HOLY CROSS HIGH SCHOOL

GRADE 11

MATHEMATICS ASSIGNMENT:

NAME	
SURNAME	
CLASS	
DATE	

Duration: 4 days

Marks: 50

Examiner: M Mutandwa

Moderator: M Smith

QUESTION 1

The sketch shows the graphs of $f(x) = \frac{a}{x-p} + q$ and g(x) = 2x.

A and B are the points of intersection of f and g.

- 1.1 Determine the value of a, p and q. (3)
- 1.2 Write down the domain and range of f. (2)
- Calculate the coordinates of A. (4)
- 1.4 Determine the value(s) of x for which:

$$1.4.1 f(x) \ge g(x) (2)$$

1.4.2
$$g(x) < 0$$
 (1)

QUESTION 2

Consider the function $f(x) = -3.2^{-x+1} + 12$

- 2.1 Write down the equation of the asymptote of f. (1)
- 2.2 Write down the range of f. (1)
- 2.3 Calculate the coordinates of the intercepts of *f* with the axes. (3)
- 2.4 Sketch the graph of *f*, indicating all the intercepts with the axes and the asymptote. (3)
- 2.5 Determine the value(s) of x for which f(x) > 0 (2)
- 2.7 Determine the range of g, if g(x) = 2 f(x) (2)

[12]

QUESTION 3

Given: O is the centre of circle ABD.

Prove the theorem which states that $\angle AOB = 2\angle ADB$. (5)

QUESTION 4

4.2 Given: B is the centre of circle AGFCE . AE produced and FC produced meet in D. DA=DF and $\angle G = 55^{\circ}$.

With reasons, calculate:

4.2.1	∠ABC	(2)
4.2.2	$\angle E_2$	(2)
4.2.3	∠F	(2)
4.2.4	∠C ₄	(3)
4.2.5	Prove that CD = DE.	(2)
4.2.6	Prove that ABCD is a cyclic quadrilateral.	(3)

[19]