

NATIONAL CERTIFICATE COMMUNICATION ELECTRONICS N5

(8080235)

1 April 2021 (X-paper) 09:00–12:00

This question paper consists of 5 pages and a formula sheet of 5 pages.

005Q1A2101

Copyright reserved Please turn over

(8080235) -2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
COMMUNICATION ELECTRONICS N5
TIME: 3 HOURS
MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- Number the answers according to the numbering system used in this question paper.
- 4. Diagrams must be large, neat and clear and may be done in pencil.
- 5. Use only a blue or black pen.
- 6. Write neatly and legibly.

Copyright reserved Please turn over

(8080235)-3-

QUESTION 1: AC NETWORKS

Use any method to derive the equation for the resonance frequency of a 1.1 parallel resonant circuit.

(10)

1.2

FIGURE 1

 $R = 20 \Omega$ C = 22 pF $L = 50 \mu H$

Study FIGURE 1 and calculate the following:

- 1.2.1 The resonant frequency
- 1.2.2 The inductive resistance at resonance
- 1.2.3 The capacitive reactance at resonance
- The Q-factor of the circuit 1.2.4

 (4×2) [18]

QUESTION 2

- 2.1 Draw diagrams and derive the expression for the series impedance Z₁ of a symmetrical T-type network. (11)
- 2.2 Draw the π-network with the following values and convert it to a T-network:

 $^{\rm Z}$ A = 200 ohms

 $^{\rm Z}$ B = 200 ohms

 $^{\rm Z}$ C = 400 ohms

(10)

[21]

Copyright reserved Please turn over