

NATIONAL CERTIFICATE COMMUNICATION-ELECTRONICS N5

(8080235)

17 November 2020 (X-paper) 09:00–12:00

This question paper consists of 5 pages and a formula sheet of 5 pages.

113Q1E2017

Copyright reserved Please turn over

(8080235) -2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

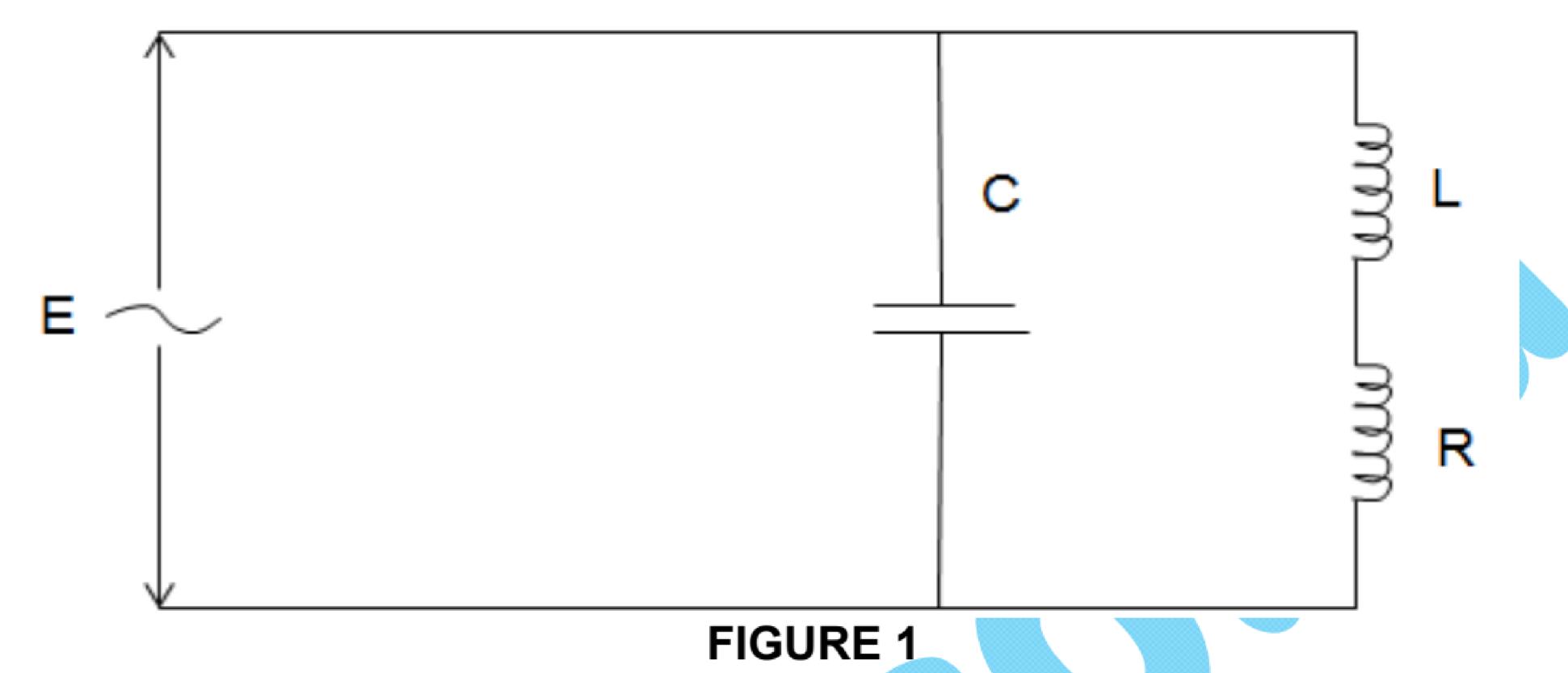
NATIONAL CERTIFICATE
COMMUNICATION-ELECTRONICS N5
TIME: 3 HOURS

MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- Number the answers according to the numbering system used in this question paper.
- 4. Start each question on a new page.
- 5. Use only a blue or black ink.
- 6. Write neatly and legibly.

Copyright reserved Please turn over


(8080235) -3-

QUESTION 1

1.1 Use any method to derive the equation for the resonance frequency of a parallel resonant circuit. (10)

1.2 Study FIGURE 1 below and answer the questions.

 $R = 20 \Omega$ C = 22 pF $L = 50 \mu H$

Calculate the following:

- 1.2.1 The resonant frequency
- 1.2.2 The inductive resistance at resonance
- 1.2.3 The capacitive reactance at resonance
- 1.2.4 The Q-factor of the circuit

 (4×2) (8)

1.3 What is understood by the term selectivity as applied to electronic circuits?

(3) **[21]**

QUESTION 2

2.1 Define *insertion loss* of a four-terminal network.

(2)

2.2 Derive the expression for the series impedance Z₁ of a symmetrical T-type network.

(12)

2.3 An attenuator pad receives a signal of 10 m Watt and delivers an attenuated version of 5 m Watt.

Determine the following:

The dB rating of the pad

(2)

2.3.2 The Z_1 and Z_2 values for π network if Z_{OC} = 222,2 Ω and Z_{SC} = 80 Ω

(6) **[22]**

Please turn over

Copyright reserved

2.3.1