

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE COMMUNICATION-ELECTRONICS N5

(8080235)

31 March 2020 (X-paper) 09:00–12:00

This question paper consists of 5 pages.

018Q1A2031

Copyright reserved Please turn over

(8080235) -2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
COMMUNICATION-ELECTRONICS N5
TIME: 3 HOURS
MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- Number the answers according to the numbering system used in this question paper.
- 4. Start each section on a new page.
- Write neatly and legibly.

Copyright reserved Please turn over

(8080235) -3-

QUESTION 1

Indicate whether the following statements are TRUE or FALSE by writing only 'True' or 'False' next to the question number (1.1–1.10) in the ANSWER BOOK.

- 1.1 When an AC flows through an inductor it sets up a back emf which is always equal and opposite to the applied emf.
- 1.2 The reactance of capacitors and inductors is determined by their physical construction and applied frequency.
- 1.3 A symmetrical two-port network has similar input and output ports that cannot be interchanged.
- 1.4 L-type pads are used for matching purposes only.
- 1.5 A constant k-filter is a simple T- or π -filter that does not have a sharp cut-off frequency.
- 1.6 The radio frequency (RF) stage provides selectivity to the receiver.
- 1.7 A limiter converts frequency variations into audio signals for amplification.
- 1.8 The Yagi-Uda antenna is ideal for point-to-point communication at low frequencies.
- 1.9 The non-resonant antenna is used over a wide range of frequencies.
- 1.10 Bode diagrams are used as approximations of frequency and phase response in an RC circuit.

(10 × 1) **[10]**

QUESTION 2: AC NETWORKS

- 2.1 Give the THREE characteristics of the following RLC circuits at resonance:
 - 2.1.1 Series circuit
 - 2.1.2 Parallel circuit

 (2×6) (12)

A supply of 20 V at a frequency of 50 Hz is connected across a parallel circuit consisting of a 1 k Ω resistor, a coil of 0,5 H and a 10 μ F capacitor.

2.2.1 Draw the circuit.

(2)

2.2.2 Determine each of the following:

(a) Total supply current

(10)

(b) Phase angle

(2)

2.2.3 Draw the phasor diagram.

[28]

Copyright reserved Please turn over