

NATIONAL SENIOR CERTIFICATE

MATHEMATICS P2

NOVEMBER 2023

NAME: CLASS:

MARKS: 150 TIME: 3 hours

	For educator use only.											
Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Total
Marks obtained												
Question total	10	12	18	13	25	11	10	6	11	13	21	150

This question paper consists of 24 pages, including pages with additional space and a formula sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- This question paper consists of 11 questions.
- Answer ALL questions.
- Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Write your answers in the spaces provided.

QUESTION 1

Aphelele plays for his school's cricket team.	The number of runs scored by Aphelele in each of the
eight games that he batted in, is shown below.	(Aphelele was given out in all of the games.)

1.1	Determine the average number of runs per game scored by Aphelele for these eight games.	(2)
1.2	Determine the standard deviation for this data set.	(1)
1.3	Aphelele wants to be selected for the District trials. The condition is that he needs to have at least one score above two standard deviations from the mean during the first eight games. Will he be selected for the District trials? Motivate your answer with relevant calculations.	(2)

1.4 Aphelele hopes to achieve an average of 20 runs per game for his first 13 games.

What should his average number of runs per game be for the last five of these games in order for him to reach this goal? (3)

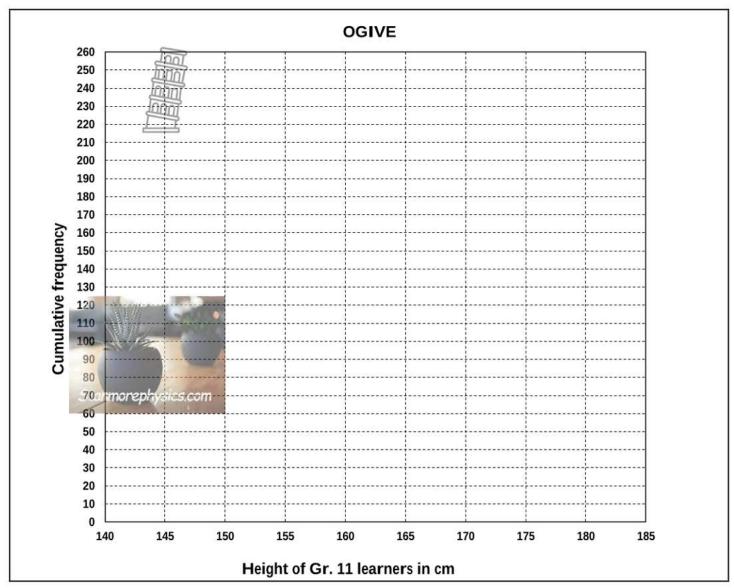
1.5	Brian plays in the same team as Aphelele. After having played a few matches, he has an
	average batting score of 37 runs per game, and the standard deviation of his scores is 13.
	In the next two matches that he played, he scored respectively 20 runs and 0 runs.
	Will the inclusion of these two scores cause the standard deviation of his scores to increase
	or decrease? Justify your answer.

المار	` '

[10]

(2)

QUESTION 2


The table below shows the height (in cm) of 250 Grade 11 learners.

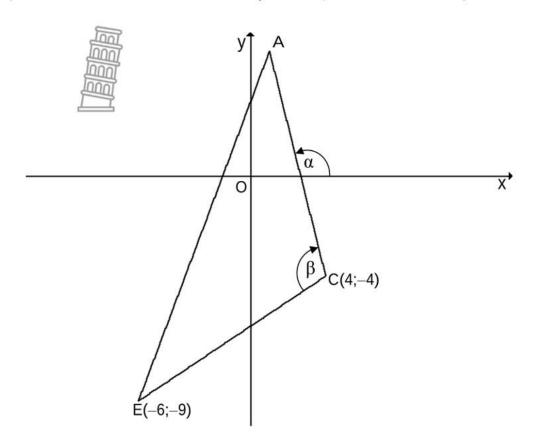
Height (cm)	Number of learners (f)	Cumulative frequency	
145 < x ≤150	26	6	
150 < x ≤155	Α	29	
155< x≤160	60	89	
160 < x ≤ 165	74	В	
165 < x ≤ 170	52	215	
170 < x ≤ 175	32	247	
175 < x ≤180	3	250	
Starmore:physics.com	250		

2.1	Calculate the values of A and B.	(2)
9"		
2.2	Calculate the estimated mean height of the learners.	(3)
2.3	Write down the modal class.	(1)

2.4 On the grid provided below, draw a cumulative frequency graph (ogive) to represent the data on the height of the Gr. 11 learners.

(3)

2.5 Use the ogive to estimate the interquartile range of the data. Show all your calculations. (3)


1180% - W	

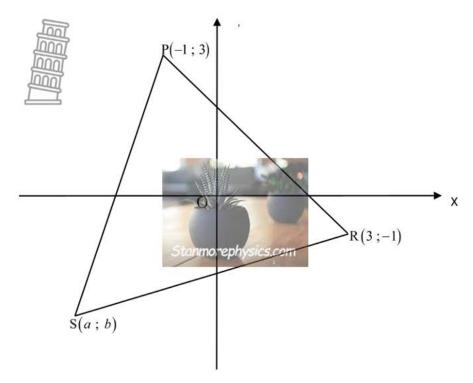
[12]

QUESTION 3

In the diagram below, the vertices of $\triangle ABC$ are A, C(4;-4) and E(-6;-9).

The angle of inclination of AC is α . AĈE = β . The equation of AC is 3x + y - 8 = 0 .

3.1	Write down the gradient of AC.	(2)
3.2	Calculate the size of α .	(2)


Copyright reserved

3.4 Determine the equation of EF if F is a point on AC produced such that EFA = 90°. (4) 3.5 Calculate the length of EF. (5)	3.3	Calculate the size of β .	(5)
3.4 Determine the equation of EF if F is a point on AC produced such that $E\hat{F}A = 90^{\circ}$. (4)			
3.4 Determine the equation of EF if F is a point on AC produced such that $E\hat{F}A = 90^{\circ}$. (4)			
3.4 Determine the equation of EF if F is a point on AC produced such that $E\hat{F}A = 90^{\circ}$. (4)			
3.5 Calculate the length of EF. (5)	3.4	Determine the equation of EF if F is a point on AC produced such that $E\widehat{F}A = 90^{\circ}$.	(4)
3.5 Calculate the length of EF. (5)			
3.5 Calculate the length of EF. (5)			
3.5 Calculate the length of EF. (5)			
3.5 Calculate the length of EF. (5)			
3.5 Calculate the length of EF. (5)			
3.5 Calculate the length of EF. (5)			
	3.5	Calculate the length of EF.	(5)
		1047-51	

Please turn over

QUESTION 4

Triangle PRS has vertices P(-1;3), R(3;-1) and S(a;b), as shown in the sketch below.

4.1	Calculate the coordinates of T, the midpoint of PR.	(2)
7.1	Carculate the coordinates of 1, the mapoint of 11.	(2)

4.2	If the perpendicular bisector of PR passes through S, show that $a = b$.	(4)
	in the perpendicular steeders of the passess through of chert that at six	('

4.2	If the perpendicular disector of PR passes through S, show that $a = b$.	(4)
2		
0		

4.3	If a < 0, b < 0 and the area of Δ PRS = 12 square units, determine the coordinates of S.	(7)
		[13]
QUEST	TION 5	
5.1	If $\sin 33^{\circ} = m$, determine the following, in terms of m, without the use of a calculator:	
	5.1.1 tan 33°	(2)

	5.1.2 cos 777°	(3)
	5.1.3 sin(-237°)	(3)
5.2	Given that $4 \tan \beta + 5 = 0$ and $\beta \in [0^{\circ}; 180^{\circ}]$. Determine, with the aid of a diagram,	
	and without the use of a calculator, the value of $\sqrt{41}\cos\beta$.	(4)
5.3	5.3.1 Simplify the following expression to a single trigonometric ratio:	
	$\frac{\sin(180^{\circ}-\beta).\cos(90^{\circ}-\beta)-1}{(100^{\circ}-\beta)}$	4.0
	$\cos(-eta)$	(4)

Mathematics P2 Downloaded from Stanmonsepleyasias.com

5.3.2 Hence, determine for which value(s) of β , where $\beta \in [0^{\circ};360^{\circ}]$,

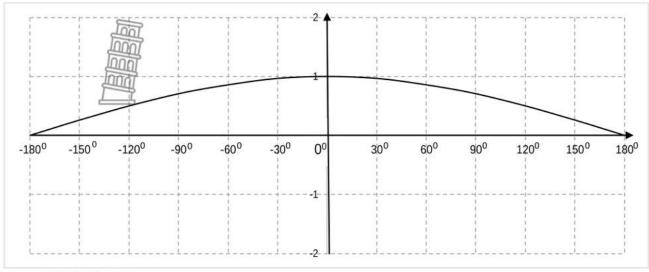
$$\frac{\sin(180^{\circ} - \beta) \cdot \cos(90^{\circ} - \beta) - 1}{\cos(-\beta)}$$
 will be undefined. (3)

Prove the following identity: 5.4 5.4.1

$$\tan \alpha . \sin \alpha + \cos \alpha = \frac{1}{\cos \alpha}$$
 (2)

Hence determine the general solution of: 5.4.2

$$\tan \alpha . \sin \alpha + \cos \alpha = \frac{3}{\sin \alpha} \tag{4}$$


_	

[25]

KZN/November 2023

QUESTION 6

In the diagram, the graph of the function $f(x) = \cos\left(\frac{x}{2}\right)$ is drawn for the interval $x \in \left[-180^{\circ};180^{\circ}\right]$.

6.1 Write down:

6.1.1 the amplitude of f.

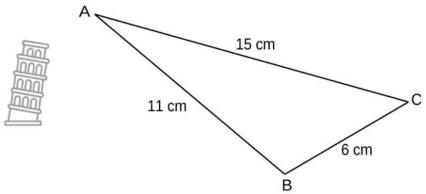
(1)

6.1.2 the period of f.

(1)

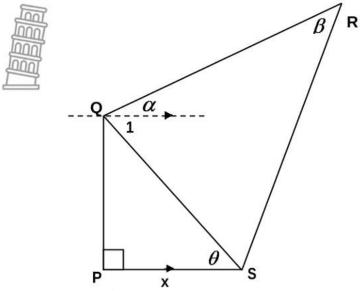
- Draw the graph of $g(x) = \sin(x 30^\circ)$ for the interval $x \in [-180^\circ; 180^\circ]$ on the axes provided above. Clearly indicate all intercepts with the axes and the turning point(s). (3)
- 6.3 Write down the values of x in the interval $x \in [-180^{\circ}; 180^{\circ}]$, for which $f(x).g(x) \ge 0$. (2)

6.4 Write down the values of x in the interval $x \in [0^\circ; 180^\circ]$, for which $g(x) = f(x) + \frac{1}{2}$. (2)


6.5 The graph of h is obtained by reflecting the graph of g in the y-axis. Write down the equation of h. (2)

[11]

Mathematics P2 Downloaded from Stanmousepleyasias.com


QUESTION 7

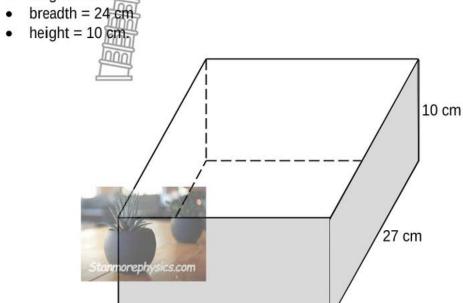
 \triangle ABC has AB = 11cm, BC = 6 cm and AC = 15 cm. 7.1

(4)Calculate the size of \hat{B} .

7.2 In the diagram below, P, Q, R and S are points in the same vertical plane. The angle of elevation of R from Q is α and the angle of elevation of Q from S is θ . PS = x units and QRS = β .

Prove that: $SR = \frac{x \sin(\alpha + \theta)}{\cos \theta \sin \beta}$

(6)


 1010111

[10]

QUESTION 8

The diagram below shows an open rectangular box, made out of sheet metal. Its measurements are as follows:

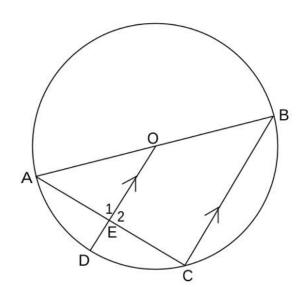
length = 27 cm

24 cm

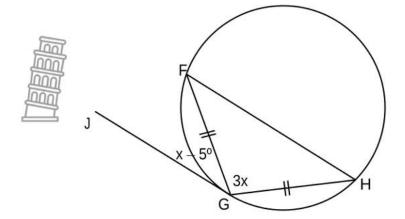
8.1 Calculate the total surface area of sheet metal needed to manufacture this open box. (3)

8.2 4,5 liter water is poured into this box. Calculate the depth of the water in the box.

Take note: 1 liter = 1000 cm³. (3)


[6]

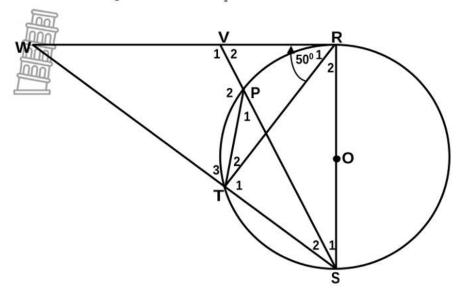
(6)


Give reasons for ALL statements in QUESTIONS 9, 10 and 11.

QUESTION 9

9.1 O is the centre of the circle. A, B, C and D are points on the circumference. AOB is a straight line. AC and BC are drawn. OD is drawn parallel to BC, and intersects AC in E. The radius of the circle is 10 cm, and AC = 12 cm. Calculate the length of ED.

9.2 In the diagram below, JG is a tangent to circle FGH at G. FG, GH and FH are drawn. $J\hat{G}F = x - 5^{\circ}$ and $F\hat{G}H = 3x$.



Calculate the value of x. (5)

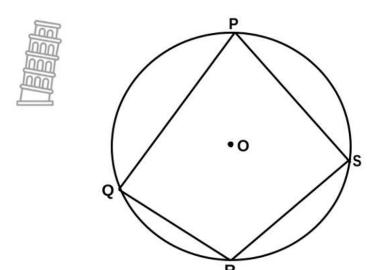
[11]

QUESTION 10

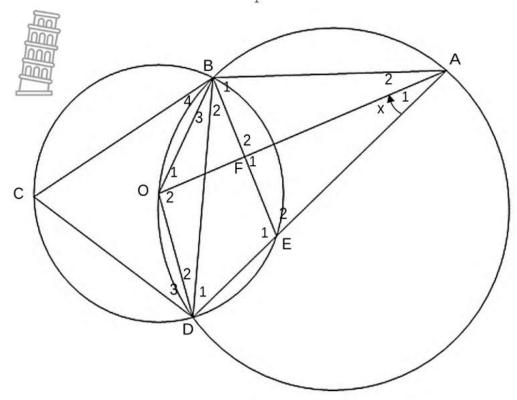
In the diagram below, RS is a diameter of the circle centred at O. Chord ST is produced to W. Chord SP produced meets the tangent RW at V. $\hat{R}_1 = 50^{\circ}$.

10.1 Calculate the sizes of the following angles.

3	10.1.1	Â ₂	(3)
3	10.1.2	ŵ	(3)


10.1.3	$\hat{P}_{\!\scriptscriptstyle 1}$		(2)

10.2	Prove that $\hat{V}_1 = P\hat{T}S$	(4)
10.3	Hence, prove that WVPT is a cyclic quadrilateral.	(1)


[13]

QUESTION 11

Use the diagram to prove the theorem which states that $\hat{P} + \hat{R} = 180^{\circ}$ (5)

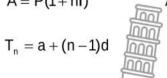
In the diagram two circles are intersecting at B and D. O is the centre of the smaller circle. B, C, D and E are points on the circumference of circle O. A is a point on the circumference of the bigger circle. DEA is a straight line. OB, OD, OA, BA, BD and BE are drawn. OA and BE intersect at F. $\hat{A}_1 = x$.

11.2.1 Name, with reasons, THREE other angles equal to x. (4)

11.2.2	Calculate \hat{C} in terms of x .	(4)

	11.2.3	Prove that $AB = AE$.	(5)
	ş		
	Ĭ		
	<u>_</u>	<u></u>	
	11.2.4	Prove that AB is NOT a tangent to circle BCDE.	(3)
			[21]
			TOTAL MARKS: 150
			TOTAL WARRS. 130
Additiona	al space		
	-		

KZN/November 2023


Additional space	

Mathematics P2 Downloaded from Stanmonsephysicias.com

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$

$$A = P(1-ni)$$

$$A = P(1-i)^r$$

$$A = P(1+i)^n$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}; r \neq 1$$

$$S_n = \frac{a(r^n - 1)}{r - 1}; r \neq 1$$
 $S_\infty = \frac{a}{1 - r}; -1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$$

$$f'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$M\left(\frac{X_1 + X_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc.\cos A$$
$$area \triangle ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\overline{x} = \frac{\sum x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

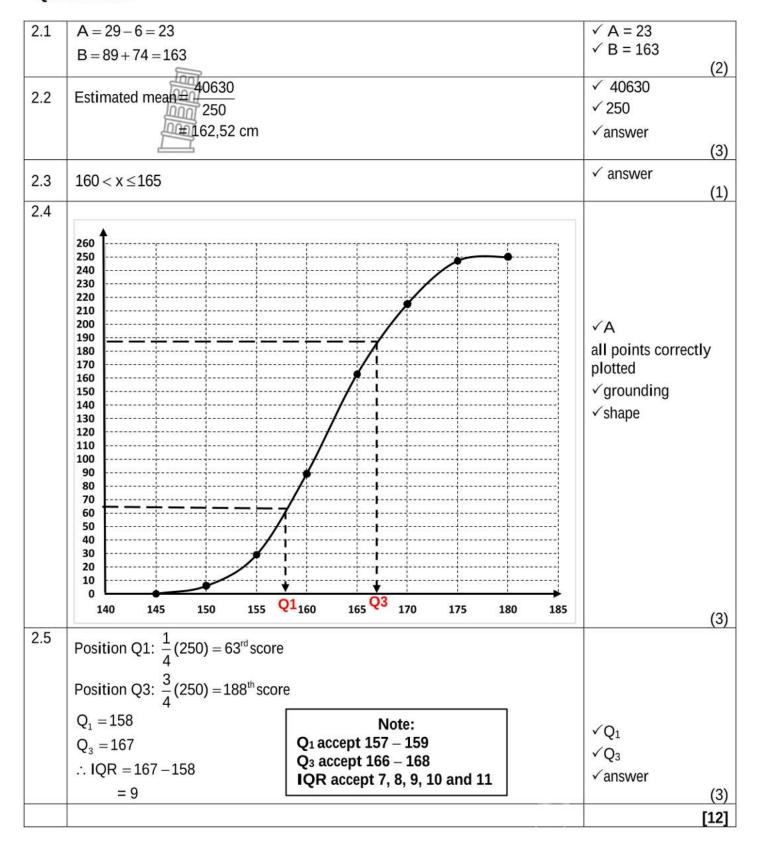
MATHEMATICS P2

NOVEMBER 2023

MARKING GUIDELINE

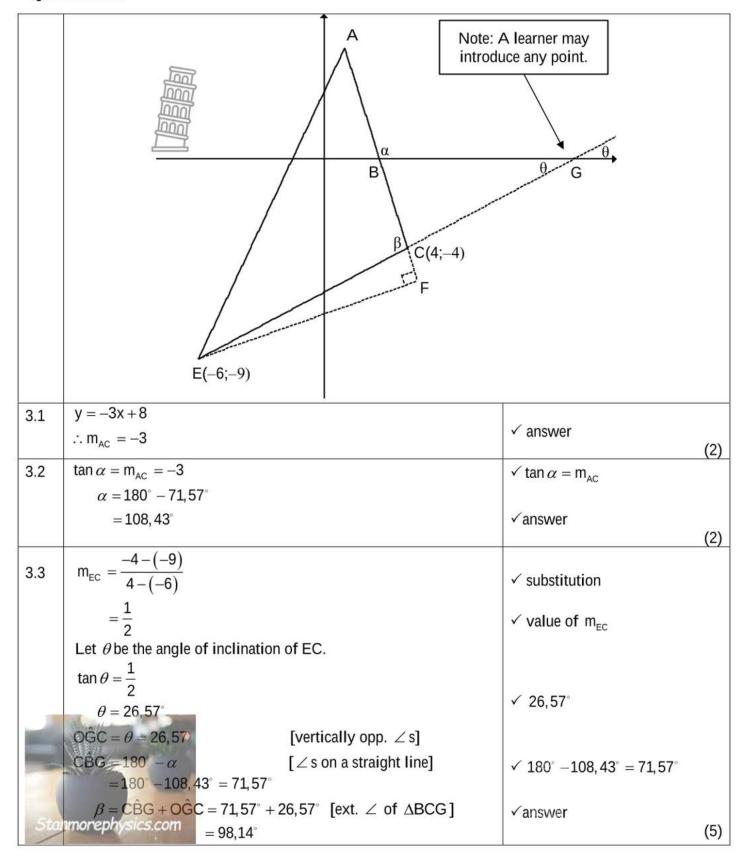
MARKS: 150

Stanmorephysics

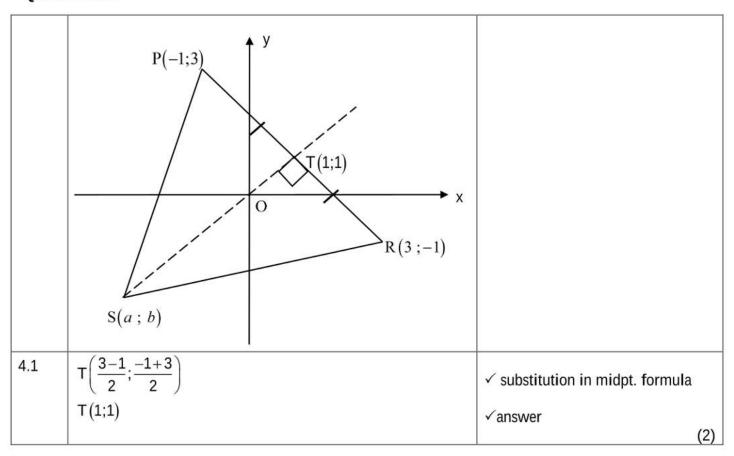

This marking guideline consists of 14 pages.

QUESTION 1

1.1	$\overline{x} = \frac{21+8+19+7+15+32+14+12}{21+21+21}$	
	8	120
	$=\frac{128}{8}$	$\sqrt{\frac{128}{8}}$
		of answer
	=16	(2)
1.2	$\delta = 7.55$	√ answer
		(1)
1.3	Two standard deviation above the mean:	
	F 28 F 48 F F F 12	
	$\overline{x} - 2\delta \overline{x} - 1\delta \overline{x} \overline{x} + 1\delta \overline{x} + 2\delta$	
	2.2 2.45 16 22.55 21.4	
	0.9 8,45 16 23.55 31,1	463.6
	$\overline{x} + 2\delta = 16 + 2 \times 7.55 = 31,1$	√31,1
	Yes, he will make it to the trials, he has one score (32) that is	√yes and motivation
	more than two standard deviations above the mean	(2)
1.4	Total number of runs in 8 games = 128	
	Total number of runs in 13 games = $13 \times 20 = 260$	√ 260
	Average in last 5 games = $\frac{260-128}{5}$	$\sqrt{\frac{260-128}{5}}$
	= 26,4	5
	His average must be 26,4 or approximately 26 runs in his last 5	✓ 26,4 or 26
	games.	(3)
1.5	Increase.	√ increase
	Both 0 and 20 are further than one standard deviation from the	✓ both 0 and 20 are further than
	mean, and will therefore cause an increase in standard deviation.	one standard deviation from the
		mean
		(2)
		[10]


GRADE 11 Marking Guideline

QUESTION 2

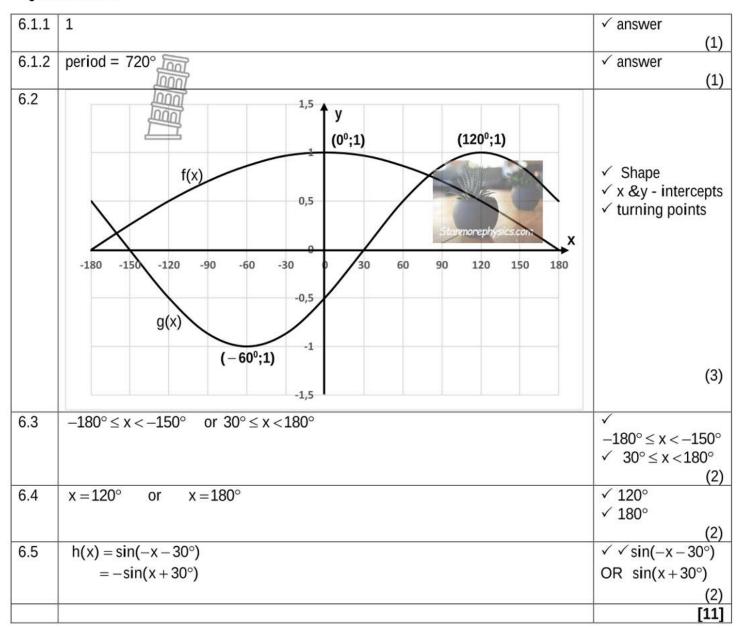

GRADE 11 Marking Guideline

QUESTION 3

	Marking Guideline	
3.4	$m_{AC} = -3$	
	$\therefore m_{EF} = \frac{1}{3} \qquad [AC \perp EF]$	$\sqrt{m_{\text{EF}}} = \frac{1}{3}$
	Equation of EF $y = \frac{1}{3}x + c$	
	Substitute E $(6, -9)$: $-9 = \frac{1}{3}(-6) + c$	✓ substitution
	c = -7	✓ value of c
	$y = \frac{1}{3}x - 7$	✓ answer (4)
3.5	To determine coordinates of F:	(4)
	$-3x + 8 = \frac{1}{3}x - 7$	✓ equating the equations of EF and AF
	$\frac{10}{3} \times = 15$	
	x = 4,5	√ x-coordinate of F
	y = -3x + 8 = -3(4,5) + 8 = -5,5	✓ y-coordinate of F
	$EF = \sqrt{\left[4, 5 - \left(-6\right)\right]^2 + \left[-5, 5 - \left(-9\right)\right]^2}$	✓ substitution in distance formula
	=11,07cm	√ answer
		(5)
		[18]

QUESTION 4

$4.2 m_{PR} = \frac{3+1}{-1-3}$	
=-1-3	✓ gradient of PR
$\therefore \mathbf{m}_{\perp \text{bisector}} = 1$	✓ gradient of ⊥ bisector
Cubet T(1)	(subst C(s + h) and m = 1
Subst. T(1;1) and m=1 in $y = mx + c$: 1=1+c	✓ subst. S(a; b) and $m = 1$
c = 0	
y = x ∴ a = b	✓ y = x
4.3 $PR = \sqrt{(-1-3)^2 + (3+1)^2}$	(4)
$= 4\sqrt{2}$	✓ length of PR
$ST = \sqrt{(a-1)^2 + (b-1)^2}$	✓length of ST i.t.o. a and b
But $a = b$, $\therefore ST = \sqrt{(a-1)^2 + (a-1)^2}$	riengui of ST I.t.o. a and b
ST = $\sqrt{(a-1)^2 + (a-1)}$	✓length of ST i.t.o. a (or b) only
3 V 0 /352	
Area $\triangle PSR = 12$ square units	1
$\therefore \frac{1}{2} \times \text{base} \times \text{height} = 12$	$\sqrt{\frac{1}{2}} \times \text{base} \times \text{height} = 12$
$\frac{1}{2} \times PR \times ST = 12$	
$\frac{1}{2} \left(4\sqrt{2} \right) \left(\sqrt{2(a-1)^2} \right) = 12$	✓substitution of PR and ST
$\frac{1}{2} \times 4\sqrt{2} \times \sqrt{2} \times \sqrt{(a-1)^2} = 12$	
$\sqrt{(a-1)^2}=3$	
$(a-1)^2=9$	
$a-1=\pm 3$	
a = 4 (N/A) or a = -2	✓ values of a and rejection
$\therefore b = -2$ $\therefore S(-2; -2)$	✓answer
(2, 2)	(7)
	[13]


QUESTION 5

5.1.1	33° m	$\sqrt{1-m^2}$	
	$\tan 33^\circ = \frac{m}{\sqrt{1 - m^2}}$	✓ answer	(2)
5.1.2	$\cos 777^{\circ} = \cos \left[2(360^{\circ}) + 57^{\circ} \right]$ $= \cos 57^{\circ}$ $= \sin 33^{\circ}$ $= m$	<pre>✓ cos[2(360°)+57°]</pre> ✓ cos57° ✓ answer	(3)
5.1.3	$sin(-237^{\circ}) = -sin 237^{\circ}$ $= -(-sin 57^{\circ})$	✓ -sin 237° ✓ -sin 57°	(0)
	$=\sqrt{1-m^2}$	✓ answer	(3)
	OR	OR	
	OR $sin(-237^{\circ}) = sin123^{\circ}$ $= sin57^{\circ}$	✓ sin123° ✓ sin57°	200.024
	$sin(-237^{\circ}) = sin123^{\circ}$ $= sin57^{\circ}$ $= \sqrt{1 - m^{2}}$	✓ sin123° ✓ sin57°	(3)
5.2.	sin(-237°) = sin123° = sin 57°	✓ sin123° ✓ sin57°	(3)

5.3.1	$\frac{\sin(180^{\circ}-\beta).\cos(90^{\circ}-\beta)-1}{\cos(90^{\circ}-\beta)}$	
	$\cos(-\beta)$	
	$=\frac{\sin\beta.\sin\beta-1}{\delta}$	✓ simplification (numerator)
	cos and	✓ simplification (denominator)
	$=\frac{\sin^2\beta}{1000}$	
	$\cos \beta$	
	$=\frac{-(1-\sin^2\beta)}{}$	
	$\cos eta$	
	$=\frac{-\cos^2\beta}{}$	✓ use of square identity
	$-\frac{1}{\cos \beta}$	
	$=-\cos \beta$	✓ answer
		(4)
5.3.2	If $cos(-\beta) = 0$	$\checkmark \cos(-\beta) = 0$
	$\cos \beta = 0$	
	$\beta = 90^{\circ}$ or $\beta = 270^{\circ}$	✓ 90°; ✓ 270° (3)
5.4.1	$\tan \alpha . \sin \alpha + \cos \alpha$	(0)
	$=\frac{\sin\alpha}{\cos\alpha}.\sin\alpha+\cos\alpha$	$\sqrt{\sin\alpha}$
	$ \cos \alpha $	$\sqrt{\frac{\cos \alpha}{\cos \alpha}}$
	$=\frac{\sin^2\alpha}{\cos\alpha}+\cos\alpha$	
	$=\frac{\sin^2\alpha+\cos^2\alpha}{}$	✓ simplification
	$\cos \alpha$	Simplification
	1_	
	$\cos \alpha$	(2)
5.4.2	$\frac{1}{1} = \frac{3}{1}$	1 3
	$\cos \alpha \sin \alpha$	$\sqrt{\frac{\cos \alpha}{\cos \alpha}} = \frac{\sin \alpha}{\sin \alpha}$
	$\sin \alpha = 3\cos \alpha$	
	$\tan \alpha = 3$	$\checkmark \tan \alpha = 3$
	$ref \angle = tan^{-1}(3)$	
	= 71.57°	
	$\alpha = 71.57^{\circ} + \text{k.}180, \ \text{k} \in \mathbb{Z}$	$\alpha = 71.57^{\circ} + k.180^{\circ}$
		$\checkmark k \in \mathbb{Z}$
		(4)
		[25]

GRADE 11 Marking Guideline

QUESTION 6

QUESTION 7

7.1	$AC^2 = AB^2 + BC^2 - 2(AB)(BC)\cos\hat{B}$	✓ applying the cosine rule
	$15^2 = 11^2 + 6^2 - 2(11)(6)\cos \hat{B}$	✓ substitution
	$\cos \hat{B} = \frac{11^2 + 6^2 - 15^2}{2(11)(6)}$	
	$=-\frac{17}{33}$ OR $-0,5151$	✓ value of cos B
	$\hat{B} = 180^{\circ} - 58,99^{\circ}$	
	= 121, 01°	✓ answer
		(4)

	ip	Walking Galacinic		_
7.2	In ΔQRS:			
	$Q_1 = Q\hat{S}P = \theta$	[alt ∠'s =]	√S	
	$\therefore \hat{QSR} = (\alpha + \theta)$			
	$\frac{SR}{sin(\alpha+\theta)} = \frac{QS}{sin\beta}$		✓ substitution in sine rule	
	$SR = \frac{QS.\sin(\alpha + \theta)}{\sin \beta}$		$\checkmark SR = \frac{QS.\sin(\alpha + \theta)}{\sin \beta}$	
	In ΔQPS:			
	$\cos \theta = \frac{PS}{QS}$		✓ correct ratio	
	$\cos \theta = \frac{x}{QS}$			
	$\cos \theta = \frac{x}{QS}$ $QS = \frac{x}{\cos \theta}$		$\checkmark QS = \frac{X}{\cos \theta}$	
	$\therefore SR = \frac{x}{\cos \theta} \times \frac{\sin(\alpha + \theta)}{\sin \beta}$		✓substitution of QS	
	$SR = \frac{x \sin(\alpha + \beta)}{\cos \theta \sin \beta}$		(6	6)
			[10	

QUESTION 8

8.1	Total surface area		
	$= (length \times breadth) + 2(length \times height) + 2(breadth \times height)$	√ formula for surface area	
	$=(27\times24)+2(27\times10)+2(24\times10)$	✓ substitution	
	=1668 cm ²	√ answer	100.000
			(3)
8.2	$Volume = length \times breadth \times height$	✓ formula for volume	
	$4500\text{cm}^3 = 27\text{cm} \times 24\text{cm} \times \text{height}$	✓ substitution	
	$height = \frac{4500}{24 \times 27}$		
	24×27		
	= 6,94 cm	✓ answer	
	95.00 1 .070.00 5.00		(3)
			[6]

Please turn over

Marking Guideline

QUESTION 9

	(0)		- 07	
9.1	Ĉ = 90°	[∠ in a semi-circle]	✓ S/R	
	$\hat{E}_1 = \hat{C} = 90^\circ$	[corr. ∠'s, OE∥BC]	✓ S/R	
	$AE = \frac{1}{2}(AO)$	[line from centre \perp to chord]	✓ S/R	
	$AE = \frac{1}{2}(12)$			
	AE = 6 cm			
	In $\triangle OAE$: $OA^2 = AE^2 + OE^2$	[Pythagoras]	√ S/R	
	$10^2 = 6^2 + OE^2$	[i yalagoras]	V 3/K	
	$OE^2 = 64$			
	OE = 8 cm		✓S (length of OE)	
	ED = OD - OE		V 3 (length of OL)	
	ED = 10 - 8			
	ED = 2 cm		✓ answer	
		*		(6)
9.2	$\hat{H} = F\hat{G}J$	[tan-chord-theorem]	✓S✓R	
	$= x - 5^{\circ}$			
	$\hat{H} = \hat{F}$	[∠s opposite = sides]	✓ S/R	
	= x - 5°			
	$\hat{F} + F\hat{G}H + \hat{H} = 180^{\circ}$	[sum of \angle s of \triangle FGH]	✓ S	
	$x - 5^{\circ} + 3x + x - 5^{\circ} = 180^{\circ}$			
	5x = 190°		2	
	$x = 38^{\circ}$		✓ answer	(E)
				(5)
				[11]

QUESTION 10

10.1.1	$\hat{R}_1 + \hat{R}_2 = 90^{\circ}$	[radius \perp to tangent]	√S√R	
	$\hat{R}_2 = 40^\circ$		√ answer	
				(3)
10.1.2	$\hat{S}_1 + \hat{S}_2 = 50^{\circ}$	[tan chord theorem]	✓S✓R	
	$\hat{W} + W\hat{R}S + \hat{S} = 180^{\circ}$	[sum of \angle s of \triangle WSR]		
	$\hat{W} + 90^{\circ} + 50^{\circ} = 180^{\circ}$			
	Ŵ = 40°		√answer	(3)
	OR		OR	
	T ₁ = 90°	[∠ in semi-circle]	✓S✓R	
	$\hat{W} = \hat{T}_{\scriptscriptstyle 1} - \hat{R}_{\scriptscriptstyle 1}$	[exterior \angle of \triangle WTR]		
	$=90^{\circ}-50^{\circ}=40^{\circ}$		√answer	(3)

Copyright reserved

10.1.3	$\hat{P}_1 = \hat{R}_2 = 40^{\circ}$	[∠s in the same segment]	√S√R	(2)
10.2	T₁ = 90°	[∠ in a semi-circle]	✓ S/R	(2)
	$P\hat{T}S = T_1 + T_2 = 90^{\circ} + T_2$ $\hat{V}_1 = W\hat{R}S + \hat{S}_1 = 90^{\circ} + \hat{S}_1$ But: $\hat{T}_2 = \hat{S}_1$	[ext \angle of Δ = sum of int opp \angle s] [\angle s in the same segment]	✓ S/R ✓ S ✓ R	
	$\therefore \hat{V}_1 = P\hat{T}S$			(4)
10.3	$\hat{V}_1 = P\hat{T}S$ $\therefore WVPT$ is a cyclic quadrilateral	[converse: exterior ∠ = int opp ∠]	√R	(1)
				[13]

QUESTION 11

11.1	Q 2 10	s	Note: No construction:	0 5
	Construction: Draw	OQ and OS	✓ construction	
	$\hat{O}_1 = 2\hat{P}$	[\angle @ centre = 2× \angle @ circumf.]	✓ S/R	
	$\hat{O}_2 = 2\hat{R}$	[\angle @ centre = 2× \angle @ circumf.]	√S	
	$\hat{O}_1 + \hat{O}_2 = 360^{\circ}$	[∠'s around a point]	√ S/R	
	$\therefore 2\hat{P} + 2\hat{R} = 360^{\circ}$			
	$2(\hat{P} + \hat{R}) = 360^{\circ}$		✓S	
	$\therefore \hat{P} + \hat{R} = 180^{\circ}$			(5)
11.2.1	$\hat{B}_3 = \hat{A}_1 = X$	[∠s in the same segment]	√S	
	$\hat{D}_2 = \hat{B}_3 = X$	[∠s opp. = radii]	√S √R	
	$\hat{A}_2 = \hat{D}_2 = X$	[∠s in the same segment]	√S/R	(4)
	OR		OR	23 /24
	$\hat{B}_3 = \hat{A}_1 = X$	[∠s in the same segment]	√S	
	$\hat{D}_2 = \hat{B}_3 = X$	[∠s opp. = radii]	√S √R	
	$\hat{A}_2 = \hat{A}_1 = X$	[equal chords; equal ∠s]	√S/R	(4)
2	abt recented		Diago turn over	

OR For AB to be a tangent to circle BCDE, DBA should be equal to $\hat{C} = 90^{\circ} - x$ [converse: tan-chord-theorem]. But: DBA = $\hat{B}_1 + \hat{B}_2$ $= 90^{\circ} - x + \hat{B}_2$ $= \hat{C} + \hat{B}_2$ $\therefore DBA > \hat{C}$ \therefore AB is not a tangent to circle BCDE. OR $\checkmark AB \text{ will be a tangent if } DBA = \hat{C} = 90^{\circ} - x$ $V \Rightarrow AB \text{ will be a tangent if } DBA = \hat{C} = 90^{\circ} - x$					
$ \begin{array}{c} & = 90 \\ \hline & & \\ \hline & &$	11.2.2	1	[sum of \angle s of \triangle BOD]	√S√R	
11.2.3 $ \hat{E}_2 = \hat{C} - \frac{\partial G}{\partial G} \times \qquad [ext. \angle of cyclic quadrilateral] \qquad \forall S \sqrt{R} $ $ \hat{F}_2 = \hat{E}_2 - \hat{A}_F \qquad [ext \angle of \triangle FA] \qquad \forall S $ $ = (90^- X) + X = 90^\circ $ $ \therefore \hat{B}_1 = 180^\circ - (\hat{F}_2 + \hat{A}_2) \qquad [sum of \angle s of \triangle BFA] \qquad \forall S $ $ \Rightarrow 0R \qquad \qquad \Rightarrow 0$ $ \therefore AB = AE \qquad [sides opp. = \angle s] \qquad \forall R \qquad (5) $ $ OR \qquad \qquad OR \qquad$		$\hat{C} = \frac{1}{2}B\hat{O}D$	[\angle at centre = $2 \times \angle$ at circumference]	√R	
11.2.3 $ \hat{E}_2 = \hat{C} - \frac{\partial G}{\partial G} \times \qquad [ext. \angle of cyclic quadrilateral] \qquad \forall S \sqrt{R} $ $ \hat{F}_2 = \hat{E}_2 - \hat{A}_F \qquad [ext \angle of \triangle FA] \qquad \forall S $ $ = (90^- X) + X = 90^\circ $ $ \therefore \hat{B}_1 = 180^\circ - (\hat{F}_2 + \hat{A}_2) \qquad [sum of \angle s of \triangle BFA] \qquad \forall S $ $ \Rightarrow 0R \qquad \qquad \Rightarrow 0$ $ \therefore AB = AE \qquad [sides opp. = \angle s] \qquad \forall R \qquad (5) $ $ OR \qquad \qquad OR \qquad$		= 90° (AX)		√answer	
$\hat{F_2} = \hat{E}_2 + \hat{A_3} \qquad [ext \ \angle \ of \ \Delta \ FEA] \qquad (90^\circ - x) + x = 90^\circ \qquad (3) \ (90^\circ - x) + x = 90^\circ \qquad (5) \ (90^\circ - x) + x = 90^\circ \qquad (5) \ (90^\circ - x) + (2) \ (90^\circ - x) \qquad (90^\circ - x) = (90^\circ - x) = (90^\circ - x) \qquad (90^\circ - x) = (90^\circ - x$					(4)
$= (90^{\circ} - x) + x = 90^{\circ}$ $\therefore \hat{B}_1 = 180^{\circ} - (\hat{F}_2 + \hat{A}_2) \qquad [sum of \angle s of \triangle BFA]$ $= 90^{\circ} - x$ $\therefore AB = AE \qquad [sides opp. = \angle s] \qquad \forall R \qquad (5)$ $OR \qquad \qquad OR$ $\hat{E}_2 = \hat{C} = 90^{\circ} - x \qquad [ext. \angle of cyclic quadrilateral] \qquad \forall S \lor R$ $\hat{f}_1 = 180^{\circ} - (\hat{E}_2 + \hat{A}_1) \qquad [sum of \angle s of \triangle EFA] \qquad \forall S$ $= 90^{\circ}$ $In \triangle ABF \text{ and } \triangle AEF:$ $1. BF = FE \qquad [line from centre \bot to chord]$ $2. AF = AF \qquad [common]$ $3. \hat{f}_2 = \hat{f}_1 \qquad [\angle s \text{ on a straight line}]$ $\therefore \triangle ABF = \triangle AEF \qquad [s; \angle; s]$ $\therefore AB = AE \qquad [= \triangle s] \qquad \forall R \qquad (5)$ $11.2.4 \qquad \hat{B}_1 + \hat{B}_3 = (90^{\circ} - x) + x = 90^{\circ}$ $\therefore O\hat{B}A = \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^{\circ} + \hat{B}_2 > 90^{\circ}$ $For AB to be a tangent to circle BCDE. \qquad O\hat{B}A \text{ should be equal to}$ $\hat{O}A \Rightarrow \hat{O} \Rightarrow \hat$	11.2.3		[ext. ∠ of cyclic quadrilateral]	√S√R	
$ \begin{array}{c} \therefore \hat{B}_1 = 180^\circ - \left(\hat{F}_2 + \hat{A}_2\right) & [\text{sum of } \angle \text{s of } \triangle \text{BFA}] \\ = 90^\circ - x \\ \therefore AB = AE & [\text{sides opp.} = \angle \text{s}] & \\ \text{OR} & \\ \hat{E}_2 = \hat{C} = 90^\circ - x & [\text{ext. } \angle \text{ of cyclic quadrilateral}] & \\ \hat{F}_1 = 180^\circ - \left(\hat{E}_2 + \hat{A}_1\right) & [\text{sum of } \angle \text{s of } \triangle \text{EFA}] & \\ = 90^\circ & \\ \text{In } \triangle \text{ABF and } \triangle \text{AEF} & [\text{line from centre } \bot \text{ to chord}] \\ 2. \ AF = AF & [\text{common}] & \\ 3. \ \hat{F}_2 = \hat{F}_1 & [\text{Ls on a straight line}] & \\ \therefore \triangle \text{ABF} = \triangle \text{AEF} & [\text{s}; \angle; \text{s}] & \\ \therefore AB = AE & [= \Delta \text{s}] & \\ \hline 11.2.4 & \hat{B}_1 + \hat{B}_3 = (90^\circ - x) + x = 90^\circ & \\ \therefore O\hat{B}A = \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^\circ + \hat{B}_2 > 90^\circ & \\ \hline \text{For AB to be a tangent to circle BCDE.} & \\ \hline OR & \\ \hline \text{OR} & \\ \hline $			[ext \angle of \triangle FEA]	√S	
$\begin{array}{c} = 90^{\circ} - X \\ \therefore AB = AE \\ \hline \textbf{OR} \\ \\ \hat{\textbf{E}}_2 = \hat{\textbf{C}} = 90^{\circ} - X \\ \hat{\textbf{E}}_1 = 180^{\circ} - \left(\hat{\textbf{E}}_2 + \hat{\textbf{A}}_1\right) \\ = 90^{\circ} \\ \hline \textbf{In } \Delta \textbf{ABF} \text{ and } \Delta \textbf{AEF} \\ 1. $		$= (90^{\circ} - x) + x = 90^{\circ}$			
$ \begin{array}{c} \therefore AB = AE \qquad \qquad [sides opp. = \angle s] \qquad \qquad & \checkmark R \qquad (5) \\ \mathbf{OR} \qquad \qquad & \hat{E}_2 = \hat{C} = 90^\circ - x \qquad [ext. \angle of cyclic quadrilateral] \qquad & \checkmark s \checkmark R \\ \qquad & \hat{f}_1 = 180^\circ - \left(\hat{E}_2 + \hat{A}_1\right) \qquad [sum of \angle s of \Delta EFA] \qquad & \checkmark s \\ \qquad & = 90^\circ \\ \text{In } \Delta ABF and \Delta AEF : \\ \qquad & 1. BF = FE \qquad [line from centre \bot to chord] \\ \qquad & 2. AF = AF \qquad [common] \\ \qquad & 3. \hat{F}_2 = \hat{f}_1 \qquad [Zs on a straight line] \\ \qquad & \therefore \Delta ABF \equiv \Delta AEF \qquad [s : \angle : s] \\ \qquad & \therefore AB BAE \qquad [s : c : s] \\ \qquad & \therefore AB BAE \qquad [s : c : s] \\ \qquad & \therefore OBA = \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^\circ + \hat{B}_2 > 90^\circ \\ \qquad & For AB to be a tangent to circle \mathsf{BCDE, O\hat{BA} should be equal to \qquad 0\hat{OS} A should be = 90^\circ \\ \qquad & \therefore AB is not a tangent to circle \mathsf{BCDE, D\hat{BA} should be equal to \\ \qquad & \hat{C} equiv equ$		$\therefore \hat{B}_1 = 180^{\circ} - \left(\hat{F}_2 + \hat{A}_2\right)$	[sum of \angle s of \triangle BFA]	√S	
OR $\hat{E}_2 = \hat{C} = 90^\circ - x \qquad [ext. \angle of cyclic quadrilateral] \qquad \checkmark \$ \checkmark R$ $\hat{F}_1 = 180^\circ - (\hat{E}_2 + \hat{A}_1) \qquad [sum of \angle s of \triangle EFA] \qquad \checkmark \$$ $= 90^\circ$ $In \triangle ABF and \triangle AEF:$ $1. BF = FE \qquad [line from centre \bot to chord]$ $2. AF = AF \qquad [common]$ $3. \hat{F}_2 = \hat{F}_1 \qquad [\angle s on a straight line]$ $\therefore \triangle ABF = \triangle AEF \qquad [s; \angle ; s]$ $\therefore AB = AE \qquad [a \triangle s] \qquad \checkmark R \qquad (5)$ $11.2.4 \qquad \hat{B}_1 + \hat{B}_3 = (90^\circ - x) + x = 90^\circ$ $\therefore O\hat{B}A = \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^\circ + \hat{B}_2 > 90^\circ$ $For AB to be a tangent to circle BCDE, O\hat{B}A should be equal to 90^\circ. \qquad (5)$ OR $For AB to be a tangent to circle BCDE. OR For AB to be a tangent to circle BCDE, D\hat{B}A should be equal to \hat{C} = 90^\circ - x \qquad [converse: tan-chord-theorem]. But: D\hat{B}A = \hat{B}_1 + \hat{B}_2 \qquad = 90^\circ - x + \hat{B}_2 \qquad = 90^\circ - x + \hat{B}_2 \qquad = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$		$= 90^{\circ} - x$		/=	(=)
$\hat{E}_2 = \hat{C} = 90^\circ - x \qquad [ext. \ \angle \ of \ cyclic \ quadrilateral] \qquad \ \ \ \ \ \ \ \ \ \ \ \ \$		30 900 000 000 000 000 000 000 000 000 0	[sides opp. = \angle s]	310 - 50001900	(5)
$\hat{F_1} = 180^\circ - \left(\hat{E}_2 + \hat{A}_1\right) \qquad [\text{sum of } \angle \text{s of } \triangle \text{ EFA}] \qquad \qquad \checkmark \text{S}$ $= 90^\circ \\ \text{In } \triangle \text{ABF and } \triangle \text{AEF:}$ $1. \ BF = FE \qquad \qquad [\text{line from centre } \bot \text{ to chord}]$ $2. \ AF = AF \qquad \qquad [\text{common}]$ $3. \ \hat{F_2} = \hat{F_1} \qquad \qquad [\angle \text{s on a straight line}]$ $\therefore \triangle \text{ABF} \equiv \triangle \text{AEF} \qquad \qquad [s : \angle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\therefore AB = AE \qquad \qquad [s : \triangle : s]$ $\Rightarrow AB \Rightarrow AE \qquad \qquad [s : \triangle : s]$ $\Rightarrow AB \Rightarrow AE \qquad \qquad [s : \triangle : AB \Rightarrow AE \qquad [s : \triangle : AE \Rightarrow AE$		7.5		OR	
$= 90^{\circ}$ In \triangle ABF and \triangle AEF: 1. BF = FE			[ext. ∠ of cyclic quadrilateral]	√S√R	
In \triangle ABF and \triangle AEF: 1. BF = FE 2. AF = AF 3. $\hat{F}_2 = \hat{F}_1$ [\angle s on a straight line] $\therefore \triangle$ ABF \equiv \triangle AEF $\therefore AB = AE$ [\equiv \triangle s] 11.2.4 $\hat{B}_1 + \hat{B}_3 = (90^\circ - x) + x = 90^\circ$ $\therefore O\hat{B}A = \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^\circ + \hat{B}_2 > 90^\circ$ For AB to be a tangent to circle BCDE, O\hat{B}A should be equal to 90° . For AB to be a tangent to circle BCDE. OR For AB to be a tangent to circle BCDE. OR For AB to be a tangent to circle BCDE. OR For AB to be a tangent to circle BCDE. OR For AB to be a tangent to circle BCDE. OR For AB to be a tangent to circle BCDE. OR For AB to be a tangent to circle BCDE. OR For AB to be a tangent to circle BCDE. OR \triangle AB will be a tangent if \triangle AB will be a tangent if \triangle But: \triangle AB is not a tangent to circle BCDE. OR \triangle AB will be a tangent if \triangle AB will be a tangent if \triangle But: \triangle AB is not a tangent to circle BCDE. OR \triangle AB will be a tangent to \triangle AB will be a tangent to \triangle AB will be a tangent if \triangle AB will be a tangent if \triangle BA AB		$\hat{F}_{1} = 180^{\circ} - \left(\hat{E}_{2} + \hat{A}_{1}\right)$	[sum of \angle s of \triangle EFA]	√S	
2. $AF = AF$ [common] 3. $\hat{F}_2 = \hat{F}_1$ [\angle s on a straight line] $\therefore \triangle ABF \equiv \triangle AEF$ [s ; \angle ; s] $\therefore AB = AE$ [$\equiv \triangle s$] \checkmark R (5) 11.2.4 $\hat{B}_1 + \hat{B}_3 = (90^\circ - x) + x = 90^\circ$ \checkmark showing that $\bigcirc \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^\circ + \hat{B}_2 > 90^\circ$ $\bigcirc \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^\circ + \hat{B}_2 > 90^\circ$ $\bigcirc \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^\circ + \hat{B}_2 > 90^\circ$ $\bigcirc \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^\circ + \hat{B}_2 > 90^\circ$ $\bigcirc \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^\circ + \hat{B}_2 > 90^\circ$ $\bigcirc \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^\circ + \hat{B}_2 = 90^\circ - x$ [converse: tangent to circle BCDE, $\triangle BA$ should be equal to $\triangle BA$ will be a tangent if $\triangle BA$ be a tangent to circle BCDE, $\triangle BA$ should be equal to $\triangle BA$ will be a tangent if $\triangle BA$ be a tangent if $\triangle BA$ be a tangent to $\triangle BA$ be a tangent to $\triangle BA$ be a tangent to $\triangle BA$ be a tangent if $\triangle BA$ be a tangent to $\triangle BA$ be a		In \triangle ABF and \triangle AEF:			
3. $\hat{F}_2 = \hat{F}_1$ [\angle s on a straight line] $\therefore \triangle ABF \equiv \triangle AEF$ [s ; \angle ; s] $\therefore AB = AE$ [$\equiv \triangle s$] 11.2.4 $\hat{B}_1 + \hat{B}_3 = (90^\circ - x) + x = 90^\circ$ $\therefore O\hat{B}A = \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^\circ + \hat{B}_2 > 90^\circ$ For AB to be a tangent to circle BCDE, O\hat{B}A should be equal to 90^\cdots. [converse: tangent \perp radius] $\therefore AB$ is not a tangent to circle BCDE. (3) OR For AB to be a tangent to circle BCDE, D\hat{B}A should be equal to $\hat{C} = 90^\circ - x$ [converse: tan-chord-theorem]. But: $\hat{D}BA = \hat{B}_1 + \hat{B}_2$ $= 90^\circ - x + \hat{B}_2$ $= \hat{C} + \hat{B}_2$ $\therefore D\hat{B}A > \hat{C}$ $\therefore AB$ is not a tangent to circle BCDE. (3)				√S/R	
$ \begin{array}{c} \therefore \Delta ABF \equiv \Delta AEF \\ \therefore AB = AE \\ \end{array} $					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
		1729 (020 27 27	[≡ Δs]	√R	(5)
For AB to be a tangent to circle BCDE, OBA should be equal to 90° . [converse: tangent \bot radius] AB is not a tangent to circle BCDE. (3) OR For AB to be a tangent to circle BCDE. (3) OR For AB to be a tangent to circle BCDE. \bigcirc OR For AB to be a tangent to circle BCDE, DBA should be equal to \bigcirc C AB will be a tangent if \bigcirc DBA = \bigcirc C = \bigcirc 90° - x But: DBA = \bigcirc B ₁ + \bigcirc B ₂ \bigcirc = \bigcirc 90° - x + \bigcirc 2 \bigcirc = \bigcirc C + \bigcirc 2 \bigcirc C + \bigcirc 2 \bigcirc Showing that \bigcirc DBA > \bigcirc C \bigcirc AB is not a tangent to circle BCDE. (3)	11.2.4	$\hat{B}_1 + \hat{B}_3 = (90^\circ - x) + x = 90^\circ$		√√ showing that	
[converse: tangent \bot radius] \therefore AB is not a tangent to circle BCDE. (3) OR For AB to be a tangent to circle BCDE, DBA should be equal to $\hat{C} = 90^{\circ} - x$ [converse: tan-chord-theorem]. But: DBA = $\hat{B}_1 + \hat{B}_2$ $= 90^{\circ} - x + \hat{B}_2$ $= \hat{C} + \hat{B}_2$ \Rightarrow DBA > \hat{C} \Rightarrow AB is not a tangent to circle BCDE. (3)		$\therefore O\hat{B}A = \hat{B}_1 + \hat{B}_2 + \hat{B}_3 = 90^{\circ}$	$+\hat{B}_2 > 90^\circ$	OBA > 90°	
OR For AB to be a tangent to circle BCDE, DBA should be equal to $\hat{C} = 90^{\circ} - x$ [converse: tan-chord-theorem]. But: DBA = $\hat{B}_1 + \hat{B}_2$ $= 90^{\circ} - x + \hat{B}_2$ $= \hat{C} + \hat{B}_2$ $\therefore DBA > \hat{C}$ AB will be a tangent if $\hat{D}A = \hat{C} = 90^{\circ} - x$ $\Rightarrow \hat{C} = 90^{\circ} - x$ Showing that $\Rightarrow \hat{C} = \hat{C} + \hat{C} = \hat{C} + \hat{C} = \hat{C} + \hat{C} = \hat{C} + \hat{C} = \hat{C} = \hat{C} + \hat{C} = \hat{C} $				IN THE COURT OF THE PROPERTY O	
For AB to be a tangent to circle BCDE, D $\hat{B}A$ should be equal to $\hat{C} = 90^{\circ} - x$ [converse: tan-chord-theorem]. $\hat{D}BA = \hat{C} = 90^{\circ} - x$ But: $\hat{D}BA = \hat{B}_1 + \hat{B}_2$ $= 90^{\circ} - x + \hat{B}_2$ $= \hat{C} + \hat{B}_2$ $\Rightarrow \hat{D}BA > \hat{C}$ $\Rightarrow \hat{D}BA > \hat{C}$ $\Rightarrow \hat{D}BA > \hat{C}$ (3)		AB is not a tangent to circ	le BCDE.		(3)
$\hat{C} = 90^{\circ} - x \text{[converse: tan-chord-theorem]}.$ $\text{But: } D\hat{B}A = \hat{B}_1 + \hat{B}_2$ $= 90^{\circ} - x + \hat{B}_2$ $= \hat{C} + \hat{B}_2$ $\therefore D\hat{B}A > \hat{C}$ $\therefore AB \text{ is not a tangent to circle BCDE.}$ $\hat{D}\hat{B}A = \hat{C} = 90^{\circ} - x$ $\checkmark \text{showing that } \hat{D}\hat{B}A > \hat{C}$ (3)		OR		OR	
$= 90^{\circ} - x + \hat{B}_{2}$ $= \hat{C} + \hat{B}_{2}$ $\therefore D\hat{B}A > \hat{C}$ $\therefore AB \text{ is not a tangent to circle BCDE.}$ (3)		_	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		nt if
$= \hat{C} + \hat{B}_2 $		But: $D\hat{B}A = \hat{B}_1 + \hat{B}_2$			
∴ DBA > Ĉ ∴ AB is not a tangent to circle BCDE. DBA > Ĉ (3)		$= 90^{\circ} - x + \hat{B}_2$			
∴ AB is not a tangent to circle BCDE. (3)		$=\hat{C}+\hat{B}_2$		√ showing that	
		∴ DBA > Ĉ		DBA > Ĉ	
[21]		∴ AB is not a tangent to circl	e BCDE.		(3)
					[21]

TOTAL: 150