

MARKING GUIDELINE

NATIONAL CERTIFICATE COMMUNICATION-ELECTRONICS N5

26 JULY 2019

This marking guideline consists of 7 pages.

Copyright reserved Please turn over

-2-COMMUNICATION-ELECTRONICS N5

QUESTION 1: GENERAL

- 1.1 direct ✓ oppose ✓
- 1.2 Insertion loss✓ mismatch✓
- 1.3 prototype ✓ networks ✓
- 1.4 microphone ✓ electrical ✓
- 1.5 controllers ✓ bandwidth ✓

 (5×2) [10]

QUESTION 2: AC NETWORKS

2.1
$$Z_{\text{total}} = (2 + 2) + (j5 - j) = j4 + 4$$

In polar form:

$$ZT = 5.7 \angle 45^{\circ} \checkmark$$

i.e
$$\tan \theta = \frac{1}{1} = 45^{\circ}$$

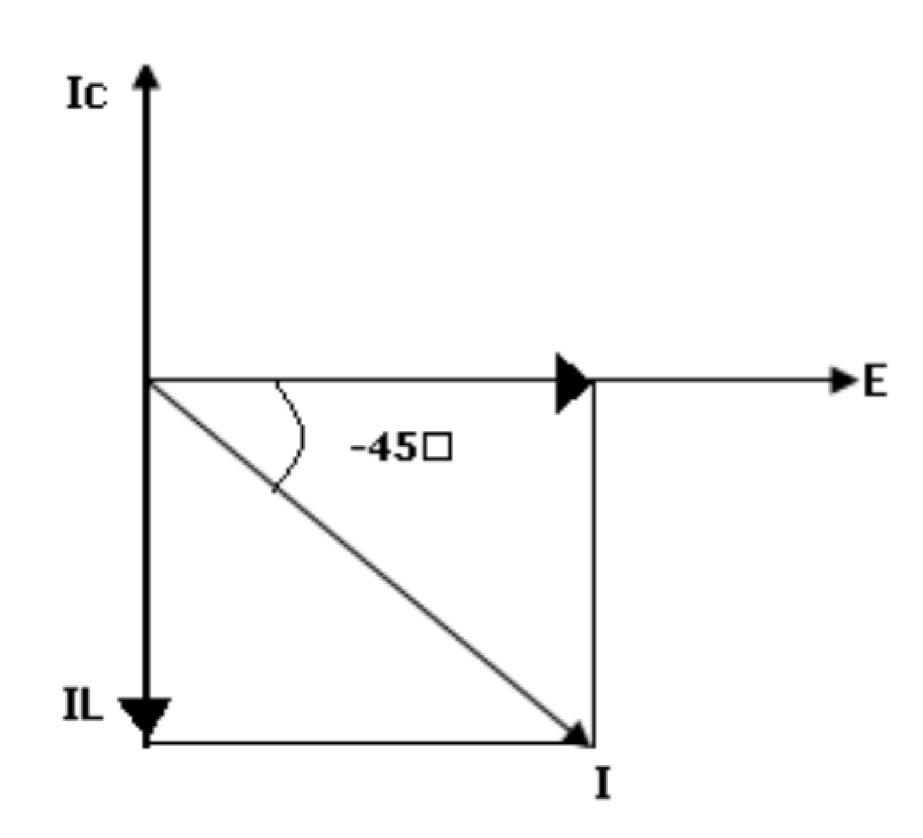
and ZT =
$$\frac{4}{\sin 45^{\circ}}$$
 = 5,65 or 5,7 Ω

$$I = \frac{V}{Z}$$

$$I = \frac{100 \angle 0^{\circ}}{5,7 \angle 45^{\circ}}$$

$$I = 17,5 \angle -45^{\circ} \checkmark$$
 (3)

 $i = \text{Im sin}(wt - \theta)$


Where Im =
$$17.5 - \sqrt{2}$$
 A
= 24.75 A \checkmark

Frequency
$$w = 377 \text{ rad/s}$$

 $\theta = 45^{\circ}$
 $i = \text{Im } \sin(wt - \theta) \checkmark$
 $= 24(377t - 45^{\circ}) \checkmark$ (3)

Copyright reserved

-3-COMMUNICATION-ELECTRONICS N5

2.1.3

(2)

$$ZT = \frac{Zc \times ZL}{ZC + ZL}$$

Where
$$Zc = -jXc$$

 $ZL = R + jXL\checkmark$
Therefore $\dot{Z} = \frac{-jXC \times (R + jXL)}{-jXC + (R + jXL)}\checkmark$

At resonance
$$Xc = XL$$
 i.e $jXc = jXL = 0\checkmark$

Hence $\dot{Z} = \frac{-jRXc + XcXL}{R}\checkmark$

But $-jRXc$ is negligible

$$\therefore Z = \frac{Xc \times XL}{R}\checkmark$$

$$Xc = \frac{1}{wc}$$
 and $XL = wL\checkmark$

i.e Z =
$$\frac{\frac{1}{wc} \times \frac{wL}{1}}{R} \checkmark$$

$$= \frac{\frac{wL}{wc}}{R} = \frac{wL}{wc \times R} \checkmark \checkmark$$

Hence
$$Z = \frac{L}{CR} \checkmark$$
 (10)

- 2.3 2.3.1 Impedance versus frequency for a parallel-tuned circuit
 - 2.3.2 Current versus frequency for a parallel-tuned circuit
 - 2.3.3 Current versus frequency for a series-tuned circuit
 - 2.3.4 Impedance versus frequency for a series-tuned circuit

 (4×3) (12)

[30]