

# MARKING GUIDELINE

# NATIONAL CERTIFICATE COMMUNICATION-ELECTRONICS N5 15 NOVEMBER 2019

This marking guideline consists of 6 pages.

Copyright reserved Please turn over

# **QUESTION 1**

| 1.1  | D   |
|------|-----|
| 1.2  | F   |
| 1.3  | Ε   |
| 1.4  | В   |
| 1.5  | K   |
| 1.6  | Н   |
| 1.7  | G   |
| 1.8  | С   |
| 1.9  | - 1 |
| 1.10 | Α   |

(10 × 1) **[10]** 

## **QUESTION 2: AC NETWORKS**

## 2.1 2.1.1



(2)

$$2.1.2 Zd = \frac{L}{cR}$$

$$= \frac{585 \times 10^{-6}}{120 \times 10^{-12} \times 5} \checkmark$$

$$= 975 \text{ K}\Omega \checkmark$$
(2)

2.1.3
$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$= \frac{1}{5} \sqrt{\frac{585 \times 10^{-6}}{120 \times 10^{-12}}} \checkmark$$

$$= 442 \checkmark$$
(2)

2.1.4 Ic = IQ  
But I = 
$$\frac{V}{Zd}$$
  
=  $\frac{100}{975 \times 10^3}$  \( = 102,56 \, \pm A \sqrt{  
\therefore Ic = 102,56 \times 10^{-6} \times 442 \sqrt{  
= 45 mA \sqrt{} \( \) (4)

2.1.5 
$$Fr = \frac{1}{2\pi\sqrt{LC}}$$

$$= \frac{1}{2\pi\sqrt{585 \times 10^{-6} \times 120 \times 10^{-12}}} \checkmark$$

$$= 601 \text{ kHz} \checkmark$$
(2)

2.2 
$$Q = \frac{xL}{R}$$
And  $XL = 2 \pi fL$ 

$$= 2 \pi \times 601 \times 10^{3} \times 585 \times 10^{-6} \checkmark$$

$$= 2209,36 \Omega \checkmark$$
(2)

$$\therefore Q = \frac{XL}{R}$$

$$= \frac{2209,36}{5} \checkmark$$

$$= 441, 81 = 442 \checkmark$$
(2)

- The co-efficient of coupling is defined as the degree of coupling between the primary and secondary windings and also it is the ratio of mutual inductance to maximum inductance. (4)
- 2.1 2.4.1 (a) Primary
  - (b) Impedance
  - (c) Coupled
  - (d) Reflected (4)
  - 2.4.2 (a) Voltage
    - (b) Current
    - (c) Lags (3)
  - 2.4.3 (a) Secondary
    - (b) Induced
    - (c) Winding (3)

[30]