

NATIONAL CERTIFICATE BUILDING AND STRUCTURAL CONSTRUCTION N5

(8060015)

17 February 2022 (X-paper) 09:00–13:00

CLOSED BOOK EXAMINATION

REQUIREMENTS: Answer book (8/13)

A2 drawing sheets

Hot-rolled steel sections (BOE 8/2)

Drawing instruments and nonprogrammable calculators may be used.

This question paper consists of 6 pages, 2 diagram sheets, 1 formula sheet and 2 addenda.

295Q1E2217

Copyright reserved Please turn over

(8060015) -2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
BUILDING AND STRUCTURAL CONSTRUCTION N5
TIME: 4 HOURS
MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. QUESTIONS 3, 5 and 6 must be done on the supplied A2 drawing paper.
- 4. QUESTION 7 must be answered on ADDENDUM 1 (attached).
- 5. Answer QUESTIONS 1, 2 and 4 in the ANSWER BOOK.
- Number the answers according to the numbering system used in this question paper.
- 7. All drawings must be done in pencil with bold outlines.
- 8. The drawings must be done in accordance with the National Standards and be fully labelled with descriptive notes and dimensions (where applicable).
- 9. All calculations must conform to the relevant SABS/SANS Codes of Practice.

10. Write neatly and legibly.

Copyright reserved Please turn over

(8060015) -3-

QUESTION 1

An H-section parallel steel beam is required to span a distance of 10,5 m where the left-hand end forms a 2,50 m overhang. FIGURE 1 (below) shows the fully-loaded beam which includes the value of the reaction at the right-hand side. The self-weight of the steel beam must not be considered. Bending stress = 158 MPa.

1.1 Calculate the value of the reaction at the left-hand side and show all the calculations.

(2)

(5)

(3)

- 1.2 Calculate and draw the shear-force diagram and include all the values.
- 1.3 Calculate the bending moment values at B, C, and D. (3)
- 1.4 Calculate the section modulus and then choose a suitable H-section parallel flange steel beam to support the loads.
- 1.5 Calculate the shear stress of the chosen beam.

FIGURE 1 (3) [16]

QUESTION 2

FIGURE 2, DIAGRAM SHEET 1 (attached) shows a lamina plate fixed to a rectangular base, with cutouts of a circle and a triangle.

Calculate the following:

- 2.1 The position of the neutral axis from the bottom of the base (5)
- 2.2 The second moment of the area

2.3 The section modulus about the x-x axis (3)

Copyright reserved Please turn over