

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE CHEMISTRY N5

9 APRIL 2019

This marking guideline consists of 6 pages.

Copyright reserved Please turn over

QUESTION 1: INTRODUCTION TO ORGANIC CHEMISTRY AND ALKANES

- 1.1 1.1.1 Reaction 1 (1)
 - 1.1.2 Radicals (1)
 - 1.1.3 H₃O:⁺ (1)
 - 1.1.4 An electrophile is a substance that accepts a pair of electrons from the nucleophile in a polar bond-forming reaction. (2)
 - 1.1.5 $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$ (4)
 - 1.1.6 Substitution reaction it is a reaction in which atoms or some parts of a molecule are replaced by another atoms or parts.

OR

In substitution reactions reactants exchange parts to form new products. (2)

- 1.1.7 It is a type of bond cleavage that occurs in polar reactions where each fragment leaves with both of the bonding electrons. (2)
- 1.2 1.2.1 C1: Sp³ hybrid C4: Sp³ hybrid (2)
 - 1.2.2 Unsaturated it contains a double bond. (2)
- 1.3 1.3.1 NH₂
 - 1.3.2 CH₃(CH₂)₃CH₃
 - 1.3.3

NOTE: Any acceptable example of an aromatic, aliphatic or heterocyclic compound should be awarded a mark.

 (3×1) (3)

[20]

QUESTION 2: ALKENES, ALKYNES AND AROMATIC COMPOUNDS

2.1	2.1.1	C_nH_{2n+2}	(1)
	2.1.2	CH ₃ CH ₃	(1)
	2.1.3	None	(1)
	2.1.4	All three compounds are nonpolar, ✓ because alkanes are classified as nonpolar compounds. ✓	(2)
	2.1.5	Pentane	(2)
	2.1.6	C ₅ H ₁₂	(1)
	2.1.7	CH ₃	
		CH ₃ - C - CH ₂ - CH ₂ - CH ₃	
		CH ₃ – CH – CH ₂ – CH ₃ (Any 2 × 2)	(4)
2.2	2.2.1	During the addition of HX to an alkene, the H attaches to the carbon with fewer alkyl substituents and the X attaches to the carbon with more alkyl substituents.	(2)

Major product: 1-bromo-1-methylcyclohexane
 Minor product: 2-bromo-1-methylcyclohaxane (2 + 2) (4)

Copyright reserved Please turn over

2.2.2