) - B]$ $= \cos(90^{\circ} - A)\cos B + \sin(90^{\circ} - A)\sin B$ $= \sin A \cos B + \cos A \sin B$	✓ co-fun ✓ sin A ✓ cos A (3)
2.3.1	$5\cos A + 3 = 0$ $\cos A = -\frac{3}{5}$ $5^2 = (-3)^2 + y^2$ $y = \pm 4$ $\therefore y = 4$ $\sin A = \frac{4}{5}$	 ✓ theorem of Pythagoras ✓ value of y ✓ answer (3)
2.3.2	$\sin 2A = 2\sin A\cos A$ $= 2\left(\frac{4}{5}\right)\left(-\frac{3}{5}\right) = -\frac{24}{25}$	✓ expansion ✓ correct sub ✓ answer (3)

[21]

	NSC	
2.4	$RHS = \frac{1 - \cos 2x - \sin x}{\sin 2x - \cos x}$	
	$1-(1-2\sin^2 x)-\sin x$	$\checkmark 1 - 2\sin^2 x$
	$= \frac{1 - (1 - 2\sin^2 x) - \sin x}{2\sin x \cos x - \cos x}$	$\checkmark 2 \sin x \cos x$
	$= \frac{2\sin^2 x - \sin x}{2\sin x \cos x - \cos x}$	\checkmark take $\sin x$ as a common
	$\sin x (2 \sin x - 1)$	factor
	$=\frac{\sin x (2\sin x - 1)}{\cos x (2\sin x - 1)}$	\checkmark take cos x as a common
	$= \tan x = RHS$	factor
		✓ tan x
		(5)

	QUESTION 3	
3.1	$4\sin x + 2\cos 2x = 2$	$\checkmark 1 - 2\sin^2 x$
	$2\sin x + 1 - 2\sin^2 x = 1$	✓ factors
	$2\sin x \left(1 - \sin x\right) = 0$	✓
	$\sin x = 0 \ or \ \sin x = 1$	$\sin x = 0 \ or \ \sin x = 1$
	$x = 180^{\circ}k x = 90^{\circ} + 360^{\circ}k, k \in \mathbb{Z}$	$\checkmark x = 180^{\circ}k$
		$\checkmark x = 90^{\circ} + 360^{\circ}k$
		$\checkmark k\epsilon \mathbb{Z}$ (6)
3.2.1		✓ turning point
	g	(-90°; -3)
	-180° -90° O 90° 180°	✓ turning point
	1	(90°; 1)
	_2	✓ shape
	-3	(3)
3.2.2	$-90^{\circ} < x < 0^{\circ}$	✓ boundaries
		✓ notation (if boundary
		correct)
		(2)
3.2.3	f(x) = g(x)	✓
	∴ −180°; 0°; 90°; 180°	✓ any ONE correct
	$f(x + 30^\circ) = g(x + 30^\circ)$	✓ OTHER two
	∴ −30°; 60°; 150°	(2)
		[13]

	QUESTION 4	
4.1	$\tan \alpha = \frac{AP}{AB}$ $AP = AB \tan \alpha$	✓ trig ratio ✓ answer (2)
4.2	$\frac{AB}{\sin \beta} = \frac{BC}{\sin(180^\circ - (\theta + \beta))}$ $AB = \frac{BC \sin \beta}{\sin(\theta + \beta)} = \frac{20 \sin \beta}{\sin(\theta + \beta)}$ $AP = \frac{20 \sin \beta}{\sin(\theta + \beta)} \cdot \tan \alpha$	✓ sine rule ✓ AB ✓ substitution of AB on AP
	$=\frac{20\sin\beta.\tan\alpha}{\sin(\theta+\beta)}$	(3)
4.3	$AP = \frac{20\sin\beta \cdot \tan\alpha}{\sin 2\beta}$ $= \frac{20\sin\beta \cdot \tan\alpha}{2\sin\beta \cos\beta} = \frac{10\tan\alpha}{\cos\beta}$	✓ $\sin 2\beta$ ✓ $2 \sin \beta \cos \beta$ ✓ answer (3)
		[8]

Downloaded from Stanmorephysics.com

	QUESTION 5	
5.1	Twice the angle subtended by the same arc at circumference	✓ (1)
5.2.1	$\widehat{MLO} = 90^{\circ}$ rad \perp tan $\widehat{O}_2 = 90^{\circ} - \widehat{M} = 64^{\circ}$ sum of $< s$ in a Δ $\widehat{P} = \frac{\widehat{O}_2}{2} = 32^{\circ} <$ at centre $= 2 \times <$ at circum	✓ S/R ✓ S/R (2) ✓ S ✓ R ✓ S/R
	$\hat{L}_2 = \hat{P} = 32^\circ < s \text{ opp} = \text{sides}$	(3)
5.2.3	$\hat{L}_5 = \hat{P} = 32^\circ$ tan- chord theorem	✓ S ✓ R (2)
5.2.4	$M\widehat{L}P = 90^{\circ} < \text{in a } \frac{1}{2} \bigcirc$ $\widehat{Q}_1 = 90^{\circ} - \widehat{P} = 58^{\circ} \text{ sum of } < s \text{ in a } \Delta$	✓ S/R ✓ S/R (2)
5.2.5	$\widehat{N} = \widehat{P} = 32^{\circ} < s$ in the same seg	✓ S/R (1)
		[11]

Downloaded from Stanmorephysics.com

	QUESTION 6	
6.1	$R\hat{P}V = R\hat{Q}P = 70^{\circ}$ tan-chord theorem	✓ S ✓ R
	$\hat{P}_2 = 180^\circ - R\hat{Q}P - Q\hat{R}P = 54^\circ$ sum of $< s$ in a Δ	✓ S/R
	$R\hat{S}T = \hat{P}_2 = 54^\circ$ < s in the same seg	✓ S
		✓R
		(5)
6.2	$\widehat{Q}_1 = \widehat{R}_1 = 37^\circ < s$ in the same seg	✓ S ✓ R
	$Q\hat{R}S = 93^{\circ} \neq 90$	✓ S
	∴ QS is not a diameter, it does not subtend an angle of 90° at	✓ R
	circumference	(4)
6.3	$\widehat{Q}_1=37^\circ$ given	
	$\hat{S} = 54^{\circ}$ proven	✓ S
	$\hat{Q}_1 \neq \hat{S}$	✓ R
	∴ QP is not parallel to RS, alt $< s$ are \neq	(2)
		[11]

	QUESTION 7	
7.1	$\widehat{R}_2 = \widehat{Q}_2$ tan-chord theorem	✓ S ✓ R
	$\hat{S}_2 = \hat{R}_2$ alt $\langle s ; QS RE$	✓ S/R
	$\hat{Q}_2 = \hat{S}_2$ both $= \hat{R}_2$	✓ R
	QR = RS sides opp = $< s$	(4)
7.2	In ΔRST and in Δ PQT	
	\widehat{T} is common	✓ S
	$\hat{S}_3 = P\hat{Q}R$ ext < of a cyclic quad	✓ S ✓ R
	$S\widehat{R}T = \widehat{P}$ ext < of a cyclic quad / sum of < s in a Δ	✓ S
	∴ ΔRST Δ PQT	(4)
7.3.1	$\frac{RS}{PQ} = \frac{RT}{PT} \text{similar } \Delta S$	✓ S ✓ R
	$\frac{PQ}{PT} = \frac{RS}{RT}$	
	QR = RS proven	✓ S
	$\frac{PQ}{PT} = \frac{QR}{RT}$	v 5
	$\frac{QR}{TR} = \frac{SE}{ET}$ a line drawn line side of a Δ	✓S ✓ R
	$\frac{PQ}{PT} = \frac{SE}{ET} \text{both} = \frac{QR}{RT}$	(5)
		[13]
	TOTAL	100