

NATIONAL CERTIFICATE CHEMICAL PLANT OPERATION N5

(8050015)

8 July 2022 (X-paper) 09:00–12:00

Drawing instruments and nonprogrammable calculators may be used.

This question paper consists of 4 pages and 1 table.

Copyright reserved Please turn over

(8050015) -2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
CHEMICAL PLANT OPERATION N5
TIME: 3 HOURS
MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- Number the answers according to the numbering system used in this question paper.
- 4. Start each section on a new page.
- 5. Use only a black or blue pen.
- 6. Write neatly and legibly.

Copyright reserved Please turn over

(8050015) -3-

QUESTION 1

Choose an item from COLUMN B that matches a description in COLUMN A. Write only the letter (A–G) next to the question number (1.1–1.5) in the ANSWER BOOK.

	COLUMN A	COLUMN B
1.1	Velocity decreases as kinetic energy is transferred to a moving blade	A heat
1.2	A vertical cylinder with a conical	B radial-flow turbine
	bottom	C axial flow
1.3	A turbine in which only part of the pressure drop occurs in the nozzle	D reaction turbine
		E nitric acid
1.4	Type of acid that produces a sodium, copper and nitro compound that can be used for photoengraving	F sulphuric acid
1.5	Form of energy that flows from a system to its surrounding	G cyclone (5 × 1)

 (5×1) [5]

QUESTION 2

2.1 Define the following terms:

2.1.1 Heat of reaction (2)

2.1.2 Hess's law (3)

2.1.3 Kinetic energy (2)

2.2 Determine the enthalpy change of 10 mol of air between 600 °C and (5) 1 100 °C.

2.3 Identify THREE factors influencing the efficiency of an impulse-reaction turbine. (3)

[15]

QUESTION 3

3.1 Give the combustion reaction of tetrachloromethane (CCl₄). (3)

3.2 Briefly describe the advantages and disadvantages of a closed-gas turbine. (6)

3.3 Sketch a rotary cup atomiser burner. (5)

Name the THREE blades in a two-arm kneader and describe the purpose of each. (3 × 2) (6)

[20]

Copyright reserved Please turn over