

MARKING GUIDELINE

NATIONAL CERTIFICATE COMMUNICATION-ELECTRONICS N5

1 February 2022

This marking guideline consists of 8 pages.

Copyright reserved Please turn over

QUESTION 1: AC NETWORKS

1.1 1.1.1
$$VR = IT \times R$$
 but $IT = \frac{VT}{R}$ and $Z = R$ (at resonance)
$$= 40 \times 3 \checkmark \qquad = \frac{120}{3}$$

$$= 120 V \checkmark \qquad = 40 \text{ A} \checkmark \qquad (3)$$

1.1.2
$$VL = IT \times XL$$
 but $XL = Q \times R$
= $40 \times 225 \checkmark$ = 75×3
= $9 \text{ kV} \checkmark$ = $225 \Omega \checkmark$

OR

$$VL = Q \times Vs$$

$$= 75 \times 120 \checkmark$$

$$= 9 \text{ kV} \checkmark \checkmark$$
(3)

1.1.3
$$VL = VC \text{ at resonance}\checkmark$$
 $VC = 9 \text{ kV}\checkmark$ (2)

1.1.4
$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$(75 \times 3)^{2} = \left(\sqrt{\frac{100 \times 10^{-3}}{C}}\right)^{2} \checkmark$$

$$C = \frac{100 \times 10^{-3}}{50 \cdot 625} \checkmark$$

$$= 1.975 \, \mu \text{F} \checkmark$$
 (3)

1.1.5 Fr =
$$\frac{1}{2\pi\sqrt{LC}}$$
Fr = $\frac{1}{2\pi\sqrt{100 \times 10^{-3} \times 1,975 \times 10^{-6}}}$
= 358,127 Hz \checkmark (3)

1.2
$$ZD = \frac{L}{CR}$$

but $L = \frac{XL}{2\pi f} \checkmark$

and
$$C = \frac{1}{2\pi f XC} \checkmark$$

Substitute:

$$= \frac{XL}{2\pi f} \times \frac{2\pi fXC}{R} \checkmark \checkmark$$

$$=\frac{XL}{1}x\frac{XC}{R}\checkmark$$

But

$$Q = \frac{XC}{R} \checkmark$$

Substitute:

$$ZD = XL.Q \checkmark$$
 (7)

Mutual inductance is when an alternating current of 1 ampere flows in the primary winding and induces a voltage of 1 volt in the secondary windings. (2) [23]

QUESTION 2: TRUE OR FALSE

- 2.1 False
- 2.2 False
- 2.3 False
- 2.4 True
- 2.5 True
- 2.6 False
- 2.7 True
- 2.8 True
- 2.9 False
- 2.10 False

 (10×1) [10]

QUESTION 3: FOUR-TERMINAL NETWORKS

- 3.1.1 Symmetrical network is a two-port network that has similar input and output ports that may be interchanged.
 - 3.1.2 Insertion loss is the total loss or the mismatch losses combined with the attenuation losses when a network is inserted and is normally expressed in dB or neper.
 - 3.1.3 Image impedances are the impedances that occur when one impedance is connected across one pair of terminals and the other impedance appears across the other terminals.

 (3×2) (6)

Copyright reserved