

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE DIGITAL ELECTRONICS N5

(8080365)

19 November 2020 (X-paper) 09:00–12:00

This question paper consists of 6 pages.

155Q1E2019

Copyright reserved Please turn over

(8080365) -2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE DIGITAL ELECTRONICS N5 TIME: 3 HOURS MARKS: 150

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- Number the answers according to the numbering system used in this question paper.
- 4. Start each section on a new page.
- 5. Use only blue or black ink.
- All calculations and answers must be given in three fractional radix spaces, for example 10, 011₂.

Write neatly and legibly.

Copyright reserved Please turn over

(8080365) -3-

QUESTION 1

Convert the following numbers to their binary equivalent and follow the instructions given in brackets to complete the calculation in the binary number system:

- 1.1 E6,F₁₆ ÷ 43,5₈ (convert the answer to hexadecimal) (6)
- 1.2 96,E₁₆ × 53,2₈ (convert the answer to octal) \bigcirc (6)
- 1.3 122,3 $_8$ 122,B $_{16}$ (use two's complement to convert the answer to decimal) (6) [18]

QUESTION 2

Design a synchronous binary counter that can count from 0 to 9 (0000₂ – 1001₂). Use J-K a flip-flop only and draw the circuit.

Show ALL the steps leading to the solution.

[23]

QUESTION 3

- Draw a two-input complementary CMOS NAND gate. Show the input and output connections.
- 3.2 Study FIGURE below and answer the questions.

Copyright reserved Please turn over